用户名: 密码: 验证码:
煤矿瓦斯抽采技术研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矿瓦斯事故是最严重的矿井自然灾害之一,它也是长期制约着我国乃至全世界煤矿安全生产工作的“瓶颈”。近年来,尽管国内外专家、学者对其防治工作进行了较为深入的研究和探索,并取得了很大的技术突破,但由于实际生产过程中影响煤矿瓦斯赋存、分布、涌出、运移和流动规律的因素较多(如煤吸附常数、煤层孔隙率、煤层瓦斯压力、煤层透气性系数、煤的变质程度、煤层厚度、煤层埋深、采动裂隙的大小、上覆基岩厚度和水文地质条件等),想要准确得到矿井瓦斯的分布和运移规律、预测矿井瓦斯涌出量和定位合理有效的瓦斯抽采钻孔位置都存在一定难度。
     本文通过大量了解国内外相关文献资料和规范规程,在借鉴、归纳和总结前人对瓦斯抽采技术研究的基础之上,依据所要研究矿井的实际情况,通过基础理论分析、建立数学模型,实验室模拟和现场实际测定等手段:首先分析了矿井瓦斯地质赋存和分布特征、影响瓦斯涌出因素和煤层瓦斯受采动影响后的运移规律等方面问题。其次建立了具有连续性和动态特征的煤矿瓦斯涌出量分源预测数学模型,即综采工作面瓦斯涌出量预测模型(开采层瓦斯涌出量和邻近层瓦斯涌出量)、掘进工作面瓦斯涌出量预测模型(煤壁瓦斯涌出量和落煤瓦斯涌出量)和采空区瓦斯涌出量预测模型。经计算,初步预测出所研究煤矿生产初期的绝对瓦斯涌出量为91.66m~3/min。再次,通过对多种瓦斯抽采方法的比较,确定了同时运用本煤层抽采(掘进面边掘边抽、回采面预抽和边采边抽)和采空区抽采(老采空区全封闭抽采、高位钻孔抽采和采空区上隅角插管抽采)两种瓦斯抽采技术方案,建立了完整的矿井瓦斯抽采技术体系。预计被研究煤矿的瓦斯抽采量为43.4m~3/min左右(本煤层抽采、采空区抽采、掘进工作面抽采三者抽采量之和),其年抽采量为20.62Mm~3/a左右。最后,鉴于煤矿瓦斯是一种成本低、质量高的清洁能源,且被研究矿井的瓦斯抽采量为43.4m3/min,矿井瓦斯抽采率约为47.3%,符合《煤矿瓦斯抽采基本指标》(AQ1026-2006)标准的要求,确定了其瓦斯抽采的工业、民用和发电利用方案。
Coal mine gas accident is one of the most serious natural disasters in coal mine. It is the long-term constraint on the coal mine safety productive work in China and in the world. Though experts and scholars in both China and abroad carried on intensive research and have made technological breakthroughs into its prevention and treatment, it is still difficult to get the distribution of mine gas and gas migration law, to predict the mine gas emission quantity and set the drilling hole position of gas drainage effectively, due to the many factors that influence mine gas storage, distribution, emission, migration and flow (such as the adsorption constants, coal seam porosity, coal-seam gas pressure, gas permeability of coal seams, coal rank, coal seam thickness, seam depth, the condition of mining fissure, upper rock cover and hydrogeologic condition).
     This article refers to and summarizes the researches on gas drainage technology from large numbers of relevant documentation and regulations. On the basis of actual situation, by means of the basic theory analysis, mathematical modelling, simulation experiments and in situ measurement etc., the article first analyzes issues like geological storage and distribution characteristics of mine gas, influential factors of gas emission and gas migration law in coal seam. Then mathematical models with continuity and dynamic characteristics are established to predict coal gas emission quantity separate source, that is to predict gas emission quantity of mechanized mining face (that of mind bed and that adjacent seam), to predict gas emission quantity of heading face (that of coal wall and coal cutting), and to predict gas emission quantity of goaf. In the initial stage of coal mine production, the absolute gas emission quantity is predicted as 91.66 m3/min by calculation. Next, by comparing various methods of gas drainage, a technical proposal that the usage of both in-seam gas drainage (gas drainage while driving in heading face and pre-drainage and drainage while extracting in mining face) and goaf gas drainage (fully enclosed drainage of old goaf, high position drilling drainage and the upper corner intubation drainage of goaf) is determined upon, and an integrated technical system of mine gas drainage is established. It is established that the gas drainage quantity of the observed coal mine is around 43.4m~3/min, and its annual drainage quantity is around 20.62Mm~3/a. Last, given that mine gas is a clean energy of low cost and high quality, and the gas drainage quantity is 43.4m~3/min and gas drainage efficiency is about 47.3% in the observed coal mine,which are in line with the standard of Basic Indicators of Mine Gas Drainage (AQ1026-2006),it is confirmed the plan of the industry, civil and electricity generation utilization of gas drainage.
引文
[1]煤炭工业协会[EB/OL].2009-01-09.http://finance.jrj.com.cn/2009/01/09.
    [2]杨文旺.七星矿井瓦斯地质规律与瓦斯预测[D].河南理工大学安全技术及工程2010(6).
    [3]崔兆华.2001-2008年我国煤矿瓦斯事故统计及原因分析[J].科技情报开发与经济,2009,19(21):139-141.
    [4]蔡峰.高瓦斯低透气性煤层深孔预裂爆破强化增透效应研究[D].2009.
    [5]申宝宏,刘见中,张泓等.我国煤矿瓦斯治理的技术对策[J].煤炭学报,2007,32(7):674-679.
    [6]冯增朝.低渗透煤层瓦斯抽放理论与应用研究[D].2005.
    [7]叶建平,秦勇,林大扬等.中国煤层气资源[M].徐州:中国矿业大学出版社,1998.
    [8]高鹤等.中国煤层气资源管理问题的探讨[J].中国矿业大学学报,1999,8(2):27-29.
    [9]谢生荣,武华太,赵耀江等.高瓦斯煤层群”煤与瓦斯共采”技术研究[J].采矿与安全工程学报,2009,26(2):173-178.
    [10]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [11]李日富,梁运培,张军.地面钻孔抽采采空区瓦斯效率影响因素[J].煤炭学报,2009,34(7):942-946.
    [12]孙全喜.集贤煤矿高瓦斯煤层瓦斯抽采方法研究与应用[D].2007.
    [13]赵耀江,温百根.高瓦斯煤层群顶板大直径千米钻孔抽采技术[J].煤炭学报2009,34(6):797-801.
    [14]张耀平,叶青,贾真真等.工作面瓦斯涌出量预测及瓦斯来源分析[J].中国矿业,2007,16(11):46-52.
    [15]刘俊杰,乔德清.对我国煤矿瓦斯事故的思考[J].煤炭学报,2006,31(1):58-62.
    [16]丁本礼,王宝库,楚一冰等.放顶煤工作面采空区瓦斯运移规律及其防治[J].煤矿安全,2007,38(8):14-16.
    [17]朱迎春,周心权,王海燕等.巷道冒落区瓦斯积聚的数值模拟及应用[J].西安科技大学学报,2008,28(2):314-317.
    [18]秦跃平,朱建芳,陈永权等.综放开采采空区瓦斯运移规律的模拟试验研究[J].煤 炭科学技术,2003,31(11):12-16.
    [19]李化敏,苏承东,宋常胜等.采空区顶板垮落与瓦斯涌出关系的模拟实验研究[J].煤炭工程,2007,(11):71-75.
    [20]魏引尚,邓敢博,吴晓凡等.急倾斜工作面采空区瓦斯分布规律的相似模拟研究[J].湖南科技大学学报(自然科学版),2009,24(1):12-17.
    [21]魏小文,刘妍,丁厚成等.采空区瓦斯运移规律的相似实验与数值研究[J].中国矿业,2009,18(4):113-115.
    [22]王晓亮.煤层瓦斯流动理论模拟研究[D].2003.
    [23]P.GSevenster. Diffusion of Gases through Coal [J]. FUE1,1959,38 (4):403-418.
    [24]S.P.Nandi and P.L.Walker,JR.Activated.Diffusion of Methane in Coal [J]. FUEl,1970,49 (3):309-322.
    [25]Edward D.Thimons and Fred N.kissell.Diffusion of Gases through Coal[J]. FUEl,1973, 52(10):274-280.
    [26]A.T,艾鲁尼.煤矿瓦斯动力现象的预测和预防(唐秀义,宋德淑,王荣龙,译)[M].北京:煤炭工业出版社.1992
    [27]周世宁,孙辑正.煤层瓦斯流动理论及其应用明[J].煤炭学报,1965,2(1):24-37.
    [28]郭勇义.煤层瓦斯一维流场流动规律的完全解[J].中国矿业学院学报,1984,2(2):19-28.
    [29]孙培德.煤层瓦斯流动方程补正[J].煤田地质与勘探,1993,21(5):61-62.
    [30]Peide Sun. Coal gas dynamics and it applications. Scientia Geological Sinica,1994,3 (1):66-72.
    [31]黄运飞,孙广忠.煤—瓦斯介质力学[M].北京:煤炭工业出版社,1993.
    [32]S.A.Khristanovicn. Fundamentals of filtration theory [J].Soviet Mining Science,1991,27 (1):1-14.
    [33]Jakub Siemek,StanislawNagy.The early time condensation in the near well zone during non-stationary and non-isothermal flow of gas condensate system [J].Archive of Mining Sciences,2001,46(3):319-336.
    [34]章梦涛.变形与渗流相互作用的岩石力学问题[J].岩石力学与工程学报,1989,8(3):299-308.
    [35]赵阳升.煤体-瓦斯耦合数学模型及数值解法[J].岩石力学与工程学报,1994,13(3):229-239.
    [36]梁冰,刘建军,范厚彬等.非等温条件下煤层中瓦斯流动的数学模型及其数值解法[J].岩石力学与工程学报,2000,19(1):1-5.
    [37]彼特·罗祥.煤矿沼气涌出[M].宋世钊译.北京:煤炭工业出版社.1983
    [38]Xinrong Luo,QixiangYu.Physical Simulation and Analysis of Methane Transport in Coal Seam[J] Journal of China University of Min.&Tech.June 1994,4 (1):24-31.
    [39]罗新荣.可压密煤层瓦斯运移方程与数值模拟研究[J].中国安全科学学报,1998,8(5):19-23.
    [40]杨其奎,王佑安.煤屑瓦斯扩散理论及其应用阴[J].煤炭学报,1986,11(3):34-39.
    [41]刘金龙.铁法矿区大兴矿瓦斯抽放技术研究[D].2005.
    [42]Carol J.Bibler,James S.Marshall,Raymond C.Pilcher.Status of worldwide coal mine methane emissions and use[J].International Journal of Coal Geology 1998,35:283-310.
    [43]Michael L.Ogilvie.Gas drainage in Australian underground coal mines [J].Mining Engineering,1995,47(1):50-52.
    [44]K.Ohga, K.Higuchi. The Practice of drainage in Japan [A]. Jan M.Mutmansky: Proceedings of the 3rd MINE VENTILATION SYMPOSIUM, Colorado:Society of Mining engineers,1987.261-270.
    [45]杨宏伟.瓦斯抽放工艺集成化技术研究[D].辽宁工程技术大学,2007.
    [46]李锡林.世界煤炭工业发展报告[M].北京:煤炭工业出版社
    [47]赵国泉,刘馨,桑逢云.国外煤层气(煤矿瓦斯)经济政策及对我国的启示[J].中国煤炭2011,37(1):122-127.
    [48]马争艳,杨昌明.美国煤层气产业化的成功经验与启示[J].中国国土资源经济,2007,20(4):29-31.
    [49]周德昶,焦先军.地面钻井抽采瓦斯技术的发展方向[J].矿业安全与环保,2006,33(6):77-79.
    [50]周福宝,夏同强,刘应科,胡胜勇,张占国.地面钻井抽采卸压煤层及采空区瓦斯的流量计算模型[J].煤炭学报,2010,35(10):1638-1643.
    [51]李日富,梁运培,张军.地面钻孔抽采采空区瓦斯效率影响因素[J].煤炭学报,2009,34(7):942-946.
    [52]杨立雄.美国煤层气产业成功发展浅析[J].中国煤炭2003,29(10):61-62.
    [53]霍槟槟,刘世忠.利用地面钻孔对矿井储量及煤层可采边界的控制研究[J].煤炭技术,2009,28(12):118-119.
    [54]张军,孙东玲,黄旭超等.地面钻井抽放采动区域瓦斯技术的试验研究[J].矿业安全与环保,2007,34(1):1-5.
    [55]秦跃平,姚有利,刘长久等.铁法矿区地面钻孔抽放采空区瓦斯技术及应用[J].辽宁工程技术大学学报(自然科学版),2008,27(1):5-8.
    [56]李民.寺河煤矿瓦斯地面抽放系统可行性分析[J].煤炭工程,2004,(12):55-56.
    [57]梁运培,胡千庭,郭华等.地面采空区瓦斯抽放钻孔稳定性分析[J].煤矿安全,2007,38(3):1-4.
    [58]安鸿涛,康彦华,孙四清等.岩浆侵入破坏区煤层瓦斯地质规律[J].矿业安全与环保,2010,37(5):52-58.
    [59]赵毅鑫,姜耀东,张雨等.冲击倾向性与煤体细观结构特征的相关规律[J].煤炭学报,2007,32(1):64-68.
    [60]冯明,宫辉力,陈力等.煤层瓦斯形成的构造地质条件及瓦斯灾害预防[J].自然灾害学报,2006,15(2):116-120.
    [61]张国辉,韩军,宋卫华等.地质构造形式对瓦斯赋存状态的影响分析[J].辽宁工程技术大学学报,2005,24(1):19-22.
    [62]赵阳升,杨栋,冯增朝等.多孔介质多场耦合作用理论及其在资源与能源工程中的应用[J].岩石力学与工程学报,2008,27(7):1321-1328.
    [63]富向,王魁军,杨天鸿等.构造煤的瓦斯放散特征[J].煤炭学报,2008,33(7):775-779.
    [64]许家林,钱鸣高.岩层采动裂隙分布在绿色开采中的应用[J].中国矿业大学学报,2004,33(2):141-149.
    [65]王志国,周宏伟,谢和平等.深部开采上覆岩层采动裂隙网络演化的分形特征研究[J].岩土力学,2009,30(8):2403-2408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700