用户名: 密码: 验证码:
异常黑胆质性哮喘ECP、IgE、FEV_1和β_2-AR、IL-4、IL-13基因多态性及血栓前状态分子标志物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     随着现代免疫学、分子生物学与现代科学的发展使哮喘病的研究在病因学、发病机制、免疫学、诊断和治疗水平等方面有了很大的进展,但哮喘作为复杂性疾病,其发病机理依然不够明确。目前认为哮喘是一种慢性非特异性炎症,是由多种细胞及细胞组份参与的慢性气道炎症,先天遗传的特应性和后天形成的变态反应是发生哮喘的基础,也可能与调节气道功能的神经、受体间平衡失调有关。治疗主要以糖皮质激素、气管扩张剂、白三烯调节剂等药物为主。能有效的控制哮喘的发作,但不能完全根除此病。因此进一步探求哮喘的发病机理,寻求有效的治疗手段是我们面临的挑战,尤其在中国传统医学中去探索、寻求,具有较大的现实意义。
     维吾尔医学是祖国医学的重要组成部分,对哮喘的认识独特,疗效显著。维医将哮喘辩证分型为:乃孜来性哮喘、“野力”性哮喘、干性哮喘、异常粘液质性哮喘和异常黑胆质性哮喘。本课题组研究发现,在各种类型的哮喘中异常黑胆质性哮喘患者的年龄最大,病情程度最重,发病机理最为复杂。
     本课题在以往工作的基础上拟探讨异常黑胆质性哮喘ECP、T-IgE、S-IgE、FEV_1、CD41、CD62P、ET-1、t-PA、PAI-1、FIB、APTT、PT、TT等指标的变化特点及哮喘发病的β_2-AR、IL-4、IL-13基因多态性与异常黑胆质性哮喘的关系,探索异常黑胆质性哮喘患者的遗传易感性,探究上述指标是否可作为判断异常黑胆质性哮喘的另外一部分微观指标,使维医异常黑胆质性哮喘的诊断更加客观化,临床上更能准确把握,同时为维吾尔医治疗异常黑胆质性哮喘寻找靶位,从而为哮喘的维西医结合治疗与研究的提升和发展提供新的思路。
     材料和方法
     病例来源第一、第二部分为2006年11月至2007年6月在新疆和田地区收集支气管哮喘患者共76例,正常对照组89例。第三部分为2006年3月~2006年7月在新疆医科大学附属中医医院收集支气管哮喘患者共67例,正常对照组33例。所有哮喘患者均符合中华医学会呼吸病学分会哮喘学组(2003年)制订的“支气管哮喘防治指南(支气管哮喘的定义、诊断、治疗及教育和管理方案)”的诊断分级标准,并按维吾尔医体液论进行辨证分型。正常对照组为经体检无心、肺、肝、肾及血液等疾病的健康人。对所研究对象进行以下方面的测定:用荧光酶联免疫法检测ECP、T-IgE、S-IgE;用肺功能仪测FEV_1;用聚合酶链反应方法检测β_2-AR、IL-4、IL-13基因多态性;用流式细胞仪测定患者血小板表面CD41,CD62p;用放射免疫法检测血清ET-1;用ELAISA方法检测血浆t-PA,PAI-1;全自动血凝分析仪检测凝血四项即血浆纤维蛋白原(FIB)水平、活化部分凝血活酶时间(APTT)、凝血酶原时间(PT)、凝血酶时间(TT)。统计学方法:所有实验数据采用SPSS15.0统计软件处理,用均数±标准差( x±s)表示;采用单因素方差分析,两组间比较采用t检验,P<0.05有统计学意义。
     结果
     1)血清ECP水平变化在异常黑胆质性哮喘组、非异常黑胆质性哮喘组和正常对照组间有显著性差异(P<0.01),异常黑胆质性哮喘组和非异常黑胆质性哮喘组明显高于正常对照组(P<0.01),异常黑胆质性哮喘组明显高于非异常黑胆质性哮喘组(P<0.01)。血清T-IgE水平变化在异常黑胆质性哮喘组、非异常黑胆质性哮喘组和正常对照组间有显著性差异(P<0.01),异常黑胆质性哮喘组和非异常黑胆质性哮喘组明显高于正常对照组(P<0.01),其中以异常黑胆质性哮喘组的T-IgE含量最高(P<0.01)。血清S-IgE阳性率在异常黑胆质性哮喘组、非异常黑胆质性哮喘组和正常对照组间有显著性差异(P<0.01),异常黑胆质性哮喘组和非异常黑胆质性哮喘组血清S-IgE阳性率明显高于正常对照组(P<0.01),其中以异常黑胆质性哮喘组的S-IgE阳性率最高(P<0.01),FEV_1水平变化在异常黑胆质性哮喘组、非异常黑胆质性哮喘组和正常对照组间有显著性差异(P<0.01),异常黑胆质性哮喘组和非异常黑胆质性哮喘组低于正常对照组(P<0.01),其中异常黑胆质性哮喘组降低最为明显(P<0.01)。
     2)β_2-AR基因16位点多态性在异常黑胆质性哮喘组甘氨酸/甘氨酸(Gly/Gly)纯合子基因型频率分布明显高于非异常黑胆质性哮喘组和正常对照组(P<0.01)。β_2-AR基因16位点等位基因频率分布在异常黑胆质性哮喘组、非异常黑胆质性哮喘组及正常对照组间比较,差异无显著性(P>0.05)。β_2-AR基因27位点基因型频率分布及等位基因频率分布在异常黑胆质性哮喘组、非异常黑胆质性哮喘组和正常对照组间比较,差异无显著性(P>0.05)。
     IL-4基因启动子区-589(C/T)位点CT基因型频率分布在异常黑胆质性哮喘组、非异常黑胆质性哮喘组及正常对照组间比较有显著性差异(P<0.01)。异常黑胆质性哮喘组CT基因型频率分布明显高于非异常黑胆质性哮喘组和正常对照组差异有显著性(P<0.01)。非异常黑胆质性哮喘组CT基因型频率分布高于正常对照组(P<0.05)。而CC、TT基因型及等位基因频率分布在异常黑胆质性哮喘组、非异常黑胆质性哮喘组和正常对照组间无显著性差异(P>0.05)。
     IL-13基因intron3+1923位点多态性变化在异常黑胆质性哮喘组TT、TC基因型频率分布明显高于非异常黑胆质性哮喘组及正常对照组(P<0.01),非异常黑胆质性哮喘组TT、TC基因型频率分布高于正常对照组(P<0.05),而正常对照组CC基因型频率分布明显高于异常黑胆质性哮喘组(P<0.01),也高于非异常黑胆质性哮喘组(P<0.05),非异常黑胆质性哮喘组高于异常黑胆质性哮喘组(P<0.05)。该位点T等位基因频率分布异常黑胆质性哮喘组高于非异常黑胆质性哮喘组(P<0.05),明显高于正常对照组(P<0.01),C等位基因频率分布异常黑胆质性哮喘组低于非异常黑胆质性哮喘组(P<0.05),明显低于正常对照组(P<0.01)。IL-13基因+2044位点基因型频率分布和等位基因频率分布在异常黑胆质性哮喘组、非异常黑胆质性哮喘组和正常对照组间比较,差异无显著性(P>0.05)。
     3)与正常对照组相比较,异常黑胆质性哮喘组和非异常黑胆质性哮喘组CD41阳性表达率无明显差异(P>0.05);CD62P阳性表达率均升高(P<0.05),且异常黑胆质性哮喘组CD62P水平高于非异常黑胆质性哮喘组(P<0.05);与正常对照组相比较,异常黑胆质性哮喘组和非异常黑胆质性哮喘组ET-1水平均升高(P<0.05),且异常黑胆质性哮喘组ET-1水平高于非异常黑胆质性哮喘组(P<0.05);与正常对照组相比较,异常黑胆质性哮喘组和非异常黑胆质性哮喘组t-PA含量均下降(P<0.05),以异常黑胆质性哮喘组下降明显;PAI-1含量均升高(P<0.05)在异常黑胆质性哮喘组升高明显;与正常对照组相比较,异常黑胆质性哮喘组和非异常黑胆质性哮喘组FIB含量明显升高(P<0.01),且异常黑胆质性哮喘组FIB含量高于非异常黑胆质性哮喘组(P<0.05),APTT、PT时间缩短(P<0.05), TT的变化无差异(P>0.05)。
     结论
     1)ECP是嗜酸性粒细胞活性的特异性指标,能反映气道炎症程度的发生和发展。IgE介导的Ⅰ型变态反应是形成气道慢性炎症反应的主要原因之一,而变应原是气道慢性炎症的主要致病因素,T-IgE、S-IgE水平升高,既是特应症的主要识别标志,也是气道慢性炎症的主要特征。本研究显示,血清ECP、T-IgE、S-IgE水平在异常黑胆质性哮喘患者中最高。因此可推测,血清ECP、T-IgE、S-IgE可能是异常黑胆质性哮喘的潜在的决定因素,其对预测和判断异常黑胆质性哮喘的活动性均有一定的临床意义。
     2)FEV_1与小气道阻力有关系,它能更好的反映小气道阻塞的情况,是判断气道阻塞的及其严重性的可靠指标。FEV_1降低表明有气道阻塞存在。本研究表明与非异常黑胆质性哮喘组比较FEV_1在异常黑胆质性哮喘组中最低,由此可提出异常黑胆质性哮喘患者气道阻塞更明显。
     3)β_2-AR基因16位点具有甘氨酸/甘氨酸(Gly/Gly)纯合子基因型的人群异常黑胆质性哮喘的危险性高于正常人群。我们认为,当甘氨酸/精氨酸(Gly/Arg)杂合子个体内的精氨酸突变为甘氨酸时,此个体患异常黑胆质性哮喘的危险性增加。即Gly/Gly基因型可能是异常黑胆质性哮喘发病的内在危险因素之一,β_2-AR基因16位点多态性与异常黑胆质性哮喘关联。
     4)IL-4基因启动子区-589C/T位点,具有CT杂合子基因型的个体与异常黑胆质性哮喘易感性相关,提示IL-4基因启动子区-589C/T位点多态性可能是异常黑胆质性哮喘易感性的一个重要候选基因。
     5)IL-13基因intron3+1923位点TT及TC基因可能与异常黑胆质性哮喘的发生相关,为异常黑胆质性哮喘的易感基因。该位点T等位基因可能为异常黑胆质性哮喘的易感基因,C等位基因可能为异常黑胆质性哮喘的抵抗基因。具有T等位基因的人群在受到环境因素刺激后,如反复过敏原接触,长期生活于污染严重的环境中,其发生异常黑胆质性哮喘哮的可能性将大于具有C等位基因者。因而这部分具有IL-13基因intron3+1923位点T等位基因的正常人群可能是进行维医异常黑胆质性哮喘预防的重点人群。
     6)研究发现血栓前状态可能是异常黑胆质性哮喘的病理生理基础之一,也可能是致病因素,异常黑胆质性哮喘患者的血小板、血管内皮细胞、凝血血和纤溶功能发生紊乱,表现在血小板活化、血管内皮细胞损伤、血液粘度增高、纤溶功能降低,提示异常黑胆质性哮喘患者处于血栓前状态,且这种状态较非异常黑胆质性哮喘更为突出。
     总之,维医异常黑胆质性哮喘病情较重,发病机理较为复杂,结合以往研究结果,我们认为在诊断异常黑胆质性哮喘时,基于维医的辩证分型标准,同时应考虑患者免疫功能紊乱、内源性皮质醇降低、血清ECP、T-IgE、S-IgE水平肺功能FEV_1及β_2-AR,IL-4、IL-13基因多态性和CD62P、PAI-1、t-PA、FIB、APTT、PT的改变,并应将这些指标作为维医治疗异常黑胆质性哮喘判断疗效的部分微观指标。
Object:
     With the rapid development of modern medicine, the development of modern immunology, molecular biology contributed a lot to the etiology, pathogenesis, immunology, diagnosis and treatment of asthma. As far as the complexity of asthma concerned, its pathogenesis is still not clear enough. It is generally believed that, asthma is a chronic non-specific inflammation. A variety of cells and cell groups participate in the chronic airway inflammation. Innate congenital specialty and acquired allergic significance are the basis of asthmatic development. The imbalance between the nerves and their receptors which regulates the function of bronchitis may also be related to the formation of asthma. The main treatment methods of asthma are the usage of glucocorticoid, expansion of tracheal and leukotriene regulating agents. Although such treatment methods are effective in controlling of asthma, they cannot significantly reduce the mortality, cannot completely eradicate the disease itself. So in order to explore the pathogenesis of asthma and to seek an effective treatment method is the challenge that we are currently facing. Looking for a treatment method from the Traditional Chinese Medicine has even greater significance.
     Being an indispensable part of Traditional Chinese Medicine, Uyghur Medicine has its unique recognition and effective treatments for asthma. Asthma is divided asthma with abnormal Kan, asthma with abnormal Balgam, asthma with abnormal Sapra and asthma with abnormal Savda in Uyghur Medicine. In the previous studies, our research group discovered that, the asthmatic patients with abnormal Savda have the oldest age, most severe symptoms and most complex pathogenesis of asthma. In an asthma attack, compared to the other types of asthma in Uyghur Medicine, the value of CDllb, CDllb/CDl8 and rate of lymphocyte apoptosis in asthmatic patients with abnormal Savda was the highest, the value of CS, ACTH and CRH was the lowest in asthmatic patients with abnormal Savda. From above results, we assume that immune dysfunction, reduced endogenous cortisol and infection are the probable factors which largely contribute to the formation of asthma with abnormal Savda. We also discovered that there is a correlation ship in asthma with abnormal Savda in Uyghur Medicine, deficieacy asthma of traditional chinese medicine and the severe asthma in Western medicine. There is commonness in the level of CDllb/CDl8, lymphocyte apoptosis and the level of endogenous cortisol in these three types of asthma. There is a significant change in the metabolic group model between asthma with abnormal Savda and the other types of asthma in Uyghur Medicine.
     Based on the results of previous research, this study will discuss the changes of ECP、T-IgE、S-IgE、FEV_1、CD41、CD62P、ET-1、t-PA、PAI-1、FIB、APTT、PT、TT in asthma with abnormal Savda and the relationship betweenβ_2-AR IL-4, IL-13, gene polymorphism and the asthma with abnormal Savda. By studying the genetic susceptibility of asthmatic patients with abnormal Savda and analyzing whether the above indicators can be used as part of the macro diagnostic indexes of asthma, this study will try to grasp more accuracy in the diagnosis of asthma and making the diagnosis even more objective.at the same time., this study will also look for the probable targets of treating asthma with abnormal Savda in Uyghur Medicine.
     Materials and Methods
     Patients:, There were 76 cases of asthmatic Uyghur patients in first and second group who were hospitalized from November 2006 to June 2007 in Hotan district of Xinjiang. There were 67 cases of asthmatic patients in the third group who were hospitalized from February 2006 to October 2006 in Traditional Chinese Medicine hospital in Urumqi. All patients were diagnosed according to the criteria of Uyghur Medicine and the Western medicine asthma diagnosis. 89 cases of healthy individuals,they have all been checked to make sure that they do not have hypertension, diabetes or other heart, liver, kidney and blood diseases. All individuals have been checked for following indicators: ECP, T-IgE, S-IgE were tested by using immuno fluorescence detection, FEV_1 was checked by using lung function testing machine,β_2-AR, IL-4, IL-13, gene polymorphism were measured by polymerase chain reaction method. The expression of CD62p on platelets, the level of plasma tissue plasminogen activator (t-PA)and its inhibiter(PAI-1), the level of endothelin-1(ET-1), Activated partial thromboplastin time (APTT), Fibrinogen ( FIB), Prothrombin time ( PT) and Thrombin time (TT) were tested by using Flow Cytometer, ELASA method, radioimmunoassay method and auto coagulometer. Statistical analysis: SPSS11.5 was used in the study. The data was expressed as means±standard deviation (SD). Statistical significance of a comparison was determined by using ANOVA. The difference between means was considered to be statistically significant if p<0.05.
     Results:
     1)Compared to normal control group, level of serum ECP was significantly changed in asthma with abnormal Savda and asthma with non abnormal Savda groups(P<0.01),the level of ECP was significantly higher in asthma with abnormal Savda group than that of the asthma with non abnormal Savda group and the normal control group(P<0.01). Compared to normal control group, level of serum T-IgE was significantly changed in asthma with abnormal Savda and asthma with non abnormal Savda groups(P<0.01),the level of T-IgE was significantly higher in asthma with abnormal Savda group and asthma with non abnormal Savda group than that of the normal control group(P<0.01). The level of T-IgE had no statistical difference between asthma with abnormal Savda and asthma with non abnormal Savda group(P>0.05)。Compared to normal control group, level of serum S-IgE significantly changed in asthma with abnormal Savda and asthma with non abnormal Savda groups(P<0.01),the level of S-IgE was significantly higher in asthma with abnormal Savda group and asthma with non abnormal Savda group than that of the normal control group(P<0.01),The level of S-IgE had no statistical difference between asthma with abnormal Savda and asthma with non abnormal Savda group(P>0.05). Compared to normal control group, level of FEV_1 was significantly changed in asthma with abnormal Savda and asthma with non abnormal Savda groups(P<0.01), the level of FEV_1 was significantly decreased in asthma with abnormal Savda and asthma with non abnormal Savda group than that of the normal control group(P<0.01).
     2)Asthma with abnormal Savdaβ_2-AR gene polymorphism in 16 points (Gly / Gly) homozygous genotype frequency distribution was significantly higher than that of the asthma with non abnormal Savda group and the normal control group(P<0.01)。There was no statistical difference inβ_2-AR gene polymorphism in 16 points (Gly / Gly) homozygous genotype distribution frequency between these three groups(P>0.05). There was no statistical difference inβ_2-AR gene 27 points genotype frequency distributions and allele frequency distribution between these three groups(P>0.05). Compared to normal control group, IL-4 gene promoter -589 (C / T) sites CT genotype frequency distribution was significantly changed in asthma with abnormal Savda and asthma with non abnormal Savda groups(P<0.01)(P<0.01). IL-4 gene promoter -589 (C / T) sites CT genotype frequency distribution was significantly higher in asthma with abnormal Savda group than that of the asthma with non abnormal Savda group and the normal control group(P<0.01). IL-4 gene promoter -589 (C / T) sites CT genotype frequency distribution was significantly higher in asthma with non abnormal Savda group than that of the normal control group(P<0.05). There was no statistical difference in CC, TT genotype and allele frequency distribution between these three groups(P>0.05).
     IL-13 gene polymorphism loci intron 3 +1923 in asthma with abnormal Savda TT, TC genotype frequency distribution was significantly higher than that of the asthma with non abnormal Savda group and the normal control group(P<0.01),asthma with non abnormal Savda group TT, TC genotype frequency distribution was significantly higher than that of the normal control group(P<0.05),CC genotype frequency distribution in normal control group was significantly higher than that of the asthma with abnormal Savda group (P<0.05)and asthma with non abnormal Savda group(P<0.01). T allele frequency distribution of this site in asthma with abnormal Savda group was significantly higher than that of the normal control group(P<0.01),C allele frequency distribution of this site in normal control group was significantly higher than that of the asthma with abnormal Savda group(P<0.05). There was no statistical difference in IL-13 gene loci +2044 genotype frequency distributions and allele frequency distribution between these three groups(P>0.05).
     3)Compared to normal control group, there was no significance on the expression of asthma with abnormal Savda group and asthma with non abnormal Savda group(P>0.05);the expression of CD62P in all three groups(P<0.05),among them the expression of CD62P in asthma with abnormal Savda group was significantly higher than that of the asthma with non abnormal Savda group(P<0.05). Compared to normal control group, level of serum ET-1 was significantly higher in asthma with abnormal Savda and asthma with non abnormal Savda groups(P<0.05),the level of ET-1 was significantly higher in asthma with abnormal Savda group than that of the asthma with non abnormal Savda group and the normal control group(P<0.01). Compared to normal control group, level of plasma t-PA was significantly lower in asthma with abnormal Savda and asthma with non abnormal Savda groups(P<0.05);Compared to normal control group, level of serum PAI-1 was significantly higher in asthma with abnormal Savda and asthma with non abnormal Savda groups(P<0.05). Compared to normal control group, level of plasma FIB was significantly higher in asthma with abnormal Savda and asthma with non abnormal Savda groups(P<0.05), the level of plasma FIB was significantly higher in asthma with abnormal Savda group than that of the asthma with non abnormal Savda group and the normal control group. Compared to normal control group, level of APTT、PTwas significantly shortened in asthma with abnormal Savda and asthma with non abnormal Savda groups (P<0.05); There was no significance on TT between these three groups(P>0.05).
     Conclusion:
     1)ECP is a specific indicator of eosinophil activity, it reflects the degree of airway inflammation in the development. IgE-mediated allergic reaction is one of the main reasons of airway chronic inflammatory reaction. High level of T-IgE、S-IgE is not only the main recognition factors of atopic disease but also the main characteristic of airway chronic inflammation. The result of this study showed that, the level of serum ECP、T-IgE and S-IgE was significantly higher in asthmatic patients with abnormal Savda. From this result we assume that the high level of serum ECP、T-IgE and S-IgE might be the potential deciding factor if asthma with abnormal Savda. Therefore, judgement and assessment of these factors might have certain clinical significance in assessing the activity of asthma with abnormal Savda .
     2)FEV_1 is related to the small airway resistance. FEV_1 is a reliable indicator of the degree and severity of airway obstruction. Decreased FEV_1 indicates the existence of airway obstruction. Our research result showed that the level of FEV_1 was significantly lower in asthmatic patients with abnormal Savda than that of the asthmatic patients with non abnormal Savda, indicates that airway obstruction is most obvious in asthmatic patients with abnormal Savda.
     3)Individuals who haveβ_2-AR gene with 16 points glycine / glycine (Gly / Gly) homozygotes have a higher risk in developing asthma with abnormal Savda compared to individual who do not have it. We assume that when glycine arginine (Gly / Arg) heterozygous in individuals mutates to arginine, glycine, these individuals will have a higher risk in developing asthma with abnormal Savda. Gly/Gly genotype might be the inherent risk factor of asthma with abnormal Savda. There might be a correlation between theβ_2-AR gene polymorphism with 16 loci and asthma with abnormal Savda. 4)Individuals who have IL-4 gene promoter -589 (C/T) site with CT heterozygous genotype is related to the susceptibility of asthma with abnormal Savda, implies that IL-4 gene promoter -589 (C/T) site with CT polymorphism maybe an important candidate gene of asthma with abnormal Savda susceptibility.
     5)IL-13intron 3 +1923 siteand TT and TC gene may be related to the pathogeneses of asthma with abnormal Savda. It is the susceptibility gene of asthma with abnormal Savda. The T allele of this site may be the susceptibility gene of asthma with abnormal Savda, C allele of this site may be the resistance gene of asthma with abnormal Savda. Individual With the T allele who are stimulated by environmental factors, such as repeated allergen exposure, long-term living in seriously polluted environment, are the ones who will have a higher chance of developing asthma with abnormal Savda than those with C allele. Therefore, individuals who have IL-13 intron3 +1923 site with T allele may be the important focus groups of asthma with abnormal Savda prevention in peacekeeping and medical abnormal biliary asthma prevention in Uyghur Medicine.
     6)Studies found that prethromboitic state may be one of the pathological basis of asthma with abnormal Savda, and may also be pathogenic factors. There is platelet, vascular endothelial cells, blood coagulation and fibrinolytic function disorder , and in asthmatic patients with abnormal Savda, expressed in the activation of platelets, vascular endothelial cell damage, increased blood viscosity and reduced fibrinolytic function. Above results imply asthmatic patients with abnormal Savda are in a prothrombotic state, which is more prominent than asthmatic patients with non-abnormal Savda.
     In short, the pathogenesis of asthma with abnormal Savda in Uyghur Medicine is heavier and more complex. Combined with the results of previous studies, we believe that in the diagnosis of asthma with abnormal Savda, while complying to the diagnostic methods in Uyghur Medicine, it is also important to consider the patient's immune dysfunction, endogenous cortisol decrease, the changes of serum ECP, T-IgE, S-IgE, FEV_1 lung function andβ_2-AR, IL-4, IL-13 gene polymorphism and CD62P, t-PA, PAI-1, FIB , APTT, PT. We should also consider these indicators as the micro indicators of asthma with abnormal Savda. These results will provide a new target for treating asthma with abnormal Savda in Uyghur Medicine, also it provides a thingking for the development and progresss of combined Uyghur, Western Medicine treatment of asthma.
引文
[1]姜晓峰,梁红艳.哮喘发病机制研究的现状与展望[J],中华检验医学杂志, 2004,27(1):7
    [2] Barnes KC, Freidhoff LR, Nickel R, et al. Dense mapping of chromosome 12q13.12- q23.3 and linkage to asthma and atopy. J Allergy Clin Immunol, 1999, 104:485-491
    [3]陈文彬,诊断学,第五版北京:人民卫生出版社, 2001,35
    [4] Lonjou C, Barnes K, Chen H, et al. A first trial of retrospective collaboration for positional cloning in complex inheritance: assay of the cytokine region on chromosome 5 by the consortium on asthma genetics (COAG), Proc Natal Acad Sci U S A, 2000, 97:10942-10947.
    [5] Lau S, Illi S, Sommerfeld C, et al. Early exposure to house-dust mite and cat allergens and development of childhood asthma: a cohort study. Multicentre Allergy Study Group. Lancet, 2000, 356:1392-1397.
    [6] Woodfolk JA, Sung SS, Benjamin DC, et al. Distinct human T cell repertoires mediate immediate and delayed-type hyper-sensitivity to the Trichophyton antigen, Tri r2. J Immunol, 2000, 165:4379-4387.
    [7] Taylor DR, Drazen JM, Herbison GP, et al. Asthma exacerbations during long term beta agonist use: influence of bet(a2) adrenoceptor polymorphism. Thorax, 2000, 55:762-767.
    [8]卢巍,梁标白介素-4与支气管哮喘。国外医学呼吸系统分册2001,:(21)3125~126
    [9]孙海萍,郭锡镕等.儿童支气管哮喘96例血清IL-13的研究.南京医科大学学报, 2003, 23(4):382-383.
    [10]Wills-Karp M,Luyimbazi J,XUu X,et al Interleukin-13:centralmediator of allergic asthma[J].Science,1998,282(5397):2258~2261
    [11]顾丰.单核苷酸多态性及其数据库.中华医学遗传学杂志. 2001, 18(6):479-481
    [12]常玉荣,杨德全,唐福美等.血栓栓塞性疾病血栓前状态的实验室诊断[J].中国综合临床, 2001,17(2):83
    [13]Bauer KA, Rosenberg RD. The pathophysiology of the perthrombotic state in humans : Insights gained from stadies using markers of hemostatic system activation. Blood, 1987,70(2):343
    [14]HaleyKJ,DrazenJM Inflammation and airway function in asthma:What you see isnot neccssarily What you get Am J Respir crit Care Med,1998 Jan,157(1):1~3
    [15]Korbut R,Gyglewski RJ:The effect of prostacyclin and nitric oxide on deformability of red blood cells in septic shock in rats.JPhysiol Pharmaool,1996,47(4):591~599
    [16]Baskurt OK, Gdmont D,Meiselman HJ:Red blood cell deformability in sepsis.Am Respir Crit Care Med,1998,157:421~427
    [17]罗显荣,王琳,叶小群等支气管哮喘患者的血液流变性特征.微循环学杂志,2001,11(1):50-51.
    [18]Sarkar, R. R. and Banerjee, S. Cancer self remission and tumor stability - a stochastic approach. Math. Biosci. 2005, 196, (1), 65-81.
    [19]CalveteJJ. Clues for understanding the structure and function of a prototypic human integrin: the platelet glycoproteinⅡb/Ⅲacomplex[J] . ThrombHaemost, 1994,7(1): 11-16
    [20]Egidy G, Juillerat Jeanneret L, Jeannin JF, et al. Modulation of human colon tumor–stromalinter actions by the endothelin system[J] . Am J Pathol, 2000,157(6):1863- 1874.
    [21]CalveteJJ. Clues for understanding the structure and function of a prototypic human integrin: the platelet glycoproteinⅡb/Ⅲacomplex[J] . ThrombHaemost, 1994,7(1): 11-16
    [22]Stanley L. Erlandsen, Anne Greet Bittermann, James White, ArDean Leith, and Michael Marko. High-resolution Cryofesem of Individual Cell Adhesion Molecules (CAMs) in the Glycocalyx of Human Platelets: Detection of P-selectin (CD62P), GPI-IX Complex (CD42a/CD42b, b?), and Integrin GPIIbIIIa (CD41/CD61) by Immunogold Labeling and Stereo Imaging[J] . Journal of Histochemistry and Cytochemistry, 2001, 7(49):809~820.
    [23]Suzuki S, Hayashi Y, Wang Y et al. Urokinase type pkasminogen activator receptor expression in colorectal neoplasms [J] Gut, 1998, 43(6)798~805
    [24]哈木拉提?吾甫尔.维吾尔医学气质?体液论及其现代研究.新疆科学技术出版社. 2003,7:75-77
    [25]艾尼瓦尔·卡德尔,哈木拉提,庞辉群等.新疆维族夜间哮喘发作期患者维吾尔医辨证分型特点分析[J] .中国民族医药杂志, 2000,6(4):29
    [26]李风森,哈木拉提?吾甫尔杨剑等.重症哮喘、中医虚哮型哮喘、维医异常黑胆质性哮喘交互性研究,中国科技导报,2008,26(6):50
    [27]哈木拉提?吾甫尔.国家自然科学基金自助项目.编号90709004.2007
    [28]Ahlstedt S, Peterson CGB, Enander I. Update in allergy testing in childhood asthma:how do you know whether you are successfully controlling the patient′s inflammation? Pediatr Pulmonol. 1995, Suppl 11:32-33.
    [29]Venge Per. Role of Eosinophils in childhood asthma inflammation. Pediatr Pulmonol. 1995, Suppl 11:34-35.
    [30]Woolley KL, Adelroth E, Woolley MJ, et al. Effects of allergen challenge on eosinophil cationic protein, and granulocyte-macro- phage colony-stimulating factor in mild asthma. Am J Respir Crit Care Med, 1995, 151:1915-1924.
    [31]Sporik R, Ingram JM, Price W, et al. Association of asthma with serum IgE and skin test reactivity to allergens among children living at high altitude. Am J Respir Crit Care Med, 1995, 151:1388-1392.
    [32]郭晓明,赖克方,王长征等.哮喘豚鼠嗜酸性粒细胞凋亡及凋亡相关基因表达的研究.中华结核与呼吸杂志, 1998, 21(12):708.
    [33]严永东,盛锦云,郁晰等.哮喘患儿血清嗜酸细胞阳离子蛋白?总IgE及外周血嗜酸细胞水平的变化及临床意义.中国实用儿科杂志, 2000, 8:325.
    [34]杨铁生,樊春红.发作期哮喘患者激素治疗前后血清ECP水平的变化及意义.上海医学检验杂志, 2000, 6:219.
    [35]Sunyer J, Anto JM, Sabria J, et al. Relationship between serum IgE and airway responsiveness in adult; with asthma. J Allergy Clin Immunol, 1995, 95:699-706.
    [36]Squillace SP, Spoirk RB, Rakes G, et al. Sensitization to dust mites as a dominant risk factor for asthma among adolescents living in central Virginia: multiple regression analysis of a population-based study. Am J Respir Crit Care Med, 1997, 156: 1760-1764.
    [37]戴爱国,张平.嗜酸性粒细胞凋亡与哮喘呼吸道炎症.中华结核与呼吸杂志, 1998, 21(4):243-244.
    [38]黄宏,徐军,钟南山.哮喘患者外周血嗜酸性粒细胞抗体的表达及临床意义.中华结核与呼吸杂志, 1998, 21(10):612-614.
    [39]叶世泰,主编.变态反应学.科学出版社, 1998, 325.
    [40]张丹,杨振峰.哮喘的呼吸道重塑和嗜酸细胞性炎症.医学综述, 2001, 7(5):301-303.
    [41]Oettgen HC, Geha RS. IgE in asthma and atopy: celluar and molecular connections. J Clin Invest 1999, 104:829-835.
    [42]Chang TW. The pharmacological basis of anti-IgE therapy. Nat Biotechnol, 2000, 18:157-162.
    [43]叶任高,内科学,第五版.北京:人民卫生出版社, 2000, 32.
    [44]张恩森.哮喘发病机制的研究新进展.医学综述, 2001, 7(12):744
    [45]伊沙克江·马合穆德,主编.中国医学百科全书维吾尔医学分册[M] ,第一册?乌鲁木齐:新疆人民卫生出版社. 1988.第一版.
    [46]张景波,杨建华,倪玉美等.支气管哮喘患者血清嗜酸细胞阳离子蛋白的变化.细胞与分子免疫学杂志, 2000, 1:37-39.
    [47]徐辉,王建东,罗炎杰等.哮喘患者诱导痰嗜酸细胞阳离子蛋白?白细胞介素5水平的改变及其意义.急诊医学, 2000, 3:121.
    [48]邓念强,王琦筠,万德胜等.无症状气道高反应性与血清特异性IgE及血清嗜酸细胞阳离子蛋白的相关性研究.中华结核与呼吸杂志, 2000, 6:213.
    [49]孙宝清,黄海鹭,王远照等.支气管哮喘患者血清特异性IgE与ECP的关系.广州医学院学报, 1998, 4:175.
    [50]王莲芸,王怀云,赵嘉惠等.支气管哮喘患者sVCAM-1和ECP的分析.上海免疫学杂志, 2000, 5:235.
    [51]支气管哮喘防治指南(支气管哮喘的定义?诊断?治疗?疗效判断标准及教育和管理方案).中华结核和呼吸杂志, 1997, 20(5):261-267.
    [52]买买提明·沙比尔.维吾尔医学诊断学[M] .乌鲁木齐:新疆科技卫生出版社, 1993:135
    [53]Dubrovin denis, Halmurad Upur. Introduction to theory and practice of Uighur Medicine[M] . Saint-Petersburg, 2003.
    [54]UniCAP体外检测临床应用指南.南京美瑞制药有限公司诊断试剂部2002, 10.
    [55]李秋根,刘江红,雷建平等.血清和诱导痰嗜酸细胞阳离子蛋白在检测布地奈德治疗支气管哮喘气道炎症中的作用.治疗哮喘药物临床应用有奖征文论文汇编.中华结核和呼吸杂志编委会, 2002, 11:61-62.
    [56]Bengtsson U, Knutson TW, Knutson L, et al. Eosinophil cationic protein and histamine after intestinal challenge in patients with cows milk intolerance. J Allergy Clin Immunol, 1997, 100:216-221.
    [57]Kita H. The eosinophil:a cytokine-producing cell ? J Allergy Clin Immunol, 1997, 97(4): 889-892.
    [58]Venge H. Serum measurements of eosinophil cationic protein (ECP) in bronchial asthma. Clinical and Experimental Allergy, 1993, 23 (Suppl2): 3-7.
    [59]Platts-Mills TAE, Vaughan J, Squillace SP, et al. Sensitisation, astrhma, and a modified TH2 response in children exposed to cat allergen: a population-based cross-sectional study. Lancet, 2001, 357:752-756.
    [60]Bjornsson E, Janson C, Hakansson L, et al. Serum eosinophil cationic protein inrelation to bronchial asthma in a young Swedish population. Allergy, 1994, 49(9):730-736.
    [61]Busse WW, Coffman RL, Gelfand EW, et al. Mechanisms of persistent airway inflammation in asthma: a role for T cells and T-cell products. Am J Respir Crit Care Med, 1995, 152:388-393.
    [62]Platts-Mills TA, Vaughan JW, Carter MC, et al. The role of intervention in established allergy: avoidance of indoor allergens in the treatment of chronic allergic disease. J Allergy Clin Immunol, 2000, 106:787-804.
    [63]Haselden BM, Kay AB, Larche M. Immunoglobulin E-independent major histocompatibility complex-restricted T cell peptide epitope-induced late asthmatic reactions. J Exp Med, 1999, 189:1885-1894.
    [64]Sacco O.Sale R, Silvestri M, et al. Total and allergen specific lgE levels in serum reflect blood eosinophilia and fractionl exhaled nitric oxide concentrations but not pulmonary functions in allergic asthmatic children sensitized to house dust mites Pediatr Allergy lmmunol.2003,14:75-481.
    [65]Siroux V,Oryszczyn MP,Paty E,et al.Relationships of allergic aensitization total immunoglobulin E and bloo eosinophils to asthma severity in children of the EGEA Study. Clin Exp Allergy.2003,33:746-751
    [66]Pearlman DS. Pathophysiology of the inflammatory response. J Allergy Clin Immunol, 1999, 104: S132-S137.
    [67]Fahy JV, Corry DB, Boushey HA. Airway inflammation and remodeling in asthma. Curr Opin Pulm Med, 2000, 6:15-20.
    [68]Sandford A, Weir T, Pare P.The genetics of asthma. Am J Respir Crit Care Med ,1996,153:1749-1765.
    [69]Weiss ST. Gene by environment interaction and asthma. Clin Exp Allergy,1999, 29 Suppl 2:96-99
    [70]赵华,杜晓娟,林丽渊等.中国人哮喘易感性与染色体5q31-33区连锁关系的初步研究.中华儿科杂志,1998,36(12):713-716.
    [71]Postma DS, Bleecker ER, Amelung PJ, et al. Genetic susceptibility to asthma-bronchial hyperresponsiveness coinherited with a major gene for atopy. N Engl J Med, 1995,333:894-900.
    [72]Daniels SE, Bhattacharrya S, James A, et al. A genome-wide search for quantitative trait loci underlying asthma. Nature, 1996, 383:247-250.
    [73]Thomas NS, Wilkinson J, Holgate ST. The candidate region approach to thegenetics of asthma and allergy. Am J Respir Crit Care Med, 1997, 156:S144-151.
    [74]Thomas NS, Holgate ST. Candidate locus approach for studying the genetics of asthma and atopy. Monaldi Arch Chest Dis, 1997, 52: 296-302.
    [75]刘春涛,谢敏,王曾礼.几种新发现的与哮喘有关的细胞因子.国外医学内科学分册,2000,3:165.
    [76]Demoly P, Bousquet J. Genetics of asthma and atopy. J Soc Biol, 2000, 194(1): 39-42.
    [77]姜丽敏,朱惠如,章晓冬.支气管哮喘遗传相关基因的研究.现代康复,2001,5:217.
    [78]徐军.支气管哮喘(一)哮喘的基因治疗.实用医学杂志,2001,6:372.
    [79]刘向梅,任少敏.支气管哮喘相关基因研究现状.中国基层医药,2006,1(13):170-171
    [80]Young RP, Sharp PA, Lynch JR, et al. Confirmation of genetic linkage between atopic IgE responses and chromosome 11q13. J Med Genet, 1992,29:236-238.
    [81]Kowalski ML, Woszczek G, Borowiec M. Distribution of theβ2-adrenoceptor polymorphisms in atopic and non-atopic patients. J Allergy Clin Immunol, 1997,100:338.
    [82]Nijkamp F, Engels P, Henricks P, et al. Mechanisms ofβ-adrenergic receptor regulation in lungs and its implications for physiological responses. Physiol Rev, 1992,72:323-367.
    [83]ancox RJ, Sears MR, Taylor DR. Polymorphism of theβ2-adrenoceptor and the response to long-termβ2-agonist therapy in asthma. Eur Respir J. 1998,11:589-593.
    [84]Holroyd KJ, Levitt RC, Dragwa DC, et al. Evidence forβ2 adrenergic receptor(ADRβ2) polymorphism at amino acid 16 as a risk factor for bronchial hyperresponsiveness(BHR). Am J Respir Crit Care Med, 1995,151:673.
    [85]Bleecker ER, Postma DS, Meyers DA, et al. Evidence of multiple genetic susceptibility loci for asthma. Am J Respir Crit Care Med, 1997,156:113-116.
    [86]Wang ZX, Chen CZ, Niu TH, et al. Association of asthma withβ2-adrenergic receptor gene polymorphism and cigarette smoking. Am J Respir Crit Care Med, 2001,163:1404-1409.
    [87]Ulbrecht M, Hergeth MT, Wjst M, et al. Association of beta(2)-adrenoreceptor variants with bronchial hyperresponsiveness. Am J Respir Crit Care Med, 2000,161(2 pt 1):469-74.
    [88]Borish LC, Nelson HS, Lanz MJ, et al. Interleukin-4 receptor in moderate atopicasthma:a phaseⅠ/Ⅱrandomized placebo- controlled trial. Am J Respir Crit Care Med, 1999, 160:1816-1823.
    [89]阳显慧.白细胞介素-5在哮喘发病机制中的作用.医学综述, 2001,7(4):195-197.
    [90]Ackerman V, Marini M, Vittori E, et al. Detection of cytokines and their cell sources in bronchial specimens from asthmatic patients. Relationship to atopic status, symptoms, and level of airway hyperresponsiveness. Chest. 1994,105(3):687-696.
    [91]Teramoto T, Fukao T, Tashita H, et al. Serum IgE level is negatively correlated with the ability of peripheral mononuclear cells to produce interferon gamma(IFNgamma):Evidence of reduced expression of IFN gamma mRNA in atopic patients. Clin Exp Allergy, 1998, 28(1):74.
    [92]Gosset P, Tillie-Leblond I, Janin A, et al. Expression of E-selectin, ICAM-1 and VCAM-1 on bronchial biopasies from allergic and nonallergic asthmatic patients. Int Arch Allergy Immunol, 1995, 106(1):67-69.
    [93]钱小顺.哮喘嗜酸粒细胞凋亡的调控.国外医学呼吸系统分册,2000,20(1):6-9.
    [94]Humbert M, Durham SR, Ying S, et al. IL-5 m RNA and protein in bronchial biopsies from Atopic and non-atopic asthmatics: Evidence against“intrinsic”asthma being a distinct immunopathological entity. Am J Respir Crit Care Med.1996, 154: 1497-1504.
    [95]Hansen G, Berry G, Dekruyff RH, et al. Allergen-specific Th1 cells fail to counterbalance Th2 cell-induced airway hyperreactivity but cause severe airway inflammation. J Clin Invest, 1999, 103(2):175.
    [96]苄如濂.β2-肾上腺素受体激动剂(见:周汉良,陈季强主编).呼吸药理学与治疗学.第一版.北京:人民卫生出版社,1999,258-259.
    [97]Kobilka BK, Frielle HG, Dohlman MA, et al. Delineation of theintronless naturee of the genes for the human and hamsterβ2-adrenergic receptor and their promoter regions. J Biol Chem. 1996,262:7321-7327.
    [98]Aziz I, Hall IP, Mcfarlane LC, et al. Beta2-adrenoceptor regulation and bronchodilator sensitivity after regular treatment with formoterol in subjects with stable asthma. J Allergy Clin Immunol, 1998,101:337-341.
    [99]Mcgraw DW, Liggett SB. Coding block and 5 leader cistron polymorphisms of the beta2-adrenergic receptor. Clin Exp Allergy, 1999, 4(Suppl):43-45.
    [100]Lipworth BJ, Hall IP, Aziz I, et al. Beta2-adrenoceptor polymorphism and brochoprotective sensitivity with regular short and long acting beta2-agonisttherapy. Clin Sci (Colch), 1999,96:253-259.
    [101]Green SA, Cole M, Jacinto M, et al. A polymorphism of the human Beta 2 adrenoceptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. Biol Chem, 1993,268(19): 23116-23121.
    [102]廖伟,李为明.β2-肾上腺素受体遗传多态性与哮喘.国外医学遗传学分册,2000,23(1):4-7.
    [103]Barnes PJ.β-adrenoceptors on smooth muscle, nerves and inflammatory cells. Life Sci, 1993, 52:2101-2109.
    [104]Reihsaus E, Innis M, Maclntyre N, et al. Mutaions in the gene encoding for the Beta 2 adrenoceptor in normal and asthmatic subjects. Am Rev Respir Cell Mol Biol, 1993, 8(6): 334-339.
    [105]Johnson M, The beta-adrenoceptor. Am J Respir Crit Care Med, 1998,158:146-153.
    [106]Hall IP, Weatley A, Wilding P, et al. Association of Glu27 theβ2-adrenoceptor polymorphism with lower airway reactivity in asthmatic subjects. Lancet, 1998,345:1213-1213.
    [107]Dewar J, Weatley A, Wilkinson J, et al. Association of Gln27 theβ2-adrenoceptor polymorphism and IgE variability in asthmatic falilies. Chest, 1997,111:78-79.
    [108]Weir TD, Mallek N, Sandford AJ, et al.β2-adrenergic receptor haplotypes in mild, moderate and fatal/near fatal asthma. Am J Respir Crit Care Med, 1998,158:787-791.
    [109]Liggett S B. Molecular and genetic basis ofβ2-adrenergic receptor function. J Allergy Clin Immunol, 1999, 103:42-46.
    [110]Green SA, Turki J, Innis M, et al. Aminoterminal polymorphisms of the humanβ2-adrenergic receptor impart distinct agonistpromoted regulatory properties. Biochemistry, 1994, 33:9414-9419.
    [111]Green SA, Turki J, Bejarano P, et al. Influence ofβ2-adrenergic receptor genotypes on signal transduction in human airway smooth muscle cells. Am J Respir Cell Mol Biol, 1995,13:25-33.
    [112]高光凯,王土雯,张进川.中国北方汉族人群支气管哮喘患者β2肾上腺受体基因多态性研究[J].中华结核和呼吸杂志, 2000,23(2):93-97.
    [113]邱玉英,殷凯生.中国人β2受体遗传多态性与哮喘关系的研究[J].中华结核和呼吸杂志,2000,23(7):435-436.
    [114]Holloway JW, Dunbar PR, Riley GA, et al. Association ofβ2-adrenergic receptor polymorphism with severe asthma. Clin Exp Allergy, 2000,30:1097-1103.
    [115]Burrows B, Sears MR, Flannery GP, et al. Relations of bronchial responsiveness to allergy skin test reactivity, lung function, respiratory symptoms, and diagnoses in thirteen-year-old New Zealand children. J Allergy Clin Immunol, 1995, 95:548-556.
    [116]Ying S, Durham SR, Corrigan CJ, et al. Phenotype of cells expressing mRNA for Th2-type(interleukin-4 and interleukin-5) and Th1-type(interleukin-2 and interferon-gamma) cytokines in bron- chialveolar lavage and bronchial biopsyes from atopic asthmatics and normal control subjects. Am J Respir Cell Mol Biol. 1995, 12:477-487.
    [117]Kenyon NJ, Kelly EA, Jarjour NN. Enhanced cytokine generation by peripheral blood mononuclear cells in allergic and asthma subjects. Ann Allergy Asthma Immunol, 2000,85(2):115.
    [118]Suzuki I, Hizawa N, Yamaguchi E, et al. Association between a C+33T polymorphism in the IL-4 promoter region and total serum IgE levels. Clin Exp Allergy. 2000; 30(12): 1746-9.
    [119]Meyers DA, Postma DS, Panhuysen CI, et al. Evidence for a locus regulating total serum IgE levels mapping to chromosome 5. Genomics, 1994, 23:464-470.
    [120]Marsh DG, Neely JD, Breazeale DR, et al. Linkage analysis of IL-4 and other chromosome 5q31.1 markers and total serum immunoglobulin E concentrations. Science, 1994, 264:1152-1156.
    [121]Hijazi Z, Haider MZ. Interleukin-4 gene promoter polymorphism [C590-T] and asthma in Kuwaiti Arabs.Int Arch Allergy. Immunol, 2000, 122(3):190.
    [122]Chouchane IL, Sfar R, Bousaffara A, et al. A repeat polymorphism in interleukin-4 gene is highly associated with specific clinical phenotypes of asthma. Int Arch Allergy Immunol, 1999, 120:50-55.
    [123]Burchard EG, Silverman EK, Rosenwasser LJ, et al. Association betwwen a sequence variant in the IL-4 gene promoter and FEV1 in asthma. Am J Respir Crit Care Med, 1999, sep 160(3):919-922.
    [124]居来提.托乎提,阿不都克热木江,吐尔逊托乎提.维吾尔医学对哮喘病因的认识.中国民族医学杂志, 2004,10(4):3-4
    [125]Bousquet J, Demoly P, Michel FB. Specific immuneotherapy in rhinitis and asthma. Ann Allergy Asthma Immunol, 2001, 87: 38-42.
    [126]Wilson AM, Orr LC, Sims EJ, et al. Antiasthmatic effects of mediator blockade versus topical coticosteroids in allergic rhinitis and asthma. Am J Respir Crit CareMed, 2000, 162: 1297-1301.
    [127]Elovic AE, Ohyama H, Sauty A, et al. IL-4-dependent regulation of TGF-alpha and TGF-beta expression in human eosinophils. J Immunol, 1998, 160(12):6121-6127
    [128]殷凯生,主编.支气管哮喘现代治疗.南京:江苏科学技术出版社,2000,236-237.
    [129]王爱华,李全新.过敏性哮喘患者外周血IL-2? IL-4? IL-6和IL-8水平的变化.中国现代医学杂志, 2000,9:457.
    [130]Sanford A J, Chagani T, Zhu S, et al. Polymorphisms in the IL-4. IL-4RA and FcεRIβgenes and asthma severity. J Allergy Clin Immunol, 2000, 106, 135-140.
    [131]邓静敏,许辉,施焕中.白细胞介素-4对哮喘患者血清IgE的影响.广西医科大学学报,2000,1:38.
    [132]拉杰,陈宝元.哮喘发病机理及TH1/TH2比例的关系.天津医科大学学报,2002,8(3):403-406.
    [133]Magnan AO, Laurent GM, Camilla CA, et al. Assessment of the Th1/Th2 paragigm in whole blood in atopy and asthma: increased IFN-γ-producing CD8+ T cells in asthma . Am J Respir Crit Care Med, 2000, 161:1790.
    [134]徐文玉,王易,周莉莉等.白细胞介-4在过敏性哮喘中的作用[综述].国外医学卫生学分册,1997,24(1):15.
    [135]郭雪君,李伟,邓伟吾等. T细胞受体Vβ链基因限制性取用与哮喘患者的关系.中华结核和呼吸杂志,2002, 2:173.
    [136]Stafforini DM. PAF acetylhydrolase gene polymorphisms and asthma severity. Pharmacogenomics, 2001,2(3):163-175.
    [137]Shi HZ, Deng JM, Xu H, et al. Effect of inhaled interleukin-4 on airway hypereactivity inasthmatics. Am J Respir Critical Care Med, 1998, 157: 1818-1821.
    [138]CORRY D B, KHERADMAND F. Induction and regulation of the IgE response[J]. Nature, 1999, 402(6760 Suppl): B18.
    [139]崔爱华,冯益真. TH1/TH2类细胞因子失衡与支气管哮喘.医学综述,2002, 8(3):140-142.
    [140]Sasaki Y, Ihara K, Ahmed S, et al. Lack of association between Atopic asthma and polymorphisms of the histamine H1 receptor, histamine H2 receptor and histamine N-methyitransferase genes. Immunogenetics, 2000,51: 238-240.
    [141]LIN GNAU K, HOEHN P, KERDINE S, et al. IL-4 in combination with TGF favors alternation pathway of TH1 development independent of IL-12[J]. J Immunol,1998,161(9):4709.
    [142]张爱民,陈燕华.白细胞介素4在哮喘发病机理中的作用.昆明医学院学报, 2003,(4):51-54.
    [143]朱晓华,吴熙,陈强,况九龙.白介素-4基因启动子多态性与儿童哮喘关素的研究.中国实用儿科杂志, 2002年8月第17卷第8期.
    [144]卢巍,梁标.白细胞介素与支气管哮喘.国外医学呼吸系统分册, 2001年第21卷第3期.
    [145]张爱民,李海林.白细胞介素4基因多态性与哮喘的研究进展.国外医学遗传学分册, 2004年2月第27卷第1期.
    [146]张嘉琳. IL-4和IL-10基因启动子区多态性与哮喘.国外医学免疫学分册, 2003年第26卷第2期.
    [147]Vogel G. Interleukin-13’s key role in asthma shown Science. 1998,282(5397):2168
    [148]Patelidis P, Iones MG, Welsh KI, et al. Identification of four novel interlenkin-13 Gene polyvor phisms[J]. Genes Immun,2000,1(5):341-345.
    [149]Kupeman DA, Huang X, koth LL, Direct effects of interleukin-13 on epithelial alls cause airway heperreactivity and mucus overproduction in asthma Nat Med 2002,8(8):885-889
    [150]Graves PE, kabesch M, Halonen M et al. A cluster of seven tightly linded polymolphisms in the IL-13 gene is associated with total serum IgE leels in three populations of white children[J] JA llergy clin Immunol, 2000,105(3):506-513
    [151]Corry DB, Folkesson HG, Warnock ML, et al. Interleukin 4, but not interleukin 5 or eosinophil, is required in murine model of acute airway hyperreactivity. J Exp Med, 1996,183(1):109-117.
    [152]Hogan SP, Matthaei KI, Young JM, et al. A novel T cell-regulated mechanism modulating allergerr induced airways hyperreactivity in BALB/c mice independently of IL-4 and IL-5. J Immunol, 1998,161(3):1501-1509.
    [153]Lukacs NW, Tekkanat KK, Berlin A, et al. Respiratory syncytial virus predisposes mice to augmented allergic airway responses via IL-13-mediated mechanisms J Immunol, 2001,167(2):1060-1065.
    [154]Mattes J, Yang N, Siqueira A, et al. IL-13 induce airways hyperreactivity independently of the IL-4 R alpha chain in the allergic lung. J Immunol, 2001,167(3):1683-1692.
    [155]Foster PS, Mould AW, Yang M,et al. Elemental signals regulating eosinophil accumulation in the lung. Immunol Rev, 2001, 179(1):173-181.
    [156]Woltmann G, McNulty CA, Dewson G, et al. Interleukirr 13 induce PSGL-1/P selecttirr dependent adhesion of eosinophils, but not neutrophils, to human umbilical vein endothelial cell under flow. Blood, 2000,95(10):3146-3152.
    [157]Huang SK, Xiao HQ, Kleine Tebbe J, et al. IL-13 expression at the sites of allergen challenge in patients with asthma. J Immunol, 1995,155(5):2688-2694.
    [158]De Vries JE. The role of IL-13 and its receptor in allergy and inflammation responses. J Allergy Clin Immunol, 1998,102(2):165-169.
    [159]Van der Pouw Kraan TC, Van der Zee JS, Boeije LC, et al. The role of IL-13 in IgE synthesis by allergic asthma patients. Clin Exp Immunol, 1998, 111(1):129-135.
    [160]Blackbum MR, Lee CG, Young HW, et al. Adenosine mediates IL-13-induced inflammation and remodeling in the lung and interacts in an IL-13-adenosine amplification pathway[J]. J Clin Invest, 2003,112(4):332-344.
    [161]Yasunaga S, Yuyama N, Arima K, et al. The negative-feedback regulation of the IL-13 signal by the IL-13 receptor alpha2 chain in bronchial epithelial cells[J]. Cytokine, 2003,24(6):293-303.
    [162]Cohn L, Tepper JS, Bottomly K IL-4-independent induction of airway hyperresponsiveness by Th2, but not Th1, cells[J]. J Immunol, 1998,161(8):3813-3816.
    [163]Zimmemann N, King NE, Laporte J, et al. Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis[J]. J Clin Invest, 2003,111(12):1863-1874.
    [164]Kumar RK, Herbert C, Foster PS, Expression of growth factors by airway epithelial cells in a model of chronic asthma: regulation and relationship to subepithelial fibrosis[J]. Clin Exp A llergy, 2004, 34(4):567-575.
    [165]Saito A, Okazaki H, Sugawara I, et al. Potential action of IL-4 and IL-13 as fibrogenic factors on lung fibroblasts in vitro[J]. Int A reh Allergy Immunol, 2003,132(2):1680176.
    [166]Ingram JL, Rice A, Geisenhoffer K, et al. Interleukin-13 stimulates the proliferation of lungmyofibroblasts via a signal transducer and activator of transcription-6-dependent mechanism: a possible mechanism for the development of airway fibrosis in asthma[J]. Chest, 2003,123(3 Suppl):S422-S424.
    [167]Li L, Xia Y, Nguyen J, et al. Effect of Th2 cytokines on chemokine expression in the lung: IL-13 potently induces eotaxin expression by airway epithelial cells. Immunol, 1999,162(5):2477-2488.
    [168]张英超.白细胞介素IL-13在支气管哮喘发病抑制中的作用.临床和实验医学杂志,2003,12(4):258-260.
    [169]Zhou Y, Shapiro M, Dong Q, et al. A calcium-activated chloride channel blocker inhibits goblet cell metaplasia and mucus overproduction[J]. Novartis Found Symp, 2002,248(2):150-165.
    [170]Vargaftig BB, Singer M. Leukotrienesmediate murine bronchopulmonary hyperreactivity, inflammation, and part of mucosal metaplasia and tissue injury induced by recombinant murine interleukin-13[J]. Am J Respir Cell Mol Biol, 2003,28(4):410-419.
    [171]Zhu Z, Homer RJ, Wang Z, et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hyperseretion, subepithelial fibrosis, physiologic abnormalities, and ectaxia production. J Clin Invest, 1999, 103(6):779-788.
    [172]高艳,李弦.白介素13与支气管哮喘.国外医学生理病理科学与临床分册, 2001,61(3):192-194.
    [173]Chen Q, Rabach L, Noble P, et al. IL-11 receptor (alpha) in the pathogenesis of IL-13-induced inflammation and remodeling[J]. J Immunol, 2005,174(4): 2305-2313.
    [174]Zhu Z, Ma B, Zheng T, et al. IL-13-induced chemokine responses in the lung role of CCR 2 in the pathogenesis of IL-13-induced inflammation and remodeling[J]. J Immunol, 2004,172(3):1872-1881.
    [175]Ma B, Zhu Z, Homer RJ, et al. The C10/CCL6 chemokine and CCR1 play critical roles in the pathogenesis of IL-13 induced inflammation and remodeling[J]. J Immunol, 2004,172(3):1872-1881.
    [176]van der Pouw Kraan TC, van Veen A, Boeije LC, et al. An IL-13 promoter polymorphism associated with increased risk of allergic asthma. Genes Immun, 1999,1:61-65.
    [177]李丹,熊盛道.白介素IL-13、Eotaxin与支气管哮喘.国外医学内科学分册,2006,8(33):336-338.
    [178]Hancock A, Armstrong L, Gama R, et al. Production of interleukin 13 by alveolar macrophages from normal and fibrotie lung. Am J Respir Cell Mol Biol, 1998,18(1):60-65.
    [179]Heinz mann A, Mao XO, Akaiwa M, et al. Genetic variants of IL-13 signalling and human asthma and atopy. Hum Mol Genet, 2000,9(4):549-559.
    [180]Arima K, Umeshita-Suyama R, Sakata Y, et al. Upregulation of IL-13 concentrationin vivo by the IL-13 variant associated ith bronchial asthma. J Allergy Clin Immunol, 2002,109(6):980-987.
    [181]孙海平,陈志庆,郭锡烙等. IL-13基因多态性与血清IL-13及嗜酸细胞阳离子蛋白水平的关系.中华医学遗传学杂志, 2003,12(20):547-548.
    [182]宋泽庆,吴斌,李文等.哮喘患者IL-13基因多态性与IL-13、TIgE水平相关性研究.中国免疫学杂志,2005,21,469-471.
    [183]刘军麟,吴斌,陈华军. IL-13基因+2044G/A多态性与哮喘血浆细胞因子水平间的关系.临床肺科杂志, 2004,3(9):122-124.
    [184]孙海平,陈吉庆,郭锡熔,等. IL-13基因多态性与儿童哮喘关系.临床儿科杂志, 2003,21(12):786-787.
    [185]常玉荣,杨德全,唐福美等.血栓栓塞性疾病血栓前状态的实验室诊断[J].中国综合临床, 2001, 17(2):83
    [186]Ermest Beather, Marshall A, Willams. Hematollgy[M]. NewYork Mc graw Hill, 2001, 1735-1763.
    [187]宗俊学,芦璐,徐洪玉.血栓前状态与高血压病的关系[J].血栓与止血学, 2005, l1(1):21~23
    [188]FalangaA, Tickles F R. Pathophysiology of the thrombophilic state in the cancer patient [J]. Semin Thromb Hemost, 2002, 25(2):173-182.
    [189]DunnEJ, GrantPJ. Type 2diabes:anatherothrombotic Syndrome[J]. CurrMolMed, 2005, 5:323-332.
    [190]Lip GY, Edmunds E, Beevers DG. Should patients with hyper-tension receive antithrombotic therapy [J]. Intern Med, 2001, 240:205-206.
    [191]严宗毅,魏茂元,于天文.血液流变学[M].哈尔滨:黑龙江科学技术出版社, 1993. 209~215.
    [192]KorbutR, GryglewskiRJ. The effect of prostacyclin and nitric oxide on deformability of red blood cells in septic shock in rats. J Physiol Pharmacol, 1996, 47(4):591~599.
    [193]Baskurt OK, Gdmont D, Meiselman HJ. Red blood cell deformability in sepsis. Am Respir Crit Care Med, 1998, 157:421~427.
    [194]武焕玲,林隆玖.血栓前状态研究进展[J].中国实验诊断学, 2003, 7(4):277
    [195]李家增.血管血栓性疾病的发病机制和防治[J].基础医学与临床, 2006, 26, (6):562
    [196]Ferguson JJ, Waly HM, Wilson JM. Fundamentals of coagulation and glycoproteinⅡb /Ⅲa receptor inhibition[J]. Eur Heart J, 1998, 19(Suppl D):D3.
    [197]徐宜,孙文学.老年糖尿病肾病血小板活化分子检测的意义[J].黑龙江医学, 2004, 28(1):27
    [198]Zizzi HC, Zibari GB, Granger DN, et al. J Pediatr Surg, 1997 Jul:32(7):1010~1013
    [199]Miamino T, Kitakase M, Sanada S, et al. Increased expression of P-selection on platelets is a risk factor for silent cerebal infaction in patients with atrial fibrillation. Circulation, 1998, 98:1721~1727.
    [200]Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells[J]. Nature. 1988, 332(6163): 411-415.
    [201]陶连方.老年高血压病糖尿病患者血浆内皮素测定及其意义[J].中国微循环, 2003, 7(4):245
    [202]Nguyen-Ho P, Lakkis NM, Platelet glycoprotein IIb/IIIa a receptor antagonists and coronary disease[J]. Curr Atheroscler Rep, 2001, 3(2):139-148
    [203]王振义,李家增,阮长耿,等.纤维蛋白溶解系统[C].见上海第二医科大学编辑委员会.血栓与止血基础理论与临床(第2版)[M].上海:上海科学技术出版社, 1996. 103-116
    [204]丛玉隆?王淑娟?朱士俊,等.纤溶系统的组成及特点[C].见:今日临床检验学编辑委员会编.今日临床检验学[M].北京:中国科学技术出版社, 1997. 147-149
    [205]Bernd RB, Gunter C, Florian G, etal. Plasminogen activator inhibitor physiological and pathophysiological roles [J]. NewsPhysiolSci, 2002, 17:56-61.
    [206]葛郁芝,刘冬生.高血压病患者血栓前状态P-选择素等标志物变化及其临床意义[J].中国心血管病研究杂志, 2005, 3(12): 898.
    [207]Qizilbash N, Duffy S, Prentice CRM, etal. Willebrand factor and risk of ischemic stroke[J]. Neurology, 2001, 53(6):1552.
    [208]Yamell JWG. Baker IA. Sweetnam PM, etal. Fibrinogen, viscosity and white blood cell count are major risk factor for ischemic heart disease[J]. Circulation. 1991, 83:836.
    [1]孙瑜,卢建,肺表面活性物质在支气管哮喘中的研究进展,临床肺科杂志. 2005 10(3):356~358
    [2] Van de Graaf EA, et al. Surfactant protein A in bronchoalveolar lavage fluid. J Lab Clin Med, 1992, 120:252~263
    [3] Cheng G, et al. Increased levels of surfactant protein A and D in bronchoalveolar lavage fluids in patients with bronchial asthma. Eur Respir 2000, 16:831~835
    [4] Maezku A, et al. The late asthmatic response is linked with increased surface tension and reduced surfactant protein B in mice. Am J Physiol Lun Cell Mol Physiol, 2002. 283:L755~L765
    [5] Cheng G, et al. Compositional and functional changes of pulmonary surfactant in aguineapig model of chronic asthma. Respir Med, 2001, 95180~186
    [6] Wright SM, et al. Altered airway surfactant phospholipids composition and reduced lung function in asthma. J Appl Physiol, 2000, 89:1283~1292
    [7]邓伟吾,郭雪君,肺部变应性疾病[M],上海:上海科学技术出版社, 2000. 58
    [8]中华医学会第六次全国呼吸系学术会议纪要[J],中华结核和呼吸杂志, 2001, 24(1):8-11
    [9] Lucey DR, Clerici M, Shearer GM, Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases[j]. Clin Microbiot Rev, 1996, 9(4):532-562
    [10]Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins[J]. J Immunol, 1986, 136(7):2348-2357
    [11]王国良,赵国华,王水平,等.哮喘患儿Th细胞亚群及相关因子的分析[J],中国儿童保健杂志, 2001, 9(6):426-427.
    [12]杨锡强,小儿哮喘的免疫学发病机制及其对策[J]中国当代儿科杂志, 2001, 3(5):487-490
    [13]Cohn L, Tepper JS, Bottomly K, IL-4-independent induction of airway hyperresponsivveness by Th2, but not Th1 cells[J], J Mmunol, 1998, 161(8):3813-3816
    [14]刘慧,张天托,肺炎衣原体感染致支气管哮喘发病机制的研究进展,医学综述2003, 9(4):213~215 [15]Kol A, Bourcier T, Lichtman AH, et al. Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth musclecells, and macrophages[J]. J Clin Invest, 1999, 103(4):571~577.
    [16]Moazed TC, Kuo CC, Grayston JT, et al. Evidence of systemic dissemination of Chlamydia pneumoniae via macrophages in the mouse[J]. J Infect Dis, 1998, 177(5):1322~1325.
    [17]Gaydos CA, Summersgill JT, Sahney NN, et al. Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells[J]. Infect Immun, 1996, 64(5):161421620.
    [18]Huittinen T, Hahn D, Anttila T, et al. Hostimmune response to Chlamydia pneumoniae heat shock protein60 is associated with asthma[J]. Eur Respir J, 2001, 17(6):1078~1082.
    [19]金俊飞,杨永宗.肺炎衣原体感染导致支气管哮喘的动物模型[J].中国病理生理杂志, 2000, 16(8):7302733.
    [20]Cunningham AF, Johnston SL, Julious SA, et al. Chronic Chlamydia pneumoniae infection and asthma exacerbations in children[J]. Eur Respir J, 1998, 11(2):3452349.
    [21]Daian CM, Wolff AH, Bielory L. The role of atypical organisms in asthma[J]. Allergy Asthma Proc, 2000, 21(2):107~111.
    [22]Rodel J, Woytas M, Groh A, et al. Production of basic fibrob last growth factor and interleukin 6 by human smooth muscle cells following infection with Chlamydia pneumoniae[J]. Infect Immun, 2000, 68(6):3635~3641.
    [23]范新蕾,田锋,田洪德,白介素与支气管哮喘相关关系的研究进展,临沂医学专科学校学报2005, 27(1):45~47
    [24]Allakhverdi Z, Allam M, Renzi RM. Inhibition of antigen-induced eosinophilia and airway hyper responsiveness by antisense oligonucletides directed against the common beta chain of IL-3, IL-5, GM-CSF receptor in a rat model of allergic asthma[J]. Am J Respir Crit Care Med, 2002, 65(7):1015~1021.
    [25]Miura K, Saini SS, Gauvreau G, et al. Differences in functional consequences and signal transduction induced by IL-3, IL-5 and nerve growth factor in human basophils[J]. J Immunol, 2001, 167(4):2282~2291.
    [26]To Y, Dohi M, Tanaka R, et al. early in interleukin-4-dependent response can induce airway hyper reactivity before development of airway inflammation in amouse model of asthma[J]. Lab Invest, 2001, 21(12):1385~1396.
    [27]Mathur M, Herrmann K, LiX, et al. TRFK-5 reversese astablished airway eosinophilia but not eastablished hyper responsiveness in a murine model of chronic asthma[J]. Am J Respir Crit Med, 1999, 159(2):580~587.
    [28]louahed J, Zhou Y, Maloy WL, et al. Interleukin 9 promotes in fluxand local maturation of eosinophis[J]. Blood, 2001, 97(4):1035~1042.
    [29]Cheng G, Arima M, Honda K, et al. Anrti-interleukin-9 antibody treatment inhibits airway in flammation and hyper reactivity in mouse asthma model[J]. Am J Respir Crit Care Med, 2002, 66(3):409~416.
    [30]刘春涛,谢敏.几种新发现的与哮喘有关的细胞因子[J].国外医学内科分册, 2000, 27(3):97
    [31]戴山林.白细胞介素10与支气管哮喘[J].国外医学呼吸系统分册, 1997, 17(2):57
    [32]史源,谭世文.肿瘤坏死因子-α在儿科疾病中的作用[J].国外医学儿科学分册, 1991, (5):225
    [33]冯学斌,刘凤,黄薇,等.白细胞介素8?肿瘤坏死因子及IgG亚类在儿童支气管哮喘发病中的作用研究[J].中国免疫学杂志, 1996, 12:197
    [34]俞善昌.粘附分子与过敏性哮喘炎症的形成[J].临床儿科杂志, 1998;16(1):3.
    [35]Chihara J. Nippon Kyohu Shikkan Gkkai Zasshi, 1996. 34
    [36]Ohkawara Y. et al. Am J Respair Cell Mol Biol, 1995, 12(1):4~12
    [37]Ohkawara Y. et al. Nippon Kyobu Shikkan Gakkai Zasshi, 1993, 31 suppl:125~131
    [38]Hoffman J. The potential for isoemzyme-selective modulation of protein kinaseC[J]. FASEB J, 1997;11:649.
    [39]金毅,徐永键,张珍祥.大鼠哮喘模型气道PKC表达的研究[J].中华结核和呼吸杂志, 1999;22(9):574.
    [40]Krunkosy TM, Fischer BM, Alkey BJ. Tumor necrosis factor alpha(TNF alpha)-induced ICAM-1 surface expression in airway epithelial cells invitro[J]. Ann Ny Acad Sci, 1996;31:796:1066.
    [41]Epstein FH. Nuclear factor-KB pirotal transcription factor in chronic inflammatory diease[J]. New Eng J Med, 1997;336:1066.
    [42]Barnes PJ. Adcock IM. NF-KB a pivotal role in asthma and a new target for the raphy[J]. Trends pharmacol Scim, 1997;18:46.
    [43]Szabo SJ, Kim ST, Costa GL, et al. Anovel transcription factor, T-bet, directs Th1 lineage commitment. Cell, 2000, 100(17):655~669.
    [44]Finotto S, Neurath MF, Glickman JN, et al. Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science, 2002, 295(11):336~338.
    [45]杜娟邱晨,转化生长因子-β在哮喘气道重构中的作用研究进展,国际呼吸杂志2006. 26(1)
    [46]Cohen P, Rajah R, Rosenbloom J, et al. IGFBP23 mediates TGF-Beta212 induced cell growth in human airway smooth muscle cells. Am JP hysiol Lung Cell MolPhysiol, 2000, 278(3):545~551.
    [47]Puddicombe SM, Richter A, Richter H, et al. Increased expression of P21(waf)cyclin dependent kinase inhibitor in asthmatic bronchial epithelium. Am J Respir Cell Mol, 2003, 28(1):61~68
    [48]Ward KR, Grew GM, Kenyon NJ, etal. TGF-β1 causes airway fibrosis and increased collagenI and IImRNA in mice. Thorax, 2003, 58(9):772~777.
    [49]Reihisaus E, INNis M, Maxinture N, etal. Mutations in the gene encoding for theβ2-adrenergic receptor in normal and asthmatic subject. Am J Respir Cell Mol Biol, 1993, 8:334-339.
    [50]Martinez FD, Graves PE, Baidinim CF, etal. Association between genetic polymorphisms of theβ2-adrenoceptor and response to albuterol in children with and without a history of wheezing. J Clin Invest, 1998, 100:3184-3188.
    [51]Dewar JC, Wheatley AP, VennA, etal.β2-adrenoceptor polymorphisms are in linkage disequilibrium but are not associated with asthma in an adult population. Clin Exp Allergy, 1998, 28:442-448.
    [52]DewarJC, WilkinsonJ, WheatleyA, etal. The glutamoy 27β2-adrenoceptor polymorphism is associated with elevated IgE levels in asthmatic families. Jallergy Clin Immunol, 1997, 100:261-265.
    [53]Weir TD, Mallek N, Sandford AJ, etal.β2-adrenergic receptor haplotypes in mild, moderate and fatal near fatal asthma. Am J Respir CritCare Med, 1998, 158:787-791.
    [54]McGraw DW, Liggett SB. Coding block and 5 leader cistron polymorphisms of theβ2-adrenergic receptor. Clin Exp Allergy, 1999, 4(Suppl):43-45.
    [55]Reishaus E, Innis M, MacIntyre N, et al. Mutations in the gene coding theβ2 adrenergic receptor in normal and asthmatic subjects. AmJ Respir Cell Mol Biol, 1993, 8 3:334-339.
    [56]高光凯,王士文,张进川.中国北方汉族人肾上腺素能受体β2基因多态性研究[J].中国优生与遗传杂志. 2002, 10(1):18-21
    [57]王雯.新疆维吾尔族哮喘患者的β2肾上腺素能受体基因多态性[J].中华内科杂志, 2004, 43(12):9342935.
    [58]Deichman K, Heinzmann A, Bruggenolte E, et al. An MseI RFLP in the human CTLA-4 promoter. Biochem Biophys Res Commun, 1996, 225:817-818.
    [59]HersheyGK, FriedrichMF, Esswein LA, etal. The assotiation of atopy with a gain offunction mutation in the alpha subunit of the interleukin-4 recepter. N Eng J Med 1997, 337(24):1720-1725
    [60]Mitsuyasu H, Yanagihara Y, Mao XQ, etal. Cutting edge dominant effect of 150Val variant of the human interleukin -4 recepter alpha china in IgE synthesis. J Immunology, 1999, 162(3):1227-1231
    [61]Rosenwasser LJ, Klemm DJ, Dressback JK, etal. Promoter polymorphisms in the chromosone 5 genecluster in asthma and atopy [J]. ClinExp Allergy, 1995, 25(12):74-78.
    [62]Burchard EG, Siverman EK, RossenwasserLJ, etal. Association between a sequence variant in the IL-4 gene promoter and FEV1 in asthma Am J Respir Crit Care Med, 1999, 160:919-922.
    [63]Heinzmann A, Plesnar C, Kuehr J, et al. Common polymorphisms in the CTLA-4 and CD28 gene at 2q33 are not associated with asthma or atopy [J]. Eur J Immunogenet, 2000, 27(2):57-61.
    [64]孙海平,郭易熔,陈吉庆等.儿童支气管哮喘96例血清IL-13的研究?南京医科大学学报(自然科学版), 2003, 4:382-383
    [65]吴斌,刘军麟,陈敏,等.白细胞介素13基因21112C/T多态性与支气管哮喘患者发病及血浆总IgE水平的相关性.中华结核和呼吸杂志, 2004, 27 (10):668 - 671.
    [66]Kuperman DA, Huang X, KothLL, etal. Direct effects of interleukin 13 on epithelial cells cause airway hyperreactivity and mucus over production in asthma[J]. NatMed, 2002, 8(8):885 889.
    [67]郭雪君,倪培华,李莉. HLA_DQ等位基因与哮喘相关性研究.中华结核和呼吸杂志, 2001, 24(3):139-141.
    [68]Holloway JW. Lack of evidence of a significant associaton between HLA2DR?DQ and DP genotypes and atopy in familieswith HPM allergy[ J ]. Clin Exp Allergy, 1996, 26 (10):114221149.
    [69]高金明.人类白细胞抗原DRB基因多态性与支气管哮喘易感性的相关性研究[J].中华医学杂志, 1998, 78(8):591 594.
    [70]Kim YK, Oh HB, Iee BJ, etal. Positive associaon between lergen of D. pteronyssinus[J]. Ann allergy Asthma Immunol, 2002, 88(2):170
    [71]Ober C, Moffatt MF. Contributing factors to the pathobiology the genetics of asthma. Clinics Chest Medicine, 2000, 21:245-261.
    [72]赵桐茂,主编. HLA分型原理和应用.上海:上海科学技术出
    [73]Bakbinui A, Baricordi DR, Fabbri LM, etal. Association between toluene diisocyanate induced asthma and DQBI markers:apossible role for aspartic acid at position 57. Eur Resp J, 1996, 9:207-210.
    [74]Mapp CE, Beghe B, BalboniA, etal. Association between HLA genes and susceptibility to toluene diisocyanate-induced asthmatic and nonatopiccontrol subjects. Clin Exp Allergy, 200030:651-656.
    [75]CaraballoL, Manugo J, etal. Freguency of DPB in significantly decreased in patients with allergic asthma in amullatto population[J]. Hum Immunol 1991(32):157
    [76]Stephan V, Schmid V, Frischer T, etal. Miteallergy, clinicalatopy, and restriction by HLA classⅡimmune response genes[J]. Pediatr Allergy Immunol, 1996, 7(1):28-34.
    [77]Aron Y, Swierczewski E, Lockhart A. A simple and rapid micro method for genomic DNA extraction from jugal epithelial cells. Application to human lymphocyte antigen typingin on large family of atopic/asthmatic probands [J]. Allergy, 199449(9):788.
    [78]Holloway JW, Lack of evidence of a sinificant association betweet HLA-DR DR and DP genotypes and atopy in families with HPM allergy[J]. Clin Exp Allergy, 1996, 269(10):1142-1149
    [79]Shirakawa T, Deichmann KA. Atopy and asthma:genectic variants of IL-4 and IL-13 signalling. Immunol Today, 2000, 21(2):60.
    [80]陈虹,陈育智,胡良平等. IgE高亲和力受体B链基因的多态性与中国人哮喘易感性的研究.中华医学杂志, 2000, 80(9):664
    [81]Trabetti E, Cusin V, MalerbaG, etal. Association of the Fc epsilon RI beta gene with bronchial by perresponsiveness in an Itanlian population[J]. J Med Genet, 1998, 35:680-681
    [82]Sandford AJ, Pare PD. The genetics of asthma:the impotant question. Am J Respir Crie Med, 2000, 161(3):200-206
    [83]Shirakawat, LiA, Dubowitz M, etal. Association between atopy and vareants of the B subunit of the high affinity immuno glubellin Ereceptor. Nat Genet, 1994, 7:125
    [84]Tomita K, Chikumi H, Tokuyasu H, etal. Functional assay of NF-JB trans location in tonuclei by laser scanning cytometry:inhibitory effect by dexamethasone or theophylline[J]. Naunyn-Schmiedeberg’s Arch Pharmacol, 1999, 359:249-255.
    [85]Benesaiano J, Crstain B, Mestari F, etal. High freguency of a deletion poletion polymorphism of the angiotensin-cinverting enzyme gene in asthma[J]. J Allergy clin Immunol, 1991, 99(1):53-57.
    [86]张瑛琪,孙白云,戴建军,等.支气管哮喘遗传因子研究[J].遗传, 2004, 26(2):147-150.
    [1] Gabrijelcic J,Casas A,Rabinovich RA,et al. Formoterol protectsagainst platelet-activating factor-induced effects in asthma .EurRespir J, 2004, (23) :71-75 .
    [2] Baskurt OK, Gdmont D,Meiselman HJ. Red blood cell deformability in sepsis. Am Respir Crit Care Med,1998,157:421~427.
    [3]支气管哮喘防治指南(支气管哮喘的定义、诊断、治疗、疗效判断标准及教育和管理方案).中华结核和呼吸杂志,1997, 20(5):261-267.
    [4] Fitzgerald D j,Roy L, Catella F et al. Platelet activated in unstable coronary disease. N Eng l J Med, 1986, 310:983~998.
    [5] Yanagisawa M, Kurihara H, Kimura S,et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells[J]. Nature. 1988,332(6163): 411-415.
    [6] Qizilbash N, Duffy S, Prentice CRM, etal. Willebrand factor and risk of ischemic stroke[J]. Neurology,2001,53(6):1552.
    [7]赵海霞.组织型纤溶酶原激活物研究进展。国外医学输血及血液学分册1995,18(1):19
    [8] Blann AD,Dobrotova M,Kubisz P,et al. Von Wille brand factor,soluble P-selectin,tissue plasminogen activator and plasminogen activator inhibitor in a the rosclerosis. Thromb Haemost,1995,74(2): 626-630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700