用户名: 密码: 验证码:
重组酿酒酵母乙醇高产菌株的构建及清洁发酵工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源匮乏的日益加剧和温室效应对全球气候造成的影响,使得人们越来越关注利用生物质材料生产替代能源乙醇的研究。利用酿酒酵母发酵生产乙醇是当前应用非常广泛的乙醇生产方法。为了获得乙醇产量提高的菌株,本文作者在本实验室他人工作的基础上,进一步通过分子生物学手段构建基因工程菌株。通过比较,挑选出性能优良的KZ4-D菌株进行发酵性能的考察以及工艺条件的摸索。
     为了进一步引导酿酒酵母中的铵代谢流向利用NADH的谷氨酸途径,本论文中将原有工程菌株中的GDH1基因进行缺失,并通过交配和等位基因分离等手段获得一系列GDH1基因缺失的工程菌株。通过对这些菌株生长代谢情况的考查我们发现,已经过量表达GLT1基因的菌株中,GDH1基因缺失后,甘油产量降低,乙醇产量提高,乙酸产量有所提高,说明铵代谢进一步消耗了NADH。
     为了得到适于工业生产的基因工程菌株,我们在对现有菌株进行比较分析后选择KZ4 (Mat a URA3- fps1Δ::repeat gpd2Δ::repeat GLT1-PGK1)作为重点考察对象。将KZ4菌株通过标记基因恢复和交配手段得到双倍体菌株KZ4-D。当接种量控制为初始OD660为2.0时,可以满足KZ4-D菌株的发酵要求,其乙醇产量比野生型菌株CK-D提高了3.1%。
     本文中研究了利用玉米糖化清液进行发酵的工艺。实验数据显示,利用玉米清液发酵,比传统的带渣发酵具有更多优势。例如,酶的用量降低,生产更稳定,管路阻塞减少,最重要的是乙醇产量和单位体积的生产能力分别提高了2.56%和28%。
     在一系列实验数据的基础上,我们建立了清液发酵过程的动力学模型,用logistic方程对菌体生长进行拟合,用Luedcking-Piret方程对乙醇形成进行拟合,用Luedeking-Piret-like方程对基质消耗进行模拟,都取得了较好的效果。为了进一步提高乙醇产量,我们利用统计学方法对清液发酵条件进行优化处理,确定了摇瓶实验中清液发酵的最优化条件为:(NH4)2HPO4 1.094g/L,(NH4)2SO4 0.2 g/L,MgSO4·7H2O,KH2PO4 0.5 g/L,CaCl2·2H2O 0.01 g/L,温度为33.6℃,初始pH5.0,转速为110r/min。经优化后,KZ4-D的乙醇产量比优化前提高了1.83%。
Demand for ethanol, as a substitute for gasoline, is expected to increase because of concerns related to national security, economic stability, environmental impact, and global warming. Saccharomyces cerevisiae was used extensively in the ethanol fermentation.
     In this investigation we employed the molecular biology techniques to construct recombinant strains of the yeast Saccharomyces cerevisiae, in which the GDH1 gene, encoding the glutamate dehydrogenase were disrupted to direct the ammonium metabolic flux to the pathway consuming NADH. The fermentation experiment results showed the ethanol yield and acetic acid concentration increased and the glycerol concentration in fermentation broth discreased. This means that the ammonium metabolisim consumed more NADH.
     A diploid strain KZ4-D (Mat a/αURA3- fps1Δ::repeat gpd2Δ::repeat GLT1-PGK1) was constructed through renewing the marker gene and crossing, and then chosen as the study object owing to the more ethanol yield. We investigate the growth and metabolic of KZ4-D in various fermentation conditions and the results indicated that the KZ4-D growth less slowly but the ethanol yield was 3.1% higher compared to the wide type strain CK-D.
     In this work, we studied the process in which clarified corn liquid was used as the fermentation substrate. The data from lab and from industry scale showed, comparing the corn mash fermentation, there are many advantages in the clarified corn liquid fermentation process, such as the pipeline block had been reduced significantly, the operation was more stable, and the most important point was the ethanol yield and the ethanol productivity was increased 2.56% and 28%, respectively.
     A simple model was proposed using the logistic equation for growth, the Luedcking-Piret equation for ethanol production and Luedeking-Piret-like equations for reducing sugar consumption. The model appeared to provide a reasonable description for each parameter during the growth phase. Moreover we optimized the fermentation conditions and the medium composition using statistical experimental design to increase the ethanol yield in the clarified corn liquid fermentation process. And the optimal contitions for ethanol yield were found: (NH4)2HPO4 1.094g/L,(NH4)2SO4 0.2 g/L,MgSO4·7H2O,KH2PO4 0.5 g/L,CaCl2·2H2O 0.01 g/L,temperature 33.6℃,initial pH 5.5,shake rate 110r/min. The ethanol yield was increased 1.83% under the optimal conditions.
引文
[1] Joseph Kipardo. http://www.eia.doe.gov/modeling and analysis papers/outlook for biomass ethanol production and demand.
    [2] John T. Biofuels for transport. http://www.task39.org/, 2004.
    [3] Zaldivar J, Nielsen J, Olsson L.(Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol , 2001, 56: 17-34.
    [4] http://www.newenergy.com.cn.
    [5] 2006年中国燃料乙醇行业分析及投资咨询报告,中国投资咨询网,2006。
    [6]胡象尧等,酒精生产技术的回顾与探讨[M],中国食品工业协会,中国酿酒工业协会。
    [7] Bothast RJ, Schlicher MA.Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol, 2005, 67: 19–25.
    [8] http://www.bioproducts-bioenergy.gov/existsite/pdfs/drymill_ethanol_industry.pdf.
    [9] Casey GP, Magnus CA, Ingledew WM. High gravity brewing: nutrient enhanced production of high concentrations of ethanol by brewing yeast, Biotechno1. 1ett. 1983, (5):429-434.
    [10] Thomas KC, Hynes SH, Jones AM, Ingledew WM. Production of fuel alcohol from wheat by VHG technology: effect of sugar concentration and fermentation temperature. Appl Biochem Biotechnol 1993, 43:211–226.
    [11] Belli G, Gari E, Aldea M, Herrero E. Osmotic stress causes a G1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae. Mol Microbiol. 2001, 39:1022–1035.
    [12] Thatipamala R, Rohani S, Hill GA. Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentation. Biotechnol Bioeng, 1992, 40:289–297.
    [13] Pham TK, Chong PK, Gan CS.Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions. J Proteome Res. , 2006, 5(12):3411-3419.
    [14] Patkova J, Smogrovicova D, Bafrncova P, et al. Changes in the yeast metabolism at very high-gravity wort fermentation. Folia Microbiol (Praha). 2000, 45(4):335-338.
    [15]李永飞,吕欣,段作营,等,高浓度酒精补料发酵工艺的研究,酿酒,2003,30(4):31-33。
    [16] Devantier R, Scheithauer B, Villas-Boas SG, et al. Metabolite Profiling for Analysis of Yeast Stress Response During Very High Gravity Ethanol Fermentations. Biotechnology and Bioengineering, 2005, 90:703-714.
    [17] Thomas KC, Ingledew WM. Relationship of low lysine and high arginine concentrations to efficient ethanolic fermentation of wheat mash. Can J Microbiol. 1992, 38(7):626-634.
    [18] Bafrncova P, Smogrovicova D, Slavikova I, et al. Improvement of very high gravity ethanol fermentation by media supplementation using Saccharomyces cerevisiae. Biotechnology Letters, 1999, 21: 337–341.
    [19] Reddy LV, Reddy OV. Reddy. Improvement of ethanol production in very high gravity fermentation by horse gram (Dolichos biflorus) flour supplementation. Letters in Applied Microbiology 2005, 41 (5), 440–444.
    [20] Knox AM, Preez JC, Kilian SG. Starch fermentation characteristics of Saccharomyces cerevisiae strains transformed with amylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Enzyme Microb Technol, 2004, 34:453–460.
    [21] Yan Lin, Shuzo Tanaka. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol, 2006, 69: 627-642.
    [22] Vallet C, Said R, Rabiller C, Martin ML. Natural abundance isotopic fractionation in the fermentation reaction: influence of the nature of the yeast. Bioorganic Chemistry, 1996, 24: 319-330.
    [23] Leticia P, Miguel C, Humberto G, Jaime AJ. Fermentation parameters influencing higher alcohol production in the tequila process. Biotechnology Letters, 1997, 19(1): 45-47.
    [24] Todor D, Tsonka UD. Influence of the growth conditions on the resistance of Saccharomyces cerevisiae, strain NBIMCC 181, by freeze-drying. Journal of culture collections, 2002, 3: 72-77.
    [25] Camacho-Ruiz L, Perez-Guerra N, Roses RP. Factors affecting the growth of Saccharomyces cerevisiae in batch culture and in solid sate fermentation. Electron J Environ Agric Food Chem, 2003, 2(5):531-542.
    [26] Virginie AG, Bruno B, Sylvie D, Jean-Marie S. Stress effect of ethanol on fermentation kinetics by stationary-phase cells of Saccharomyces cerevisiae. Biotechnology Letters, 2001, 23: 677-681.
    [27] Ergun M, Mutlu SF. Application of a statistical technique to the production of ethanol from sugar beet molasses by Saccharomyces cerevisiae. Bioresource Technology, 2000, 73: 251-255.
    [28] Roukas T. Ethanol production from non-sterilized beet molasses by free and immobilized Saccharomyces cerevisiae cells using fed-batch culture. J of Engineering, 1996, 27: 87-96.
    [29] Caylak B, Vardar SF. Comparison of different production processes for bioethanol. Turk J Chem, 1996, 22: 351-359.
    [30] da Cruz SH, Batistote M, Ernandes JR. Effect of sugar catabolite repression in correlation with the structural comoplexity of the nitrogen source on yeast growth and fermentation. J Inst Brew, 2003, 109(4): 349-355.
    [31] Kiran S, Sikander A, Lkram-ul-Haq. Time course study for yeast invertase production by submerged fermentation. Journal of Biological Sciences, 2003, 3(11): 984-988.
    [32] Navarro AR, Sepulveda MC, Rubio MC Bio-concentration of vinasse from the alcoholic fermentation of sugar cane molasses. Waste Management, 2000, 20: 581-585.
    [33] Yu ZS, Zhang HX. Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae. Bioresource Technology, 2004, 93: 199-204.
    [34] Ghasem N, Habibollah Y, Ku S, Ku I. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Bioresource Technology, 2004, 92: 251-260.
    [35] Jessica Becker, Eckhard Boles. A Modified Saccharomyces cerevisiae Strain That Consumes L-Arabinose and Produces Ethanol. Applied and Environmental Microbiology, 2003, 4144–4150.
    [36] Eliasson A, Christensson C, Wahlbom CF, et al. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Applied and Environmental Microbiology, 2000, 66:3381–3386.
    [37] Shi NQ, Davis B, Sherman F, et al. Disruption of the Cytochrome c Gene in Xylose-utilizing Yeast Pichia stipitis Leads to Higher Ethanol Production. Yeast, 1999, 15, 1021-1030.
    [38] Karhumaa K, Fromanger R, Hahn-Hagerdal B, et al. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 2007, 73:1039–1046
    [39] Saleh AA, Watanabe S, Annaluru N, et al. Construction of various mutants of xylose metabolizing enzymes for efficient conversion of biomass to ethanol. Nucleic Acids Symposium Series, 2006, 50: 279-280
    [40] Khaw TS, Katakura Y, Koh J, et al. Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch. Appl Microbiol Biotechnol, 2006, 70(5):573-579.
    [41] Toksoy Oner E, Oliver SG, Kirdar B. Production of Ethanol from Starch by Respiration-Deficient Recombinant Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2005, 6443–6445.
    [42] Shigechi H, Koh J, Fujita Y, et al. Direct Production of Ethanol from Raw Corn Starch via Fermentation by Use of a Novel Surface-Engineered Yeast Strain Codisplaying Glucoamylase andα-Amylase. Applied and Environmental Microbiology, 2004, 5037–5040.
    [43] Kim TG, Kim K. The construction of a stable starch-fermenting yeast strain using genetic engineering and rare-mating. Appl Biochem Biotechnol. 1996, 59(1):39-51.
    [44] Eksteen JM,Van Rensburg P, Cordero Otero RR, et al. Starch fermentation by recombinant saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from lipomyces kononenkoae and saccharomycopsis fibuligera. Biotechnol Bioeng. 2003, 84(6):639-646.
    [45]章克昌,酒精与蒸馏酒工艺学,北京:中国轻工业出版社,2001。
    [46] Singh D, Banat I M, Nigam P. Industrial scale ethanol production using the thermotolerant yeast Kluyveromyces marxianus IMB3 in an Indian distillery. Biotechnology Letters, 1998, 34, 189-195.
    [47] Aristidou A and M Pentilla. Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol, 2000, 11: 187–198.
    [48] Valadi H, Larsson C, Gustafsson L., Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae, Appl Microbiol. Biotechnol., 1998, 50 (4): 434-439.
    [49] Nissen T L, Hamann C W, Kielland-Brandt M C, et al., Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis,Yeast, 2000, 16: 463-474.
    [50] Murakami K, Tao E, Ito Y, et al. Large scale deletions in the Saccharomyces cerevisiae genome create strains with altered regulation of carbon metabolism. Appl Microbiol Biotechnol. 2007, online.
    [51] Nissen T L, Kielland-Brandt M C, Nielsen J, et al., Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metabolic Engineering, 2000, 2: 69-77.;
    [52] Bakker BM, Overkamp KM, van Maris AJ, et al. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae。FEMS Microbiology Reviews 25 (2001) 15-37.
    [53] Van Dijken, J.P. and Scheffers, W.A., Redox balances in the metabolism of sugars by yeast. FEMS Microbiol Review, 1986, 32, 199-224.
    [54] Ricky Ansell, Katarina Granath, Stefan Hohmann, et al. The two isoenzymes for yeast NAD-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. The EMBO Journal, 1997, 16(9): 2179-2187.
    [55] Hohmann, S., Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 2002, 66, 300-372.
    [56] Nissen T L, Kielland-Brandt M C, Nielsen J, et al. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metabolic Engineering, 2000, 2: 69-77.
    [57] Larsson C, Pahlman I, Ansell R, et al., The Importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisia, Yeast, 1998, 14: 347-357.
    [58] Bakker B M, Overkamp K M, Antonius J.A. van Maris, et al., Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae, FEMS Microbiology Reviews, 2001, 25: 15-37.
    [59] Albertyn J, Hohmann S, Thevelein J M, et al., GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway, Molecular and Cellular Biology, 1994, 14: 4135-4144.
    [60] Rep M, Albertyn J, Thevelein J M. Different signaling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae,Microbiology, 1999, 145: 715-727.
    [61] Tama′s M J, Luyten K, Sutherland F C W, et al., Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation, Molecular Microbiology, 1999, 31(4): 1087-1104.
    [62] Nevoigt, E, Stahl, U. Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 1997, 21, 231-241.
    [63] Santos M M dos, Thygesen G, K?tter P, et al., Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability,FEMS Yeast Research, 2003, 4: 59-68.
    [64] Michnick S, Roustan J L, Remize F, et al. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol-3-phosphate dehydrogenase, Yeast, 1997, 3: 783~793.
    [65] Eriksson, P, Andre, L, Ansell, R, et al., Cloning and characterization of GPD2, a second gene encoding sn-glycerol-3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Molecular Microbiology, 1995, 17(1), 95-107.
    [66] Larsson K, Ansell R, Eriksson P, et al. A gene encoding sn-glycerol-3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Mol. Microbiol. 1993, 10: 1101–1111.
    [67] Nevoigt E, Stahl U. Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae, FEMS, Microbiology Reviews, 1997, 21: 231-241.
    [68] Ansell R, Adler L. The effect of iron limitation on glycerol production and expression of the isogenes for NAD-dependent glycerol 3-phosphate dehydrogenase in Saccharomyces cerevisiae, FEBS Letters, 1999, 461: 173-177.
    [69] Blomberg, A and Adler, L. Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD) in acquired osmotolerance of Saccharomyces cerevisiae. J. Bacteriol., 1989, 171: 1087-1092.
    [70] Mager W H, Siderius M. Novel insights into the osmotic stress response of yeast, FEMS Yeast Research, 2002. 2: 251-257.
    [71] Toh T H, Kayingo G. Implications of FPS1 deletion and membrane ergosterol content for glycerol efflux from Saccharomyces cerevisiae, FEMS Yeast Research, 2001, 1: 205-211.
    [72] Sutherland, F.C.W., Lages F, Lucas C, et al., Characteristics of Fps1p-dependent and–independent glycerol transport in Saccharomyces cerevisiae, Journal of Bacteriology, 1997, 179: 7790-7795.
    [73] Oliveira R, Lages F, Silva-Graca M, et al. Fps1p channel is the mediator of the major part of glycerol passive diffusion in Saccharomyces cerevisiae: artifacts and re-definitions,Biochimica Biophysica Acta, 2003. 1613: 57-71.
    [74] Luyten K, Albertyn J, Skibbe F, et al., S. Fps1, a yeast member of the MIP-family of channel proteins, is a facilitator for glycerol uptake and efflux and it is inactive under osmotic stress. EMBO Journal, 1995, 14: 1360-1371.
    [75] Karlgren S, Filipsson C, Mullins JG, et al. Identification of residues controlling transport through the yeast aquaglyceroporin Fps1 using a genetic screen. European Journal of Biochemistry, 2004, 271(4): 771-779.
    [76] Neves L, Lages F, Lucas C. New insights on glycerol transport in Saccharomyces cerevisiae. FEBS Lett, 2004, 565:160-169.
    [77] Ansell R, Adler L. The effect of iron limitation on glycerol production and expression of the isogenes for NAD-dependent glycerol 3-phosphate dehydrogenase in Saccharomyces cerevisiae, FEBS Letters, 1999. 461: 173~177.
    [78]张爱利,利用基因工程技术限制酿酒酵母甘油生物合成提高乙醇发酵效率,[硕士学位论文],天津;天津大学,2005。
    [79]孔庆学,酿酒酵母遗传操作降低甘油合成提高乙醇产量的研究,[博士学位论文],天津;天津大学,2006。
    [80] Bideaux C, Alfenore S, Cameleyre X, et al. Minimization of Glycerol Production during the High-Performance Fed-Batch Ethanolic Fermentation Process in Saccharomyces cerevisiae, using a Metabolic Model as a Prediction Tool. Applied and Environmental Microbiology, 2006, 2134–2140.
    [81]李伟军,丛威,姜波,等,酿酒酵母单细胞生长动力学的初步研究,化工冶金,2000,21(2):149-153。
    [82] Win SS, Impoolsup A, Noomhorm A. Growth kinetics of Saccharomyces cerevisiae in batch and fed-batch cultivation using sugarcane molasses and glucose syrup from cassava starch. Journal of Industrial Microbiology, 1996, 16: 117-123.
    [83] Govindaswamy S, Leland M. Vane LM. Kinetics of growth and ethanol production on different carbon substrates using genetically engineered xylose-fermenting yeast. Bioresource Technology 2007, 98: 677–685.
    [84]伍勇,肖泽仪,黄卫星,等,酿酒酵母的发酵优化与动力学研究,酿酒,2004,31(5):19-21。
    [85] Jurascik M, Guimaraes P, Klein J, et al. Kinetics of lactose fermentation using a recombinant Saccharomyces cerevisiae strain. Biotechnol Bioeng. 2006, 94(6):1147-1154.
    [86] Dragone G, Silva DP, de Almeida e Silva JB. Improvement of the ethanol productivity in a high gravity brewing at pilot plant. Biotechnol Lett, 2003, 25(14):1171-1174.
    [87] Thomas KC, Ingledew WM. Fuel Alcohol Production: Effects of Free Amino Nitrogen on Fermentation of Very-High-Gravity Wheat Mashes. Applied and Environmental Microbiology, 1990, 56(7): 2046-2050.
    [88]李林,傅庭治,曹幼琴,植酸钠对酿酒酵母乙醇发酵的促进作用,微生物学杂志,1994,14(1):15-19。
    [89] Graves T, Narendranath NV, Dawson K, et al. Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiaein corn mash. J Ind Microbiol Biotechnol, 2006, 33(6):469-474.
    [90] Narendranath NV, Power R. Effect of yeast inoculation rate on the metabolism of contaminating lactobacilli during fermentation of corn mash. J Ind Microbiol Biotechnol, 2004, 31: 581–584.
    [91] Narendranath NV, Power R. Relationship between pH and Medium Dissolved Solids in Terms of Growth and Metabolism of Lactobacilli and Saccharomyces cerevisiae during Ethanol Production. Applied and Environmental Microbiology, 2005, 71(5): 2239–2243.
    [92] Jones AM, Ingledew WM. Fuel Alcohol Production: Optimization of Temperature for Efficient Very-High-Gravity Fermentation. Applied and Environmental Microbiology, 1994, 1048-1051.
    [93] Varga E, Klinke HB, Reczey K, et al. High Solid Simultaneous Saccharification and Fermentation of Wet Oxidized Corn Stover to Ethanol. Biotechnology and Bioengineering, 2004, 88:567-574.
    [94] Wang FQ, Gao CJ, Yang CY, et al. Optimization of an ethanol production medium in very high gravity fermentation. Biotechnol Lett, 2007, 29: 233–236.
    [95]赵宝华,张莉。外加肌醇和钙离子对酿酒酵母乙醇发酵的影响,微生物学报,1999,39(2):174-177。
    [96] Aldiguier AS, Alfenore S, Cameleyre X, et al. Synergistic temperature and ethanol effect on Saccharomyces cerevisiaedynamic behaviour in ethanol bio-fuel production. Bioprocess Biosyst Eng, 2004, 26: 217–222.
    [97] Bai FW, Chen LJ, Zhang Z, et al. Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. J.Biotechnol. 2004, 110(3):287-293.
    [98] Devantier R, Pedersen S, Olsson L. Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain. Appl Microbiol Biotechnol, 2005, 68: 622–629.
    [99] Plackett FL, Burman JP. The design of optimum multifatorial experiments. Biometrika, 1946, 37: 305-325.
    [100] Kalil SJ, Maugeri F, Rodrigues MI. Response surface analysis and simulation as a tool for bioprocess design and optimization.Proc Biochem, 2000, 35: 539-550.
    [101] Ahuja SK, Ferreira GM, Moreira AR. Application of Plackett-Burman Design and Response Surface Methodology to Achieve Exponential Growth for Aggregated Shipworm Bacterium. Biotechnology and Bioengineering, 2004, 85(6): 666-675.
    [102] Box GEP, Wilson KB. On the experimental attainment of optimum conditions. JR Soc Stat, 1951, 13:1.
    [103]王允祥,陆兆新,吕凤霞。翅鳞伞深层发酵胞外多糖优化研究,生物工程学报,2004,20(3):414-422。
    [104] El-Helow E R, ABDEL-Fattah Y R, Ghanem K M, et al. application of the response surface methodology for optimizing the activity of an aprE-driven gene expression system in Bacillus subtilis. Appl Microbiol Biotechnol, 2000, 54:515-520.
    [105] Dahiya N, Tewari R, Tiwari RP, et al. Chitinase production in solid-state fermentation by Enterobacter sp. NRG4 using statistical experimental design. Current microbiology, 2005, 51:222-228.
    [106] Cui FJ, Li Y, Xu ZH. Optimization of the medium composition for production of mycelial biomass and exo-polymer by Grifola frondosa GF9801 using response surface methodology. Bioresource Technology 97, 2006, 1209–1216.
    [107] Carvalho JC, Vitolo M, Sato S, et al. Ethanol production by Saccharomyces cerevisiae grown in sugarcane blackstrap molasses through a fed-batch process: optimization by response surface methodology. Appl Biochem Biotechnol. 2003, 110(3): 151-164.
    [108] Chandrasena G, Walker GM. Use of Response Surfaces to Investigate Metal Ion Interactions in Yeast Fermentations. Journal of American Society of Brewing Chemists, 1997, 55(1):24-29.
    [109] Krishna SH and Chowdary GV. Optimization of Simultaneous Saccharification and Fermentation for the Production of Ethanol from Lignocellulosic Biomass. J. Agric. Food Chem. 2000, 48, 1971-1976.
    [110]萨姆布鲁克等著,金冬雁等译,分子克隆实验指南(第二版),北京:科学出版社,1992,57-78。
    [111]奥斯伯等著,精编分子生物学实验指南(颜子颖等译),北京:科学出版社,1998,234-267。
    [112] Christine Guthrie, Gerald R. Fink. Guide to yeast genetics and molecular and cell biology. Elsevier academic press, 2004.
    [113] Huxley C, Green ED, Dunham I. 1990 Rapid assessment of Sc mating type by PCR.Trends Genet. 6, 236.
    [114]董晓燕主编。生物化学实验(工科类专业适用),北京:化学工业出版社, 2003,34-37。
    [115]天津轻工业学院等编著,工业发酵分析,北京:中国轻工业出版社,2003。
    [116] Francoise Langle-Rouault and Eric Jacobs, A method for performing precise alterations in the yeast genome using a recyclable selectable marker, Nucleic Acids Research, 1995, 23(15):3079-3081.
    [117] Lucas C, van Uden N. The temperature profiles of growth, thermal death and ethanol tolerance of the xylose-fermenting yeast Candida shehatae. J Basic Microbiol, 1985, 25: 547-550.
    [118] Spindler D, Wyman CE, Grohman K. 1990. Evaluation of pretreated herbaceous crops for the simultaneous saccharification and fermentation process. Appl Biochem Biotechnol 24/25:275–286.
    [119] Murat Elibol,Ferda Mavituna. A kinetic model for actinorhodin production by Streptomyces coelicolor A3(2), Process Biochemistry, 1999, 34, 625–631.
    [120]刘建忠,翁丽萍,杨惠英,葡萄糖氧化酶及过氧化氢酶摇床发酵过程数学模型,化工学报,2002,53(1):50-53。
    [121] Luedeking R, Piret EL. A kinetic study of the lactic acid fermentation: Batch process at controlled pH. J Biochem Microbiol Technol Eng 1959, 1:363–394.
    [122] Kubota S, Takeo I, Kume K, et al. Effect of ethanol on cell growth of budding yeast: genes that are important for cell growth in the presence of ethanol. Biosci. Biotechnol. Biochem., 2004, 68(4):968-972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700