用户名: 密码: 验证码:
局部通风倾斜巷道掘进工作面瓦斯分布规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着矿井采掘深度的不断增加,瓦斯灾害越来越严重,为了有效防止瓦斯积聚引起瓦斯爆炸与瓦斯突出事故就需要准确预测矿井巷道瓦斯分布,但瓦斯分布又受巷道风流流场的影响,因此,需要对风流流场进行计算。在模拟解算掘进工作面风流流场的过程中,在湍流充分发展区域使用RNGk-ε双方程模型,对巷道中风速分布进行数值模拟,流场入口风流的湍动能k和湍动能耗散率ε的值有着不同的计算方法。本文通过计算湍动能k和湍动能耗散率ε采用不同取值时的风流流场,并与试验结果进行对比,确定了局部通风流场湍动能k和湍动能耗散率ε的取值方法,得到了与实际比较接近的掘进工作面流场。在研究掘进工作面风流流场的基础上,确定了倾斜掘进巷道中瓦斯与空气混合的数学模型,对倾斜巷道中倾角、风量对瓦斯分布与瓦斯积聚的影响进行了数值模拟研究。
     模拟结果表明,在回风瓦斯浓度较低的情况下,倾斜巷道掘进工作面仍存在一定范围的高浓度瓦斯区域。当压入风量、倾斜角度和回风流中瓦斯平均浓度均相同时,向上倾斜掘进工作面的高浓度瓦斯区域比向下倾斜的高浓度瓦斯区域大。当回风流中瓦斯平均浓度不变时,随着风量和瓦斯涌出量的增加,向上倾斜掘进工作面的高浓度瓦斯区域和向下倾斜的高浓度瓦斯区域之间的差距逐渐减小,但向上倾斜的高浓度瓦斯区域仍比向下倾斜的大。当倾斜角度和瓦斯涌出量均相同时,消除瓦斯超限区域,向上倾斜巷道需风量比向下倾斜时需风量大。
With mine coal extractive depth increasing gas disasters problem worsening. In order to effectively control gas explosion and gas outburst accidents caused by gas accumulation,we must accurately predict mine gas distribution in mine laneway.But the gas distribution is influenced by the airflow.So, we must study on airflow in mine laneway. In the process of simulating the heading face airflow field, the turbulence energy k and dissipation rateεhas different calculation methods in the flow field entrance when fully developed areas are in RNG model for a numerical simulation of airflow distribution. This article Simulated the flow field with different turbulent kinetic energy k and dissipation rateεvalues, and compared with the experimental results, determined the turbulent kinetic energy k and dissipation rateεcalculation method in auxiliary ventilation field simulation calculating,obtained the heading face flow field close to the actual.based on the heading face flow field, determined the mathematical model of the gas and air mixture in sloping heading face, The influence of the angle of inclination and quantity of ventilation airflow to methane distribution is studied.
     It is shown that, if the average methane concentration in return airflow is lower , there is still a range of high-concentration methane area in sloping heading face. the zone with high concentration gas is larger in upward heading face than that in downward heading face. The difference in zone with high concentration methane becomes decreases with the increase of the air quantity and methane emission rate if the average methane concentration in return airflow is same. But the zone with high concentration methane in upward heading face is still larger than that in downward heading face with forced auxiliary ventilation. if the angle of inclinationand the gas emission in sloping heading face are the same.The airflow quantity required to eliminate methane collection is greater at upward heading face than at downward heading face.
引文
[1]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992:80-83
    [2] Wesely R. Airflow at heading faces with forcing auxiliary ventilation [A]. Howes M. Proc. 3rd, Int. Mine Ventilation Congr. [C]. London: Institute of Mining and Metallurgy, 1984
    [3] Uchino K. and Inoue, M. Auxiliary ventilation at heading faces by a fan[A]. Rava V.. Proc. 6th Int. Mine Ventilation Congr. [C]. Littleton: Society for Mining, Metallurgy, and Exploration, Inc., 1997, p493-496
    [4] Paul, Bradley C.Procarione, J.A. McCarte .Prediction of air flows through broken rock by finite difference grids.M.K. Source: Proc 4th US Mine Vent Symp, 1988, p140-144.
    [5] Moloney, K.W., Lowndes, I. S., Stockes, M. R. and Hargrave, G. (1997) Studies on alternative methods of ventilation using computational fluid dynamics, scale and full scale gallery tests, Proc. 6th Int. Mine Ventilation Congr., Pittsburgh, p497-503.
    [6]高建良,张生华.压入式局部通风工作面风流分布数值模拟研究[J].中国安全科学学报.2003.14(1)
    [7] Michael, Vlasseva. On void aerodynamics in a porous media of a gob area. Elena Source: Proceedings of the 7th US Mine Ventilation Symposium, 1995:275-280.
    [8] A.D.Jones. A Physical Scale Model of Flows in the Waste of a Retreat Longwall Coalface. Proceedings of the 6th international mine ventilation congress, 1997
    [9]王海桥,施式亮,刘荣华.掘进工作面贴附射流通风浓差理论研究[J].中国安全科学学报,2001,11(5):32-35
    [10] Rao, S., Baafi, E. Y., Aziz, N. I. and Singh, R. N. (1993) Three dimensional numerical modeling of air velocity and dust control techniques in a longwall face, 6th US Mine Ventilation Symp., Salt Lake City, p287-292.
    [11]王海生.采空区渗透率分布对流场的影响[D],焦作:河南理工大学,2010
    [12] T.X.Ren. CFD Modeling of Methane Flow around Longwall Coal Faces. Proceedings of the 6th international mine ventilation congress, 1997.
    [13] I.G.Ediz. A Numerical Prediction Method for Methane Flow through Strata adjacent to Longwall Coal Faces. Proceeding in Mining Science and Technology, 1999.
    [14]傅培舫,王国超,叶汝陵.巷道顶板瓦斯积聚现象的模拟研究[J].煤炭工程师,1994,(4):12-15,21
    [15]王恩元,梁栋,柏发松.巷道瓦斯运移机理及运移过程的研究[J].山西矿业学院学报,1996,14(2):130-135
    [16]王恩元,王继仁,梁栋.巷道瓦斯局部积聚机理的实验研究[J].煤炭工程师,1996,(1):5-10
    [17]李诚玉,周西华,张丽丽.采空区瓦斯运移的数学模型[J].矿业快报,2007,23(8):17-19
    [18]谢东海,冯涛,李润求.矿井瓦斯运移与通风关系的研究[J].煤矿安全,2008,39(1):18-21
    [19] Heerden, J. and Sullivan, P. (1993) The application of CFD for evaluation of dust suppression and auxiliary ventilating systems used with continuous miners, 6th US Mine Ventilation Symp., Salt Lake City, p293-297.
    [20]王兆丰.矿井瓦斯涌出量预测方法的研究.中国煤炭学会第五届青年科技学术研讨会论文集.煤炭工业出版社,1998:160-165
    [21]张铁岗.矿井瓦斯综合治理技术.北京:煤炭工业出版社,2001 (5):37-38
    [22]俞启香.矿井瓦斯防治理论与技术.徐州:中国矿业大学出版社,1998:44
    [23]刘贺,魏风清,王林等.掘进工作面瓦斯突出预测敏感指标及临界值的确定[J].矿业快报,2008,24(7):80-81,87
    [24]梁绍权.掘进工作面瓦斯动态涌现影响因素分析[J].煤炭技术,2008,27(12):69-71
    [25]杨文旺,崔洪庆,张子敏.掘进工作面瓦斯涌出量混沌动力学方法研究[J].矿山安全与环保,2010,37(1):12-14
    [26]王树刚,李斌.煤巷掘进过程中煤层瓦斯流动的分析解.抚顺矿业学院学报,1995,14(2) :45-47
    [27]周世宁.煤层瓦斯赋存与流动理论.北京:煤炭工业出版社,1999年.74-75,77,81,89-90
    [28]林柏泉.矿井瓦斯防治理论与技术.徐州:中国矿业大学出版社, 1998.18-23
    [29] I.M. Konduri.Experimental and Numerical Modeling of Jet Fans for Auxiliary Ventilation in Mines. Proceedings of the 6th international mine ventilation congress, 1997
    [30] Moloney, K.W., Lowndes, I. S., Stockes, M. R. and Hargrave, G. (1997) Studies on alternative methods of ventilation using computational fluid dynamics, scale and full scale gallery tests, Proc. 6th Int. Mine Ventilation Congr., Pittsburgh.
    [31] Javier Tora?o,Susana Torno,Mario Menendez,Malcolm Gent,Judith Velasco.Models of methane behaviour in auxiliary ventilation of underground coal mining [J].International Journal of Coal Geology,2009,80:35-43
    [32]胡祖祥,王百顺.掘进巷道中某一点瓦斯浓度的研究[J].山东煤炭科技,2005,(5)67,69
    [33]高建良,徐昆仑,吴妍.掘进巷道瓦斯分布数值实验研究[J].中国安全科学学报,2009,19(1):18-24
    [34]高建良,侯三中.掘进工作面动态瓦斯压力分布及涌出规律[J].煤炭学报,2007,32(11):1127-1131
    [35]周雪漪.计算水力学.北京:清华大学出版社,1995
    [36] Marzio Piller, Enrico Nobile, J.Thomas, DNS study of turbulent transport at low Prandtl numbers in a channel flow. Journal of Fluid mechanics,(458):419-441,2002
    [37] J.G. Wissink. DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes. International Journal of Heat and Fluid Flow,24(4):626-635,2003
    [38] J.G. Wissnk.DNS of separating low Reynolds number flow in a turbine casecade with incoming wakes[J]. International Journal of Heat and Fluid Flow,24(4):626-635,2003
    [39] V.Michelassi,J.G.Wissink,W.Rodi,Direct numerical simulation,large eddy simulat–ion and unsteady Reynolds-averaged Navier-Stokes simulations of periodic unst–eady flow in a low-pressure turbine cascade:A comparison[J].Journal of power and Energy , 217(4):403-412,2003
    [40] V.Stephane,Local mesh refinement and penalty methods dedicated to the Direct Numerical Simulation of incompressible multiphase flows.Proceedings of the ASME/JSME Joint Fluids Engineering Conference:1299-1305,2003
    [41] A.A.Feiz,M.Ould-Rouis,G.Lauriat,Large eddy simulation of turbulent flow in a rotating pipe.International Journal of Heat and Fluid Flow,24(3):412-420,2003
    [42] Mary Ivan,Sagaut Pierre.Large eddy simulation of flow around an airfoil near stall[J].ALAA Journal,40(6):1139-1145,2002
    [43] D.G.E.Grigoriadis,J.G.Bartzis,A.Goulas,Efficient treatment of complex geometri–cs for large eddy simulations of turbulent flows.Computers and Fluids,33(2): 201-222,2004
    [44] L.Shen, D.K.P.Yue, large-eddy simulation of free-surface turbulence[J].Journal of Fluid Mechanics, n440:75-116,2001
    [45] R.E.Julian, K.Smolarkiewicz, Eddy resolving simulations of turbulent solar convection[J]. International Journal for Numerical Methods in Fluids,39(9):855 -864,2002
    [46] J.C.Li,Large eddy simulation of complex turbulent flows:Physical aspects and research trends.Acta Mechaniea Sinica,17(4):289-301,2001
    [47] P.Rollet-Miet, D.Laurence, J.Ferziger, LES and RANS of turbulent flow in tube bundles[J].international Journal of Heat and Fluid Flow, 20(3):241-254,1999
    [48] B.E.Launder,D.B.Spalding,Lectures in Mathematical Models of Turbulence. Academic Press,London,1972
    [49] V. Yakhot,S.A. Orzag, Renormalization group analysis of turbulence: basic theory. J Scient Comput.1:3-1,1986
    [50]章梓雄,董曾南.粘性流体力学.北京:清华大学出版社,1998
    [51] Tomita, S. Full-scale model experiment on the airflow at a driving face with forcing auxiliary ventilation [D].Fukuoka: Kyushu University, 1995
    [52]王福军.计算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社,1995.127-128
    [53]王海桥.独头巷道射流通风流场CFD模拟研究[J].中国安全科学学报,2003, 13(1):68-71湍动能
    [54]赵彬,李先庭,严启森.入口紊乱参数对室内空气分布的影响研究[J].建筑热能通风空调,2000,19(1):1-4
    [55]梁栋.通风过程瓦斯运移规律和数值模拟[M].北京:煤炭工业出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700