用户名: 密码: 验证码:
高瓦斯矿井三维地震勘探技术应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国高瓦斯矿井众多,影响瓦斯富集和突出危险区分布的主控因素不一。开展基于特定主控因素,面向瓦斯富集性预测的地震技术研究是煤田地震勘探面临的新课题。
     鉴于目前高瓦斯矿井采区三维地震勘探中普遍存在的采集、处理和解释方法的盲目性和技术应用水平低等问题,本文依托山西阳煤集团“地震反演技术预测煤矿瓦斯富集区的研究与应用”项目,针对上述问题进行了系统性应用研究。从影响石港矿井瓦斯富集区分布的主控因素(挠曲构造)出发,采用三维正演模拟方法计算分析了适合研究区实际条件的三维地震观测类型;通过叠前和叠后偏移方法处理成果的对比讨论,明确了叠前处理的技术优势和必要性;应用叠前弹性阻抗反演技术和频谱分解等地震新技术预测了目标煤层瓦斯富集和突出危险区的分布范围。主要研究结论如下:
     1、分析和研究了石港矿井构造演化历史、煤系地层的沉积环境以及煤储层的厚度、煤级、煤体结构、含气性等影响瓦斯富集的众多地质因素,获得了挠曲构造带是影响本区瓦斯富集性的主控因素这一明确结论。
     2、建立了研究区复杂地表和挠曲实际赋存形态的三维模型,利用常速度梯度三维射线追踪法,模拟了与瓦斯富集性密切相关的煤层反射波高频能量在不同采集方向的宽窄方位观测系统下,多种CRP面元属性的变化特征,明确提出了宽方位观测的必要性。
     3、对比分析了叠前和叠后时间偏移两种方法的实际处理效果和解释成果,认为叠前时间偏移能够有效提高挠曲构造的定性、定量解释水平以及陷落柱等影响瓦斯局部富集区分布的小规模构造和地质异常体的识别率。
     4、首次提出并利用最大正、负曲率属性研究了挠曲构造带的展布和变形特点,并综合电阻率拟声波特征参数反演方法获得的构造软煤预测成果,确定挠曲构造基本控制了研究区构造煤的发育程度和范围。
     5、首次将三维叠前弹性阻抗(EI)反演技术应用于高瓦斯矿井区域性瓦斯富集范围预测。认为本区纵横波速度比与瓦斯含量呈显著负线性相关;预测结果整体上符合瓦斯实测值变化趋势,并与构造煤和挠曲构造的分布范围具有良好的对应关系。在煤田声波测井资料缺乏的情况下,本次研究采用的两个角度的弹性阻抗反演方法是一次有益的尝试。
     6、首次采用小波变换的谱分解技术,研究了突出危险煤体高频反射能量相对强衰减响应特征,半定量地分析和圈定了研究区煤与瓦斯突出危险区范围。预测成果基本符合瓦斯地质规律,具有一定的指导意义。
China has a mass of high gas coal mines and there are various main control factors that determine the gas enrichment area and the distribution of highly coal and gas outburst zone. Therefore, it is important to study on the application of 3D seismic prospecting technology to the predication of gas enrichment degree based on specific main control factors.
     At present, there are many problems in applying 3D seismic prospecting technology to the exploration of high gas coal mines, such as lack of means in acquisition, processing and interpretation work, lack of a clear objective and poor skill level on the part of new technology application. Aiming at the above mentioned problems and based on a research project sponsored by Yang Quan Coal Industry( Group ) Co.,LTD, namely“the Study and Application of Seismic Inversion Technology to Gas Enrichment Area Prediction”, the paper made a systematic study on the topic. It analyzed the main control factors (flexural structure) affecting the distribution of high gas enrichment area in the coal mine in question and adopted a 3D forward modeling method to figure out the appropriate 3D seismic observation pattern for the specific condition of the area; Through a contrastive analysis on the results of time-domain pre-stack versus post-stack migratation, the necessity and advantage about pre-stack migratation is cleared; employing the new technology of pre-stack Elastic impendence inversion and Spectral Decomposition, the paper also predicted the gas enrichment degree of the target coal seam as well as the distribution of highly dangerous zone. The following are the main conclusions:
     1. Based on analysis of many geologic factors, such as structure evolution history and development characteristics, coal seam formation depositional environment, and the distribution features such as coal thickness, rank, coal body, gas bearing, it is concluded in the paper that the flexural structure is the main control factor affecting the distribution of gas enrichment area, coal and gas outburst region in Shigang Coal Mine.
     2. Establishing the 3D model of complex undulating surface and underground flexural structures by ray tracing of 3D constant velocity gradient, it conducted forward modeling to study variation characteristics of several CRP bin attributes about the high frequency energy resulting from the wide and thin observation azimuthal systems with different observation direction. The necessity of adopting the wide-azimuthral observation method is pointed out in the paper.
     3. Comparing the actual processing results and the interpretation results from pre-stack and post-stack migratation respectively, it is proved in the paper that pre-stack migratation is more effective in qualitative and quantitative interpretation of complex structure as well as improving the recognition rate of small structure of collapse column.
     4. Using post-stack multi-well constrained inversion method, the thickness variation tendency of the No.15 coal seam was predicted. It is proposed for the first time to use the maximum positive and negative curvature attributes to analyze the planar distribution and deformation features of flexural zone. Combined with the predicted result of the tectonized coal body achieved through the resistivity pseudo-acoustic characteristic parameters inversion method, it is concluded in the paper that the distribution range of tectonized coal body is determined by the flexural structure.
     5. For the first time the 3D seismic prestack elastic impendence inversion (EI) technology is applied to predicting the gas enrichment range in high gas mine. Vp/Vs ratio shows clear negative linear correlation with gas bearing. In general, the predicted results is consistent with the measured gas bearing values and fits in with the gas enrichment ranges in high gas emission zone. Considering the lack of acoustic logging data, it is a good attempt to base the EI inversion method in this study on two angle-stack data.
     6. It is the first attempt to apply spectral decomposition technology with wavelet transform algorithm to study the coal and gas outburst region. The study not only found the relative high attenuation response feature about high frequency reflection energy in gas outburst coal body, it also completed a semi-quantitative analysis and determined the distribution of coal and gas outburst region. Since the predicted results on the whole accord with the gas geologic law, it may offer some useful guidance to underground mining work.
引文
Al Yahya K. Velocity analysis by iterative profile migration.Geophysics,1989,54:718-729.
    Barnes,A.E Genetic classification of complex seismic trace attributes.67th ann. Internat.Mtg:Soc. Of Expl.Geophys.,1997:1151-1154
    Bortfeld,R., Approximation to the reflection and transmission coefficients of plane longitudinal and transverse waves.Geophys. Prosp. 1961,9,485-503
    Brown A.R,Dahm C.G,Graebner RJ. A stratigraphic case history using three-dimensional seismic data in the Gulf of Thailand.Geophysical Prospecting,1981,29(3):327-349
    BruceS.Hart. Balidating seismic attribute studies:Beyond statistics.The Leading Edge,2002,10:1016-1021
    Byrer,C.W, Mroz,T.H, and Covatch, G.L: Coalbed Methane Production Potential in U.S. Basin. JPT.1987, 821-834
    Carroll,R.E.,Pashin, J.C., and Kugler, R.L., Burial.History and source-rock characteristics of Mississippian and Pennsylvanian strata, Black Warrior basin, Alabama, in Pashin, 30th Annual Field Trip Guidebork. 1993,79-88
    Castagna J P, Sun S, Siegfried R W. Instantaneous spectral analysis:Detection of low frequency shadows associated with hydrocarbons. The Leading Edge ,2003 ,22:120-127.
    Connolly P. Elastic impedance.The Leading Edge .1999.18(4):438- 452
    Cooke,D.,Ball,V.,Muryanto,T.,O’Donnell,G.and Sena,A. What is the best seismic attribute for quantitative seismic reservoir characterization.69th Ann.Internat.Mtg:Soc.of Expl.Geophys.,1999:1588-1591
    Cordsen A. Narrow-versus wide-azimuth land 3D seismic surveys. The Leading Edge, 2002, 21 (8):764-770
    David N,Whitcombe. Elastic impedance normalization.Geophysics,2002,66(1):60-62
    Davis T L .Shuck E L .Benson R D. Coalbed methane multicomponent 3-D reservoir characterization study .Cedar Hill Field .San Juan Basin .New Mexico.1993. 63th SEG meeting Expanded Abstracts .1993.,275-276.
    Fagin S W. Solving the fault shadow problem in the Wilcox Trend of South Texas. Expanded Abstracts of 65th SEG Mtg,1995,1182-1185
    Fatti J L, Smith G C, Vail P J, et al, Detection of gas in sandstone reservoirs using AVO analysis : A 3-D seismic case history using the Geostack technique . Geophysics, 59(9):1362-1376
    Gray D. Andersen E. The Application of AVO and Inversion to the Estimation of Rock Properties . Expanded Abstracts of 70th Annual Internat SEG May, 2000,549-552
    Hall S A , Kendall M J.Fracture characterization at Valhall:application of P-wave amplitude variation with offset an d azimuth(AVOA)analysis to a 3D ocean-bottom data set.Geophysics,2003,68(4): 1150-1160.
    Hunter,A.M.and steele,D.J: Coalbed Methane Development in the Northern and Central Appalachian Basins-Past, Present and Future., Alabama Coalbed Methane Symposium, Tuscaloosa (1991)127-42
    Johnson W E.Direct detection of gas in pre-Tertiary sediments.The Leading Edge, 1995, 14(2):119-122.
    Jone A H. Methane production characteristics of deeply buried coalbed reservoir. Gas Reserarch Institute GRI85/0033, NTIS PB85-223386, 1985. 144~157
    Kelly M ,Skidmore.C.Ford D. AVO inversion Part 1 Isolating rock property contrasts. The Leading EDGE. 2001,20(3):320--323
    Koefoed,O.,On the effect of Poisson’s rations of rock strata on the reflection coefficients of plane waves.Geophys.Prosp.1955,3,381-387
    Langan, R. T., Lerche, I. and Culter, R. T., Tracing of rays through heterogenous median; An accurate and efficient procedure, Geophysics,1985,50,1456-1465
    Levin. Estimating shear-wave velocities from P ware and converted-ware data . Geophysics, 1999, 64(2):504-507
    Liu Wei et al. Mitigation of uncertainty in velocity anisotropy estimation for prestack depth imaging. Expanded Abstracts of 74th SEG Mtg,2004,2387-2390
    Lynn H B,Simon K M. Azimuthal anisotropy in P-wave 3D multiazimuth data. The Leading Edge, 1996, 15(8): 923-928.
    Mallick S, Craft K L, Meister L J, et al. Determination of the principal directions of azimuthal anisotropy from P-wave seismic data. Geophysics, 1998, 63(2): 692-706.
    Mallick S,Frazer L N.Reflection/transmission coeffcients and azimuthal anisotropy in marine studies.Geophys.J.Int., 1991,105(1): 241-252
    Partyka G A, Gridley J M and Lopez J. Interpretational Applications of Spectral Decomposition in Reservoir Characterization. The Leading Edge,1999,18 3 :353-360
    Ramos A C B,Davis T L. 3D AVO analysis and modeling applied to fracture detection in coalbed methane reservoirs. Geophysics,1997, 62(6): 1 683-1 695.
    Richards,P.G., and Frasier,C.W. Scattering of elastic waves from depth-dependent inhomogeneities.Geophysics,1976,41,444-458
    Ruger A. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophysics, 1997, 62(3): 713-721.
    Satinder Chopra , Calgary, Kurt. J. Marfurt.Emerging and future trends in seismic attributes. The Leading Edge. 2008,298-318
    Satish S, Partha S, Routh P D, et al. Castagna. Spectral decomposition of seismic data with continuous wavelet transform. Geophysics, 2005 ,70 6 :19-25.
    Shen F,Sierra J,Burns D R,et a1.Azimuthal offset-dependent attributes applied to fracture detection in a carbonate reservoir.Geophysics,2002,67(2):355-364.
    Sigernes L.T.W et al. Seismic fault imaging. Expanded Abstracts of 72nd SEG Mtg,2002,516-519 Skidmore C,Kelly M,Cotton R. 2001AVO inversion Part 2 Isolating rock property contrasts. The Leading EDGE,2001,20(4):425-428.
    Taner,M.T.,Schuelke,J.s.,O’Dohery,R. and Baysal,E.Seismic attributes revisited.64th Ann.Internat.Mtg:Soc. Of Expl.Geophys.,1994:1104-1106
    Thomsen L. Understanding seismic anisotropy in exploration and exploitation. 2002 DISC Distinguished Instructor Series,5:2-43
    Tremain C M, Whitehead N H. Natural fracture(cleat and joint ) characteristics and pattern in Upper Cretaceous and Tertiary rocks of the San Juan basin. Gas research Institute GRI90/0014, 1990.73~84
    Tsvankin I,Anisotropic parameters and P-wave velocity for orthorhombic media .Geophysics.1997, 62(4): 1292-1309
    Tsvankin I. Reflection moveout and parameter estimation for horizontal transverse isotropy . Geophysics. 1997, 62,614-629
    Tyler, Roger, Laubch S E. Effect of compaction on cleat characteristics. Gas Research Institute.GRI91/0072, 1991. 141~151
    Vetle Vinje, Einar Iversen, Havar Gjoystdal. Traveltime and amplitude estmation using wavefront construction.Goephysics,1993,58(8):1157-1166
    Vidale, I.E.,Finite-difference calculation of traveltimes in three dimension, Geophysics, 1990, 55:521-526
    Williams M et al. Interpreting seismic data in the presence of azimuthal anisotropy or azimuthal anisotropy in the presence of the seismic interpretation. The Leading Edge,2002,21(8):771 -774
    Aki&Richards PG(美),李钦祖,邹其嘉译,定量地震学-理论和方法:北京,地震出版社,1987
    Fred J.Hilterman (美),孙夕平,赵良武等译,地震振幅解释:北京,石油工业出版社,2009
    曹代勇,关英斌.晋-获断裂带分段模式研究.大地构造与成矿学.1997,21(4):323-329
    曹孟起,王九拴,邵林海等.叠前弹性波阻抗反演技术及应用.石油地球物理勘探.2006,41(3):323-326
    曹卫斌.五阳矿井瓦斯地质规律与瓦斯预测[硕士学位论文].焦作:河南理工大学,2010
    常锁亮,刘大锰,林玉成等.频谱分解技术在煤田精细构造解释及煤含气性预测中的应用.煤炭学报.2009,34(8):1009-1020
    常锁亮,刘大锰,王明寿.煤层气勘探开发中地震勘探技术的作用及应用方法探讨.中国煤层气.2008,5(2):23-27
    常锁亮,唐永洪,陈强等.煤田三维地震勘探的观测系统设计现状与讨论[J].中国煤炭地质,2008,(15)4:50-56.
    常锁亮,杨起,刘大锰等.煤层气储层物性预测的AVO技术对地震纵波资料品质要求的探讨.地球物理学进展.2008.23(4):1236-1243
    程玉坤,冉建斌,肖伟.基于CRP道集的叠前处理技术及应用.勘探地球物理进展,2008(21)2:567-569
    崔若飞,钱进,陈同俊等.利用地震P波确定煤层瓦斯富集带的分布.煤田地质与勘探.2007,35(6):54-57
    狄帮让,孙作兴,顾培成等.宽/窄方位三维观测系统对地震成像的影响分析—基于地震物理模拟的采集方法研究.石油地球物理勘探,2007 ,42 (1) :1-6
    董臣强,王军,张金伟,时频分析技术在三角洲层序分析中的应用.断块油气田, 2002, 9(2): 18-20
    董守华,马彦良,周明.煤层厚度与振幅、频率地震属性的正演模拟.中国矿业大学学报, 2004,(01)
    董守华.地震资料煤层横向预测与评价方法.徐州:中国矿业大学出版社,2004
    杜文凤,彭苏萍,黎咸威.基于地震层曲率属性预测煤层裂隙.煤炭学报,2006,31(增刊): 30-33
    傅学海,秦勇.多相介质煤层气储层渗透率预测理论与方法.徐州:中国矿业大学出版社,2003
    傅雪海,秦勇,姜波等.煤割理压缩实验及渗透率数值模拟.煤炭学报.2001,26(6):573-577
    高现俊,史英龙,张志国等.叠前时间偏移特色配套处理技术研究及其在华北探区的应用.中国石油勘探.2008(2):130-135
    何继善,吕绍林.瓦斯突出地球物理研究.北京:煤炭工业出版社,1999
    孔炜,彭苏萍,霍全明等.地震属性的拟测井反演及在煤层解释中的应用.煤田地质与勘探.2004,32(1):60-62
    冷广升,陈加林,王秀荣等.叠前时间偏移方法在煤田勘探中的应用.中国煤田地质.2008,20(6):40-43
    李红,吕进英,王宏友.波阻抗约束反演技术预测煤层厚度.煤田地质与勘探.2007,21(1):10-15
    李子顺.地震波衰减规律及其恢复方法.地球物理学进展.2007,31(5):12-18
    梁冰,章梦涛,潘一山,等.瓦斯对煤的力学性质及力学响应影响的试验研究.岩土工程学报,1995,17(5): 12-18
    凌云研究组.宽/窄方位角勘探实例分析与评价(一).石油地球物理勘探.2005, 40(3): 305-308, 317
    凌云研究组.宽方位角地震勘探应用研究.石油地球物理勘探,2002,38(4):350-357
    刘春园,魏修成,朱生旺,季玉新,频谱分解在碳酸盐岩储层中的应用研究.地质学报,2008,3,82(3):428-432
    刘盛东,赵秋芳,张平松等.煤体瓦斯特征与震波参数关系的试验研究.煤炭科学技术.2005,33(11):33-36
    刘盛东,赵秋芳,张平松等.新庄孜矿煤体瓦斯含量与震波衰减特征分析.安徽理工大学学报(自然科学版).2005,25(3):1-4
    刘雯林.煤层气地球物理响应特征分析.岩性油气藏,2009.21(2):113-115
    刘洋,董敏煜.各向异性介质中的方位AVO.石油地球物理勘探,1999,34(3):260-267.
    陆基孟.地震勘探原理.东营:石油大学出版社,1980.220-221
    马劲风.地震勘探中广义弹性阻抗的正反演.地球物理学报2003 ,46 (3):118-124.
    孟召平,郭彦省,王赟等.基于地震属性的煤层厚度预测模型及其应用.地球物理学报,2006,49(2): 512-517
    孟召平,张吉昌, Joachim Tiedemann.煤系岩石物理力学参数与声波速度之间的关系.地球物理学报,2006,49(5): 1505-1510
    彭立世,袁崇孚.瓦斯地质与瓦斯突出预测.北京:中国科学技术出版社,2009,12-15
    彭苏萍,杜文凤,苑春方等.不同结构类型煤体地球物理特征差异分析和纵横波联合识别与预测方法研究.地质学报.2008,82(10):1311-1322
    彭苏萍,高云峰,杨瑞召等.AVO探测煤层瓦斯富集的理论探讨和初步实践----以淮南煤田为例.地球物理学报.2005,48(6):1475-1486
    彭晓波,彭苏萍,詹阁,等.P波方位AVO在煤层裂缝探测中的应用.岩石力学与工程学报.2005,24(16):120-126
    彭真明,李亚林,周拥军等.碳酸盐岩储层多角度弹性阻抗流体识别方法.地球物理学报.2008, 30(3):155-160
    钱荣钧,地震波的特性及相关技术分析.北京:石油工业出版社,2008.
    秦勇.中国煤层气地质研究与进展评述.高校地质学报.2003.9(3):339-358
    申宝宏,刘见中,张泓.我国煤矿瓦斯治理的技术对策.煤炭学报.2007,32(7):673-679
    宋国良,冯玉芬.煤田高分辨率地震勘探方法.勘探地球物理进展.2002,25(4):31-34
    苏伏义.煤层气储集层评价参数及其组合.天然气工业,1998.18(4):16-21
    孙茂远,杨陆武,刘中平.煤层气基础理论研究的关键科学问题.煤炭科学技术.2002,30(9):46-48
    孙四清,陈致胜,韩保山等.测井曲线判识构造软煤技术预测煤与瓦斯突出.煤田地质与勘探, 2006, 34( 4 ): 65~ 68.
    汤友谊,孙四清,郭纯等.不同煤体结构类型煤分层视电阻率值的测定.煤炭科学技术, 2005, 33( 3): 70 ~ 72.
    王保丽,印兴耀,张繁昌.弹性阻抗反演及应用研究.地球物理学进展.2005,20(1):89-92
    王晓曼,彭立世,杨德超.煤的几项力学性质试验研究.焦作矿业学院学报,1991,24(3): 46-52
    杨陆武,孙茂远,胡爱梅,潘军.适合中国煤层气藏特点的开发技术.石油学报,2002.23(4):46-50
    杨起,汤达祯.华北煤变质作用对煤层含气量和渗透率的影响.地球科学—中国地质大学学报,2000.25(3):273-275
    杨瑞召,彭苏萍,彭晓波等.地震属性技术及其在煤层气勘探中的应用.煤层气成藏机制及经济开采理论基础.北京:科学出版社2005
    杨双安,宁书年,张会星等.三维地震勘探技术预测瓦斯的研究成果.煤炭学报.2006,31(3):334-336
    姚宇平,周世宁.含瓦斯煤的力学性质.中国矿业大学学报,1988,1: 1-7
    叶建平等.中国煤储层渗透性及其主要影响因素.煤层学报,1999.24(2):118-122
    苑书金,于常青.各向异性介质中的弹性阻抗及其反演.地球物理学进展,2006,21(2):520-523
    张爱敏,汪洋,赵世尊.不同厚度煤层AVO特征及模型研究.中国矿业大学学报,1997,26(3): 36-41
    张爱印,李学文;董守华等.测井约束反演技术在煤田三维地震岩性勘探中的应用.地球物理进展.2004,7(3):152-157
    张进铎,杨平,王云雷,地震信息的谱分解技术及其应用,勘探地球物理进展,2006,8,29(4):235-238 张丽艳,刘洋,陈小宏.几种相对振幅保持的叠前偏移方法对比分析.地球物理学进展,2008,(23)3:852-858
    张钋,刘洪,李幼铭.射线追踪方法的发展现状.地球物理学进展.2000,15(1):36-44
    张延庆,魏小东等,谱分解技术在QL油田小断层识别与解释中的应用.石油地球物理勘探,2006 10,41(5):584-591
    张子敏,瓦斯地质学.徐州:中国矿业大学出版社,2009.
    赵邦六等.多分量地震勘探理论与实践.北京:石油工业出版社,2007.
    赵明金,尚新民,王元庆等.三维地震观测系统对AVO处理的影响.物探与化探.2003,27(1):55-58
    赵群,郝守玲.煤样的超声速度和衰减各向异性测试.石油地球物理勘探,2005,40(6): 708-710
    张国成,熊明富,郭卫星等.淮南矿区井田小构造对煤与瓦斯突出的控制作用.焦作工学院学报(自然科学版),2003(5):123-127
    钟伟,杨宝俊,张智.多项式拟合技术在强噪声地震资料中的应用研究.地球物理学进展.2006(1):18-23
    朱兆林,赵爱国.裂缝介质的纵波方位AVO反演研究.石油物探,2005,44(5):499-503

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700