用户名: 密码: 验证码:
钠测温测风激光雷达的研制及重力波动量通量的探测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中高层大气温度和风场是描述中高层大气特性的重要参数,对研究中高层大气潮汐波、重力波、行星尺度波以及波与波之间的相互作用,中高层大气环流和温度结构具有非常重要意义。目前,国内对中高层大气的温度和风场探测比较匮乏,主要是借助流星雷达进行中高层大气风场的探测。激光雷达作为一种新型的探测手段逐步成为大气遥感领域不可或缺的工具。本论文以高光谱分辨率激光雷达技术为基础,详细阐述了我国首台经过国内外专家鉴定的高光谱分辨率钠测温测风激光雷达的成功研制,并利用该激光雷达观测的大气温度和风场数据,研究了中间层顶区域半日潮汐波与重力波动量通量。全文共分两部分:
     第一部分为综述和原理部分,包括两章。第一章主要介绍了大气成分及大气层结的基础知识、大气温度及风场的测量方法和钠荧光激光雷达国内外发展动态等。第二章以激光雷达大气探测技术为基本理论,阐述了钠荧光测温测风激光雷达的方程,结合钠原子超精细光谱结构和荧光光谱知识,详细叙述了高光谱分辨率钠荧光激光雷达探测大气温度和风场的基本原理。
     第二部分为本人博士期间主要工作和研究成果,主要的研究工作如下:
     (1)作为骨干成员研制成功了我国首台经过国内外专家鉴定的高光谱分辨率钠测温测风激光雷达系统,详细论述了发射机、接收机和数据采集时序系统等关键技术的研制。发射机部分:采用半导体激光器泵浦环形染料激光器作为系统种子激光光源,研制了激光频率绝对锁定跟踪系统、三频激光产生器、脉冲染料放大激光器、自动准直系统等。接收机部分:设计了多维调整耦合装置,斩光盘系统等减少强回波信号影响和探测单元的非线性失真问题,并通过合理确定耦合光纤、透镜、滤光片和光电探测器参数,提高了系统回波信号光子数的探测效率。数据采集时序系统中设计了时序控制系统,自主开发了数据采集软件,实现了回波信号的连续自动采集。
     (2)开展了高光谱分辨率钠激光雷达探测中间层顶大气温度和风场垂直分布的实验研究。详细阐述了自动数据处理程序从三频回波信号中反演80-105km高度范围的大气温度和风场的垂直廓线的过程。
     (3)钠激光雷达探测的大气温度廓线与TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics)卫星搭载的SABER (Sounding of the atmosphere using Broadband Emission Radiometry)仪器观测结果进行了对比,结果显示两种仪器观测的温度廓线基本一致。大气风场的观测结果与位于纬度接近相同距离约300km的武汉流星雷达的观测结果进行了对比,两者吻合较好,且两种观测仪器均探测到明显的相位向下传播的潮汐波结构。这表明钠激光雷达探测的大气温度和风场垂直廓线是合理的和可靠的。
     (4)利用钠激光雷达探测的大气温度和风场数据,我们初步研究了中间层顶区域半日潮汐波的结构。对2011年12月3日的数据分析结果表明,纬向风半日潮汐幅度在98km高度约45m/s,垂直波长约28km,经向风半日潮汐幅度约50m/s,垂直波长约25km,温度半日潮汐幅度在98km高度约24K,垂直波长约24km。风场半日潮汐和武汉流星雷达观测的结果进行了对比,钠激光雷达探测的幅度大于武汉流星雷达探测的结果。在90km附近,我们探测到较为明显的相位变化。垂直波长较短以及相位变化均暗示了可能是由于重力波耗散和破碎引起的。
     (5)中间层顶区域重力波动量通量的探测对中高层大气动力学的研究具有非常重要的科学意义。我们利用双光束(向东和向西离天顶角20°)的探测方式,实现了重力波纬向动量的垂直通量探测,其数值基本在-10m2s-2-10m2s-2之间。我们发现了重力波动量通量和纬向平均风的存在正相关和负相关特征。正相关特征可能是由于重力波在观测高度以下经历了反向的风剪切后,造成动量通量增加。而负相关特性是由于纬向平均风风剪切对重力波波谱的过滤作用,和风剪切方向一致的重力波动量通量会逐渐减小,而和风剪切方向相反的动量通量会增加。由于潮汐波直接调制了纬向风剪切方向的变化,重力波的耗散和破碎也必然可以造成潮汐波在短期内的剧烈变化。相反,潮汐波的变化也会进一步导致重力波动量通量及其散度的变化。
The middle and upper atmosphere temperature and wind fields are important parameters to study the atmospheric solar tides, gravity waves, and planetary waves and their mutual interactions, as well as the temperature structure and general circulation. Currently in China, the ground-based and space-borne instruments for simultaneously measuring the temperature and wind in the mesopause region are rare. Mostly, the meteor or medium frequency radars are used to measure mesopause region wind, while the Rayleigh lidars are used to retrieve temperature. As a high precision instrument, lidar has been widely used in remote sensing of atmospheric profile. This thesis describes in details the development of China first high spectral resolution sodium temperature/wind lidar, based on the sodium spectroscopy and lidar technology. Using the dataset measured by this lidar, we study the mesopause region semidiurnal tide and gravity wave momentum flux. This thesis is divided into the following two parts:
     The first part, including chapters1and2, mainly focuses on the introduction of atmosphere and lidar technology as well as the sodium temperature/wind lidar measurement theory. The chapter1introduces the atmosphere temperature structure and composition, the methods for measuring atmospheric temperature and wind, and the current status of sodium temperature/wind lidar. The chapter2describes the sodium fluorescence lidar equation, sodium hyperfine spectrum, and the theory for retrieving wind and temperature.
     The second part is my main research work and achievements during the Ph.D study. The main research results are as follows:
     (1) As a key member, I participated in building the China first high-spectra resolution sodium temperature/wind lidar. The development of transmitter, receiver, data acquisition system and timing system are described in details. We develop the seed CW laser source by using the ring dye laser pumped by a diode semiconductor laser, the absolute laser frequency locking and automatic tracing system, three frequency laser generator, pulse dye amplifier, auto-aligning system. For the receiver, we design the multi-dimension adjusting coupler and mechanical chopper system, and optimize the specification of coupling fiber, lens, filters and photomultiplier to improve system efficiency.
     (2) We study the mesopause region temperature and wind variability with the high-resolution lidar dataset. We discussed in details the analysis procedures of temperature and wind profile between80and105km retrieved from the three frequency backscattered photon signals.
     (3) We compare the sodium lidar observed temperature profile with SABER observed. The results are generally consistent in both structure and absolute value. We also compare the lidar wind profile and meteor radar wind measured at Wuhan, which is-300km west of Hefei.. The results are in good agreement. Both lidar and radar winds show clear downward phase propagation of maxima and minima, suggesting the dominance of solar tides on the variability in the mesopause region. All these demonstrate that the temperature and wind profiles observed by our sodium lidar are reliable and reasonable.
     (4) With the observed temperature and wind dataset, we studied the semidiurnal tidal structure in the mesopause region. On December3,2011, the semidiurnal amplitudes in temperature, zonal and meridional winds are~24K,~45and ~50m/s respectively. The estimated vertical wavelength in both winds is25-30m/s, shorter than the typical vertical wavelength of40-50km. Compared with the results obtained from meteor radar wind, the semidiurnal amplitudes of zonal and meridional wind retrieved from lidar profiles are slightly larger. We also found clear phase changes near90km. Both the short vertical wavelength and phase changes may indicate the gravity wave dissipation and breaking and thus interaction with semidiurnal tide.
     (5) The observations of gravity wave momentum flux is extremely important for us to understand the momentum budget and the middle and upper atmosphere general circulation. We use dual-beam method with each laser beam pointing either east or west both with20°from zenith to measure the momentum flux. The results show that the value of vertical flux of horizontal momentum is between-10m2s-2-10m2s-2, with either positive correlation or anti-correlation with mean zonal wind. The positive correlation between momentum flux and mean zonal wind may be due to gravity wave passing through an opposite wind shear below observed region and casuing the increase of momentum flux. On the other hand, the anti-correlation is likely due to the gravity waves filtered by mean zonal wind. The momentum flux in the same direction as wind shear is suppressed, while the flux in the opposite direction to wind shear is enhanced. Since the zonal wind as well as its shear is modulated by tides, the dissipation and breaking of gravity wave could eventually cause dramatic short-term tidal variation. On the contrary, the variability of tides further leads to the change of momentum flux and its divergence.
引文
陈洪滨(2009)中高层大气研究的空间探测.地球科学进展,24(3),13.
    程学武,龚顺生,李发泉等.2007.武汉高空钠层的激光雷达24h连续观测.中国科学(G辑),37(2):196-201.
    方欣.2006.激光雷达自动准直和数据实时处理技术研究:[硕士]北京:中科院研究生院.
    方欣,胡顺星,赵培涛等2009.ATS-1激光雷达实时处理显示系统设计.计算机工程,35(11):276-279.
    龚顺生,曾锡之,薛新建等.(1997),中国武汉上空钠层的首次激光雷达观测,中国科学(A辑),27(4):369-373
    姜国英,徐寄遥,史建魁等.2010我国海南上空中高层大气潮汐风场的首次观测分析.科学通报55(10):923-930
    刘小勤,胡顺星,李琛等,2006.用激光雷达探测合肥高空钠层的变化[J].强激光与粒子束,12(8):1944-1948.
    刘玉丽,张寅超,苏嘉等.2006.转动拉曼激光雷达探测大气温度的系统设计及模拟计算.光散射学报,17(4):347-354.
    寿绍文,励申申,寿亦萱,姚秀萍.2009.中尺度大气动力学.高等教育出版社.
    苏嘉,张寅超,胡顺星等.多条转动拉曼谱线雷达测量对流层大气温度.光谱学与光谱分析.28(8):1781-1785.
    孙景群.1986.激光大气探测科学出版社.
    谭锟,邵石生.2008.一种车载激光雷达自动准直系统.大气与环境光学学报,3(5):344-348
    翁宁泉,肖黎明,龚知本2001.915M微波测风雷达原理及实验对比.量子电子学报,18(1):92-96
    吴永华,胡欢陵,胡顺星等.激光雷达探测平流层中上部大气密度和温度.量子电子学报,2000,17(5):426-430.
    吴永华,胡欢陵,胡顺星等.2001用瑞利散射激光雷达探测平流层中上部温度.中国激光,28(2):137-140.
    吴永华,李陶,周军等Raman激光雷达探测对流层中上部大气温度分布.大气科学,2002,26(5):702-708.
    宪章.1994.大气遥感探测系统——风廓线雷达.现代雷达,16(1):21-30
    肖存英,胡雄,田剑华.2008.利用卫星温度资料计算风场的方法.地球物理学报,51(2):325-336
    熊建刚,万卫星,宁百齐,刘立波.2003.武汉上空中层和低热层大气潮汐的流星雷达观测.空间科学学报23(5):361-370
    徐寄遥,纪巧,袁韡,马瑞平.2006TIMED卫星探测的全球大气温度分布及其与经验模式的比较.空间科学学报,26(3):177-182
    徐介平.1982声光器件的原理、设计和应用.
    薛向辉.2007日冕物质抛射的对地有效性及近地空间环境的研究:[博士]合肥:中国科学技术大学
    赵博,胡顺星,曹开法,汪少林.2010.车载测污激光雷达数据处理软件的设计.计算机技术与发展,20(10):122-127
    郑乐民,徐庚武.1988.原子结构与原子光谱.北京大学出版社.
    周秀骥,陶善昌,姚克亚编著.1991.高等大气物理学第一版.北京:气象出版社,4-10
    Ady Arie, Stephan Schiller, Eric K. Gustafson, Robert L. Byer. Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers to hyperfine transitions in molecular iodine, Opt. Lett. 17,1204(1992)
    Ariel Bruner, Ady Arie, Mark A. Arbore, Martin M. Fejer.1998. Frequency stabilization of a diode laser at 1540 nm by locking to sub-Doppler lines of potassium at 770 nm. Appl. Opt, 37,1049
    Ansmann A., Yu. Arshinov, and S. Bobrovnikov.1998. Double-grating monochromator for a pure rotational Raman lidar. in Fflh International Symposium on Atmospheric and Ocean Optics. Vladimir E. Zuev, Gennadii G. Matvienko, Eds.,Proceedings of SPIE,3583:491-497.
    Bowman M. R., Gibson A. J., Sandford M. C. W.1969. Atmospheric Sodium measured by a Tuned Laser Radar. Nature,221(5179),456-457.
    Charba J.1974. Application of gravity current model to analysis of squall2 line gust front. Mon.Wea.Rev.,102:140-156.
    Chen H.1997. A Sodium Fluorescence Lidar for Daytime Operation Using a Dispersive Faraday Filter:PhD Dissertation. Colorado:Colorado State University.
    Cohen A,Cooney J A,Geller K N.1976. Atmospheric Temperature Profiles from Lidar Messurements of Rotational Raman and Elastic Scattering[J]. Appl. Opt.,15 (11):2896-2901.
    Corney, A..1977. Atomic and Laser Spectroscopy. Oxford,39.
    Deardorff, J., Willis G., and Lilly D.1968. Laboratory investigation of non-steady penetrative convection. University Corporation for Atmospheric Research.
    Evans, K. D., Melfi S. H., Ferrare R. A., and Whiteman D. N.1997. Upper tropospheric temperature measurements with the use of a Raman lidar. Applied Optics,36(12):2594-2602
    Fiorani Luca, Armenante Maraio, et al.1998. Self-aligning lidar for the continuous monitoring of the atmosphere. Applied Optics,37(21):4758-4764.
    Fritschel P., Jeffries A., Kane T.1989. Frequency fluctuation of a diode-pumped Nd.YAG ring laser. Opt. Lett.14:993-995.
    Fricke K. H., vonZahn U.1985. Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar. J. Atmos. Terr. Phys.47:499-512.
    Fritts D. C., and Vincent R. A.1987. Mesospheric Momentum Flux Studies at Adelaide, Australia: Observations and a Gravity Wave-Tidal Interaction Model. Journal of the Atmospheric Sciences,44(3):605-619.
    Fritts D. C., and L. Yuan.1989. Measurement of Momentum Fluxes near the Summer Mesopause at Poker Flat, Alaska. Journal of the Atmospheric Sciences,46(16):2569-2579.
    Fritts D. C., et al..1997. Equatorial dynamics observed by rocket, radar, and satellite during the CADRE/MALTED campaign 2. Mean and wave structures, coherence, and variability. J. Geophys. Res.,102(D22):26191-26216.
    Fritts, D. C., and Alexander M. J.2003. Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys.,41.
    Gentry B M, Chen H, Li S X.2000. Wind measurements with 3552 nm molecular Doppler lidar[J]. Opt.Lett.,25(17):1231-1233.
    Gianluca Galzerano, Marcello Marano, Stefano Taccheo, et al.2003.2.1-μm lasers frequency stabilized against CO2 lines:comparison between fringe-side and frequency-modulation locking methods. Opt. Lett.,28:248
    Gibson A., Thomas L., and Bhattachacharyya S.1979. Laser observation of ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere. Nature (London) 281,131-132.
    Guo L, Lehmacher G.2009. First meteor radar observations of tidal oscillations over Jicamarca (11.95°S,76.87°W). Ann Geophys,27:2575-2583
    Hagan, M. E., J. M. Forbes, and F. Vial.1995. On Modeling Migrating Solar Tides. Geophysical Research Letters,22(8):893-896.
    Hartig, W., Walther H..1973. High-resolution spectroscopy and frequency stabilization of a cw laser. App. Phys.,1:171-174
    Hauchecorne, A., Chanin M. L.1980. Density and temperature profiles obtained by lidar between 35 and 70 km. Geophys. Res. Lett.,7(8):565-568.
    Hays P.B., Killeen T. L., Kennedy B. C.1981. The Fabry-Perot Interferometer on Dynamics Explorer. Space Sci. Instrumentation 5:395-416.
    Hocking W. K., Fuller B., Vandepeer B.2001. Real-time determination of meteor-related parameters utilizing modern digital technology. Journal of Atmospheric and Solar-Terrestrial Physics,63:155-169.
    Holdsworth, D. A., Reid I. M., and Cervera M. A.2004. Buckland Park all-sky interferometric meteor radar. Radio Sci.,39(5), RS5009.
    Hu X, Yan Z A, Guo S Y, et al.2011. Sodium fluorescence Doppler lidar to measure atmospheric temperature in the mesopause region. Chinese Sci Bull,56.
    Hua D. X., Uchida M., Kobayashi T.2005. Ultraviolet Rayleigh-Mie lidar for daytime-temperature profiling of the troposphere. Appl Optics,44(7):1315-1322.
    Intergovernmental Panel on Climate Change, Climate Change 2001:Synthesis Report (Cambridge U. Press, New York,2001).
    Smith John A., Chu Xinzhao, Huang Wentao, Wiig Johannes.2008. LabVIEW-based laser frequency stabilization system with phase-sensitive detection servo loop for Doppler LIDAR applications. Opt. Eng.,47(11),114201.
    Jiang G, Xu J Y, Franke S J.2009. The 8-hour tide in the mesosphere and lower thermosphere over Maui (20.75。N,156.43。W). Ann Geophys,27:1989-1999.
    Kawahara T. D., Kitahara T., Kobayashi F., Saito Y., Nomura A., She C. Y., D. A. Krueger, M. Tsutsumi.2002. Wintertime mesopause temperatures observed by lidar measurements over Syawa station (698S,398E), Antarctica, Geophys. Res. Lett.,29:1709.
    Kim D., Park S., Cha H., zhou J. and zhang W..2006. New multi-quantum number rotational Raman lidar for obtaining temperatureand aerosol extinction and backscattering scattering coefficients. Appl. Phys. B,82:1-4.
    Li T. (2005), Sodium Lidar Observed Variability In Mesopause Region Temperature And Horizontal Wind:Planetary Wave Influence And Tidal-Gravity Wave Interactions:PhD Dissertation. Fort Collins:Colorado State University.
    Li T., She C. Y., Liu H. L., and Montgomery M. T.2007. Evidence of a gravity wave breaking event and the estimation of the wave characteristics from sodium lidar observation over Fort Collins, CO (41 degrees N,105 degrees W). Geophysical Research Letters,34(5):L05815
    Lilly, D. K.1972. Wave momentum flux-A GARP problem. Bulletin of the American Meteorological Society,25(1).
    Linzen, R. S., S. Chapman.1969. atmospheric tides, Space Science Review,10:3-188.
    Lindzen, R. S.1981. Turbulence And Stress Owing To Gravity-Wave And Tidal Breakdown, Journal of Geophysical Research-Oceans and Atmospheres,86(NC10):9707-9714.
    Liu Bo, Yi Fan, Yu Changing.2005. Methods for optical adjustment in lidar systems. Applied Optics,44:1480-1484.
    Liu, Z., Matsui I., and Sugimoto N.1999. High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements. Optical Engineering,38(10):1661-1670.
    Nappo C. J.2002. An Introduction to Atmospheric Gravity Waves. Academic Press.
    Nedelijkovic D., Hauchecome A., and Chanin M. L.1993. Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km. IEEE Trans.Geosci. Rem. Sens,31: 90-101.
    Orlanski, I.1968. Instability of Frontal Waves. Journal of the Atmospheric Sciences.25(2): 178-200.
    Riggin, D. M., Fritts D. C., Fawcett C. D., Kudeki E., Hitchman M. H.1997. Radar observations of gravity waves over Jicamarca, Peru during the CADRE campaign. Journal of Geophysical Research-Atmospheres,102(D22):26263-26281.
    Rithter E S, Rowlett J R., Gardner C S, et al.1981. Lidar observation of the mesospheric sodium layer over Urbana, Illinois[J]. Journal of Atmospheric and Terrestrial Physics,43(4): 327-337.
    Scorer, R. S.1969. Billow Mechanics. Radio Sci.,4(12):1299-1308.
    Swenson G. R., Haque R., Yang W., and Gardner C. S.1999. Momentum and energy fluxes of monochromatic gravity waves observed by an OH imager at Starfire Optical Range, New Mexico. Journal of Geophysical Research-Atmospheres,104(D6):6067-6080.
    She C. Y.1990. Remote measurement of atmospheric parameters:New applications of physics with lasers, Contemporary Physics,31(4):247-260.
    She, C. Y., Yu J. R., Latifi,H., Bills R. E.1992.High-Spectral-Resolution Fluorescence Lidar for Mesospheric Sodium Temperature Measurements. Appl. Opt.,31:2095-2106,
    She, C. Y., R. J. Alvarez, Caldwell L. M., Krueger D. A.1992. High-Spectral-Resolution Rayleigh-Mie Lidar Measurement Of Aerosol And Atmospheric Profiles, Opt Lett,17(7): 541-543.
    She, C.Y., Yu J. R.1994. Simultaneous Three-Frequency Na Lidar Measurements of Radial Wind and Temperature in the Mesopause Region. Geophys. Res. Lett.,21:1771-1774,
    She C. Y., Yu J. R.1995. Doppler-free saturation fluorescence spectroscopy of Na atoms for atmospheric application, Appl. Opt.,34(6):1063-1075.
    She C Y, Chen S, Hu Z, et al.2000. Eight-year climatology of nocturnal temperature and sodium density in the mesopause region 80 to 105 km over Fort Collins, CO 41 N,105W[J]. Geophys Rett,27:3289-3292
    She C. Y., Vance J. D., Williams B. P., Krueger D. A., Moosmuller H., D. Gibson-Wilde and D. Fritts.2002. Lidar studies of atmospheric dynamics near the polar mesopause. EOS,83: 289-293,
    She C. Y, Chen S., Williams B. P., Hu,Z. Krueger D. A., and M. E. Hagan (2002), Tides in the mesopause region over Fort Collins, Colorado (41N,105W) based on lidar temperature observations covering full diurnal cycles, J. Geophys. Res.,107.
    She C. Y, J. Sherman, Yuan T., B. P. Williams, K. Arnold, T. D. Kawahara, T. Li, L. Xu, J. D. Vance and D. A. Krueger (2003), The first 80-hour continuous lidar campaign for simultaneous observation of mesopause region temperature and wind, Geophys. Res. Lett.,30(6):1319.
    She C. Y, Li, Tao, Richard L.2004, Tidal perturbations and variability in the mesopause region over Fort Collins, CO (41N,105W):Continuous multi-day temperature and wind lidar observations, Geophys. Res. Lett.,31.
    Smith John A., Chu Xinzhao, Huang Wentao, Wiig Johannes.2008. LabVIEW-based laser frequency stabilization system with phase-sensitive detection servo loop for Doppler LIDAR applications. Opt. Eng.,47(11),114201.
    Tang, J., Swenson G. R., Liu A. Z., and Kamalabadi F.2005. Observational investigations of gravity wave momentum flux with spectroscopic imaging. Journal of Geophysical Research-Atmospheres,110(D9).
    Theon, J. S.1972. The Mean Observed Structure and Circulation of the Stratosphere and Mesosphere, NASA Tech. Rep., TR-375.
    Vincent, R. A., Reid I. M.1983. HF Doppler Measurements of Mesospheric Gravity Wave Momentum Fluxes. Journal of the Atmospheric Sciences,40(5):1321-1333.
    Vincent R A, Kovalam S, Fritts D C, et al.1998. Long term MF radar observations of solar tides in the low-latitude mesosphere:Interannual variability and comparisons with the GSWM. J Geophys Res,103:8667-8683
    Wei, Y. Z., Jianmin Xu.2005. Retrieval and validation of atmospheric vertical temperature profile from satellite's microwave sounding, in Optical Technologies for Atmospheric, Ocean, and Environmental Studies, Pts 1 and 2, edited by G. G. Matvienko, pp:529-541.
    White, M. A. (1999), A Frequency-agile Na Lidar for the Measurement of Temperature and Velocity in the Mesopause Region:PhD Dissertation. Fort Collins:Colorado State University.
    Whiteway J. A., Carswell A. I.1995. Lidar observations of gravity wave activity in the upper stratosphere over Toronto. J. Geophys. Res.,100:14113-14124.
    Wiese, W. L., W. M. Smith, B. M. Miles.1969. Atomic Transition Probabilities, Vol. Ⅱ-Sodium, NSRDS-NBS 22,2.
    Xiong, J. G., Wan W., Ning B., Liu L.2004. First results of the tidal structure in the MLT revealed by Wuhan Meteor Radar (30° 40'N,114° 30'E). Journal of Atmospheric and Solar-Terrestrial Physics,66:675-682.
    Yu J. R., She C. Y.1995. Climatology of a midlatitude mesopause region observed by a lidar at Fort Collins, Colorado (40.6N,105W). J. Geophys. Res.,100:7441-7452.
    Yuan, T.2004. Seasonal variations of Diurnal and semidiurnal tidal-period perturbations in mesopause region temperature and zonal and meridional winds above Ft. Collins, CO (40°N, 105°W) based on Na-Lidar observation over full diurnal cycles:PhD Dissertation. Fort Collins:Colorado State University.
    Zhou Q. H., and Morton Y. T.2006. A case study of mesospheric gravity wave momentum flux and dynamical instability using the Arecibo dual beam incoherent scatter radar. Geophys. Res. Lett.,33(10):L10802

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700