用户名: 密码: 验证码:
中国水牛奶酸凝胶特性及其形成机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凝胶在食品蛋白加工过程中扮演着重要角色,备受国内外学者关注。酸乳作为一种营养、风味俱佳的食品,是世界性流行乳制品。目前,绝大部分酸乳凝胶是由荷斯坦牛奶经乳酸菌发酵形成的,而水牛奶作为一种优质奶源,营养价值较高,利用水牛奶制作的酸乳凝胶在乳制品中具有巨大的发展潜力。酸乳凝胶特性对酸乳质量具有重要影响,了解酸乳凝胶中生物大分子间的相互作用和形成机制是控制和提高酸乳质量的理论基础,也是乳制品工艺理论的关键内容。本文对3种水牛奶的基本乳成分及其理化特性进行了分析,获取水牛奶加工工艺参数,并对水牛奶酸凝胶的质构特性及其受胞外多糖的影响进行了研究,另外对酸凝胶的主要组分酪蛋白(CN)在酸化凝胶过程中结构变化及其与乳清蛋白、胞外多糖等生物大分子的相互作用进行了研究,主要得到以下几方面实验结果:
     通过对3种水牛奶的工艺学特性研究,发现水牛杂交后代牛奶乳蛋白、脂肪、总固形物含量等多个指标高于摩拉水牛奶和荷斯坦牛奶,且前者的稳定性也较高。另外不同品系水牛奶的缓冲容量不同。同时,发现牛奶浓度对其粘度、表面张力及电导率影响显著,加热温度对其粘度和表面张力有不同程度的影响。4种牛奶的粘度均随温度的上升、稀释倍数的增大而逐渐变小。pH值对其zeta电位、电导率和稳定系数影响显著。当温度为45℃、pH6.6、稀释倍数为6时,牛奶的表面张力较小。聚丙烯酰胺凝胶电泳(SDS-PAGE)和质谱结果表明水牛奶与荷斯坦牛奶酪蛋白不同,水牛奶β-酪蛋白的分子量稍高于荷斯坦牛奶,且水牛奶缺少αs2-酪蛋白。
     采用3种水牛奶为原料,利用乳酸菌发酵制作酸凝胶,对其凝胶理化特性及质构特性进行分析,发现不同种类水牛奶酸凝胶的流变学、质构特性存在一定差异。酸凝胶的表观黏度与牛奶的总固形物含量成正比,杂交后代水牛奶酸凝胶的硬度比摩拉水牛奶低,但胶体脱水收缩作用敏感性(STS)较摩拉水牛奶高。同时,对不同种类水牛奶酸凝胶的差异性与相关性进行了研究,并对数据进行简单相关和典型相关分析,得出酸乳质构特性中的硬度和胶粘性与乳成分中的蛋白质含量显著相关。
     将发酵酸凝胶中提取的胞外多糖(EPS)添加到水牛奶和荷斯坦牛奶中,利用乳酸菌发酵制作酸乳凝胶,研究EPS添加量对不同种类牛奶形成酸凝胶的质构特性的影响及其差异性,发现EPS对不同种类牛奶酸凝胶影响不同,其中以杂交一代(F1)最显著。EPS对水牛奶酸凝胶的形成具有一定的促进作用,凝胶质构特性更致密,添加少量EPS使酸凝胶粘度下降。利用激光共聚焦扫描显微镜(CLSM)和扫描电子显微镜(SEM)观察添加EPS水牛奶酸凝胶的微观结构,发现随着EPS添加量增加,蛋白与EPS间静电相互作用及EPS的空间位垒作用破坏了胶束的原有结构,酪蛋白胶束聚集方式发生改变,促使发酵酸凝胶体系形成新的网状立体结构。
     采用圆二色谱(CD)、荧光光谱和纳米粒度分析对不同浓度、酸度和离子强度下的水牛奶CN各级结构进行了研究,结果表明蛋白浓度、环境的酸度和离子强度对水牛奶CN结构影响显著。水牛奶CN浓度明显影响CN二级结构。蛋白浓度较低时,其三级结构变化不明显;蛋白浓度较高时,荧光强度随蛋白浓度呈线性增强趋势,并使酪蛋白分子发生重排,疏水基团暴露,CN疏水性增强,CN颗粒聚集增大。在本研究范围内,当pH6.0时,水牛奶CN二级结构最稳定。当离子强度较大、pH较低时,对水牛奶CN三级结构影响较大,使CN的疏水基团暴露。
     采用CD、色氨酸(Trp)和ANS荧光光谱分析CN/WP体系中分子的相互作用,发现蛋白浓度、环境中离子强度、pH均对CN/WP体系有不同影响。当二者浓度比为5:3时,CN/WP体系中分子二、三级结构发生显著变化,a-螺旋、p-折叠含量增多。随着离子强度增加,引起CN/WP分子结构改变,且在离子强度由0.01M增至0.15M过程中较为显著,导致Trp分子内猝灭作用增加。环境pH值由pH6.0降至pH5.0的过程中,体系分子中p-折叠含量增加,导致Trp分子暴露在疏水环境中,Trp分子内淬灭作用减弱,疏水基团暴露。
     采CD、Trp和ANS荧光光谱分析CN与EPS的相互作用,发现EPS浓度、环境中离子强度、pH均影响CN与EPS的相互作用。随着pH降低,EPS影响CN Trp分子猝灭,低浓度EPS对CN分子二、三级结构影响显著,主要表现为CN分子α-螺旋结构增多,Trp发生分子内猝灭,疏水基团被遮蔽,而高浓度EPS则导致CN分子p-折叠增多。环境中离子强度较高(0.15M-0.30M)时,EPS浓度对CN的结构影响较小。
     采用CD、Trp和ANS荧光光谱分析CN与油酸相互作用,发现蛋白浓度、环境中离子强度、pH对CN与油酸的相互作用影响不同。在中性条件下,低浓度油酸对CN分子二级结构影响较小,而高浓度油酸对CN分子二、三级结构影响显著,表现为α-螺旋结构增多,Trp残基暴露在疏水环境,疏水性基团被遮蔽,CN分子自身聚集程度增加。在低pH条件下,油酸使CN分子结构发生了明显变化,表现为p-折叠结构增多。环境中离子强度较低时,油酸对CN分子结构影响显著,环境中离子强度较高时,油酸对CN分子二级结构影响较小,但对其三级结构影响较大,CN疏水基团被遮蔽。
The gel plays an important role in food protein making process. Yogurt gel as one of the nutritional and delicious dairy products is popular all over the world. Currently, most of the yogurt gel was fermented using Holstein milk by lactic acid bacteria fermentation. Buffalo milk as a high quality and nutritional value of milk resource, fermented to buffalo yogurt gel occupies an extremely important status and a huge potential development. Yogurt gel property is essential for yogurt quality; thus, it is necessary to understand the macromolecules interaction between the yogurt gel and the formation mechanism to improve the theoretical basis. Therefore, in our work, the physical and chemical characteristics of the three kinds of buffalo milk during milk making process was studied; the textural properties of buffalo milk acid gel with or without exopolysaccharides (EPS) were analyzed; meanwhile the structure changes of casein (CN) and the interaction between CN and whey protein (WP), EPS, oleic acid were also explored. The following are some main results from our work.
     Comparing the components among different types of buffalo milk, the protein, fat and total solids contents in hybrid buffalo milk were higher than those of Murrah and Holstein milks, so did the stability. The buffer capacity of buffalo milk was higher than that of Holstein milk, while Murrah milk was higher than hybrid offspring, but there were no differences between hybrid offspring milks. Viscosities of four kinds of milk decreased gradually with the increasing temperature and dilution factors. The surface tension of milk dispersion system was smaller under45℃, pH6.6, or6times dilution. Zeta potential, conductivity and stability of the milk were significantly affected by pH value. SDS-PAGE displayed slightly smaller molecular weight of αs-casein in the buffalo milk compared to the cow milk. On the contrast, the molecular weight of P-casein of the former was slightly larger than that of the latter. Furthermore, Guangxi buffalo milk casein was lack of one kind of as-casein.
     Three buffalo milk was used to ferment yogurt gel by lactic acid bacteria. It is found that the rheological and textural properties of different kinds of buffalo acid gel were different. The apparent viscosity of the acid gel was proportional to the total solids content of the milk. The gel hardness made from hybrids buffalo milk was lower than that made from the male parent (Murrah buffalo milk); however, the syneresis (STS) was higher than Murrah buffalo milk high. The simple correlation and canonical correlation analysis showed the significantly related between hardness, gumminess and milk protein content.
     The isolated exopolysaccharides (EPS) were added to the different types of buffalo milk and Holstein milk, fermented by lactic acid bacteria. The effect of EPS addition on textural properties of different types of milk acid gel was different. The impact of EPS on the properties of (hybrids) F1was remarkable. EPS had a certain role in promoting the formation of milk acid gel and the denser texture characteristics, its viscoelastic and water holding capacity (WHC) were proportional to the amount of EPS addition. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were used to observe the microstructure of buffalo milk acid gel with or without EPS addition. The original structure of the micelles was damaged by the electrostatic interactions and steric barrier of EPS and protein with the increasing EPS addition. The dimensional network structure of casein micelles gathered and rearranged, which resulted in forming the new three-dimensional structure of acid gel system, showing the hexagonal porous state.
     Circular dichroism (CD), fluorescence spectroscopy and particle size analysis were used to explore the secondary, tertiary and quaternary structure of CN as functions of protein concentrations, pH and ionic strength. The results showed that the CN structure was significantly influenced by protein concentration, pH and ionic strength. Buffalo milk concentration significantly affected the secondary structure of the CN. When the protein concentration was low, the effect on tertiary structure was not obvious. However, the fluorescence intensity linear increased with the protein concentration, resulting casein rearrangement, hydrophobic groups exposed, and the particle size increased. Within the scope of this study, the secondary structure of buffalo milk CN was the most stable at pH6.0. In the higher ionic strength, lower pH value environment, the tertiary structure of buffalo CN was influenced evidently.
     CD, Trp and ANS fluorescence spectroscopy were used to characterize the interaction between CN and whey protein (WP). It is found that the protein concentration, ionic strength and pH affected the interaction between CN and WP. The secondary structure of CN/WP system was influenced by both the protein concentration ratio and the ionic strength, and strongly affected by the environmental pH value. When the ratio of CN/WP was5:3, the secondary and tertiary structure of CN/WP system changed visibly. The structure of the CN/WP system changed with the gradually increasing ionic strength, showing Trp intermolecular quenching increased, especially during0.01M-0.15M. A certain degree of interaction between NC and WP occurred in pH6.0-pH5.0, and significantly in pH6.0, the secondary structure of the CN/WP system expressed as the increase of the β-sheet; meanwhile, it affected the tertiary structure of the CN/WP system, resulting in Trp exposed in a hydrophobic environment, the hydrophobic groups exposed.
     CD, Trp and ANS fluorescence spectroscopy were used to characterize the interaction between CN and EPS. It is found that the protein concentration, ionic strength and pH affected the interaction between CN and EPS. The CN structure changed significantly accompanied by the emergence of the EPS, under different pH value. The lower concentration of EPS expressed the stronger impact on the secondary and tertiary structure of CN; furthermore, the marked impact on CN structure under the lower pH value, the low concentration of EPS increased the a-helix content of CN, while the high concentration of EPS resulted in the secondary structure of CN mainly in β-sheet. The secondary structure of CN was changed by the emergence of the EPS as a function of ionic strength, showing the a-helix was destroyed. However, compared with the pH, the higher ionic strength slightly affected the CN structure. EPS concentration was less impact on the tertiary structure of CN when the ionic strength was in0.15M-0.30M.
     CD, Trp and ANS fluorescence spectroscopy were used to characterize the interaction between CN and oleic acid. The interaction between CN and oleic acid was affected the protein concentration, ionic strength and pH. CN structure changed significantly with oleic acid added varied pH, and the impact was the greatest under the neutral condition. Nevertheless, high concentration of oleic acid influenced the secondary and tertiary structure of CN, showing the increased a-helix content of CN, the increased aggregation, and a large number of hydrophobic groups were masked and Trp was exposed to the hydrophobic environment. While the low concentration of oleic acid slightly impacted on the secondary structure of CN. The (3-sheet of CN increased with the emergence of the oleic acid under pH5.0. The secondary structure CN changed obviously with the amount of oleic acid added range from0.5mM to1.0mM; however,0.5mM oleic acid had a marked impact on the tertiary structure of CN. Oleic acid had notable effect on CN structure under the lower ionic strength, but slight effect on the secondary structure of CN and a marked impact on the tertiary structure of CN and under the higher ionic strength, the hydrophobic groups were hided.
引文
[1]李全阳,张宪省,刘小玲,姜元欣.水牛奶组分及其功能特性研究进展[J].食品科学,2011,32(3):305-309.
    [2]FAO. Bulletiin of the international dairy federation[J]. The world dairy situation, 2012,Bulletin No.455/2012.
    [3]Afzal M, Anwar M, Mirza MA. Some factors affecting milk yield and lactation length in nili ravi buffaloes[J]. Pakistan Vet. J,2007,27(3):113-117.
    [4]曾庆坤,杨炳壮,梁坤,等不同品代水牛奶理化性质的研究[J].中国乳品工业,2007,35(5):13-15.
    [5]宋利军,杨利国,刘兴斌,等.中国奶牛与水牛产奶量差异的研究进展.In.武汉:中国奶业协会第24次繁殖学术年会暨国家奶牛/肉牛产业技术体系第一届全国牛病防治学术研讨会论文集;2009:24-27.
    [6]史荣仙.水牛乳的品质分析[J].中国畜牧杂志,1986,3:10-12.
    [7]Han BZ, Meng Y, Li M,等A survey on the microbiological and chemical composition of buffalo milk in China[J]. Food Control,2007,18:742-746.
    [8]庞堃,曾庆坤,郑倩,李梦雨,石宝霞,任发政.摩拉-西林水牛乳化学组成变化的研究[J].食品科学,2007,28(08):44-48.
    [9]韩刚,丁庆波.中国水牛奶理化性状研究[J].华南农业大学学报,1994,15(4):92-97.
    [10]孟云,司炜,于莉,韩北忠.广西水牛原料乳微生物和理化指标分析[J].中国乳品工业,2006,34(3):9-12.
    [11]梁明振,杨炳壮,苏安伟,等水牛奶营养价值评价[J].广西畜牧兽医,2007,23(3):124-126.
    [12]许小刚,周雪松,曾建新.粒径分析法快速判定均质工艺对水牛奶稳定性的影响[J].中国乳品工业,2009,37(1):42-44.
    [13]Shiby VK, Mishra HN. Modelling of acidification kinetics and textural properties in dahi (Indian yogurt) made from buffalo milk using response surface methodology[J]. International Journal of Dairy Technology,2008,61(3):284-289.
    [14]Borghese A. Development and perspective of Buffalo and Buffalo market in Europe and Near East. In:Proceedings 9th World Buffalo Congress; 2010.
    [15]Menard O, Ahmad S, Rousseau F, et al. Buffalo vs. cow milk fat globules:Size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane[J]. Food Chemistry,2010,120(2):544-551.
    [16]Ahmad S, Gaucher I, Rousseau F, et al. Effects of acidification on physico-chemical characteristics of buffalo milk:A comparison with cow's milk[J]. Food Chemistry, 2008,106(1):11-17.
    [17]Kristensen D, Jensen PY, Madsen F, et al. Rheology and surface tension of selected processed dairy fluids influence of temperature[J]. J. Dairy Sci,1997,80:2282-2290.
    [18]Salaun F, Mietton B, Gaucheron F. Buffering capacity of dairy products[J]. International Dairy Journal,2005,15(2):95-109.
    [19]Cerning J, Bouillanne C, Michele Landon, et al. Isolation and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria[J]. Journal of Dairy Science,1992,75:692-699.
    [20]Lourens-Hattingh A, Viljoen BC. Yogurt as probiotic carrier food[J]. International Dairy Journal,2001,11(1-2):1-17.
    [21]Zisu B, Shah NP. Effects of pH, temperature, supplementation with whey protein cconcentrate, and adjunct cultures on the production of exopolysaccharides by streptococcus thermophilus 1275[J]. J. Dairy Sci,2003,86:3405-3415.
    [22]Cayota P, Schenkera F, Houze G, et al. Creaminess in relation to consistency and particle size in stirred fat-free yogurt[J]. International Dairy Journal 2008,18:303-311.
    [23]Xu Z, Emmanouelidou D, Raphaelides S, et al. Effects of heating temperature and fat content on the structure development of set yogurt[J]. Journal of Food Engineering, 2008,85:590-597.
    [24]Kristoa E, Biliaderisb CG, Tzanetakis N. Modelling of the acidification process and rheological properties of milk fermented with a yogurt starter culture using response surface methodology[J]. Food Chemistry,2003,83437-446.
    [25]Sodini I, Lucas A, Tissier J, et al. Physical properties and micro structure of yoghurts supplemented with milk protein hydrolysates[J]. International Dairy Journal, 2005,15(1):29-35.
    [26]Amatayakul T, Sherkat F, Shah N. Physical characteristics of set yoghurt made with altered casein to whey protein ratios and EPS-producing starter cultures at 9 and 14% total solids[J]. Food Hydrocolloids,2006,20(2-3):314-324.
    [27]Marafon AP, Sumi A, Alcantara MR, et al. Optimization of the rheological properties of probiotic yoghurts supplemented with milk proteins[J]. LWT-Food Science and Technology,2011,44(2):511-519.
    [28]Marafon AP, Sumi A, Granato D, et al. Effects of partially replacing skimmed milk powder with dairy ingredients on rheology, sensory profiling, and microstructure of probiotic stirred-type yogurt during cold storage[J]. J Dairy Sci,2011,94(11): 5330-5340.
    [29]Lee W. structure-function relationships affecting the physical, microstructural, and sensory properties of yogurt [D]:University of Wisconsin-Mandison; 2005.
    [30]Sodini I, Mattas J, Tong PS. Influence of pH and heat treatment of whey on the functional properties of whey protein concentrates in yoghurt[J]. International Dairy Journal,2006,16(12):1464-1469.
    [31]Aguirre-Mandujano E, Lobato-Calleros C, Beristain CI, et al. Microstructure and viscoelastic properties of low-fat yoghurt structured by monoglyceride gels[J]. LWT-Food Science and Technology,2009,42:938-944.
    [32]Ciron CIE, Gee VL, Kelly AL, et al. Comparison of the effects of high-pressure microfluidization and conventional homogenization of milk on particle size, water retention and texture of non-fat and low-fat yoghurts[J]. International Dairy Journal, 2010,20(5):314-320.
    [33]Ciron CIE, Gee VL, Kelly AL, et al. Effect of microfluidization of heat-treated milk on rheology and sensory properties of reduced fat yoghurt[J]. Food Hydrocolloids, 2011,25:1470-1476.
    [34]Azarikia F, Abbasi S. On the stabilization mechanism of Doogh (Iranian yoghurt drink) by gum tragacanth[J]. Food Hydrocolloids,2010,24(4):358-363.
    [35]Sanli T, Sezgin E, Deveci O, et al. Effect of using transglutaminase on physical, chemical and sensory properties of set-type yoghurt[J]. Food Hydrocolloids, 2011,25(6):1477-1481.
    [36]Wang W, Bao Y, Hendricks GM, et al. Consistency, microstructure and probiotic survivability of goats'milk yoghurt using polymerized whey protein as a co-thickening agent[J]. International Dairy Journal,2012,24(2):113-119.
    [37]Zare F, Boye JI, Orsat V, et al. Microbial, physical and sensory properties of yogurt supplemented with lentil flour[J]. Food Research International,2011,44(8): 2482-2488.
    [38]Salvador A, Fiszman SM. Textural and sensory characteristics of whole and skimmed flavored set-type yogurt during long storage[J]. J. Dairy Sci,2004,87:4033-4041.
    [39]Remeuf F. Preliminary observations on the effects of milk fortification and heating on microstructure and physical properties of stirred yogurt[J]. International Dairy Journal, 2003,13(9):773-782.
    [40]Bing-qiang X, Qing-hua L. Influences of fat content on sensory properties in guangxi bufalo milk[J]. China Dairy Industry,2008,36(2):37-40.
    [41]Braga ALM, Menossi M, Cunha RL. The effect of the glucono-δ-lactone/caseinate ratio on sodium caseinate gelation[J]. International Dairy Journal,2006,16(5):389-398.
    [42]Ausar SF, Bianco ID, Castagna LF, et al. Reversible precipitation of casein micelles with a cationic hydroxyethylcellulose[J]. J Agric Food Chem,2005,53(23): 9031-9038.
    [43]Nayak S, Arora S, Sindhu J, et al. Effect of chemical phosphorylation on solubility of buffalo milk proteins[J]. International Dairy Journal,2006,16(3):268-273.
    [44]Kumosinski TF, Brown EM, H. M. Farrell J. Three-dimensional molecular modeling of bovine caseins:asl-casein[J]. J Dairy Sci,1991,74:2889-2895.
    [45]Kumosinski TF, Brown EM, H. M. Farrell J. Three-dimensional molecular modeling of bovine caseins:an energy-minimized β-casein structure[J]. J Dairy Sci,1993,76: 931-945.
    [46]Kumosinski TF, Brown EM, H. M. Farrell J. Three-dimensional molecular modeling of bovine caseins:κ-casein[J]. J Dairy Sci 1991,74:2879-2887.
    [47]唐江宏,连宁,张国华,等.小分子物质与蛋白质相互作用研究方法的现状与进展[J].江苏技术师范学院学报,2010,16(12):1-7.
    [48]章宇斌.酪蛋白多级结构及聚集行为的多尺度研究[D]:天津大学;2007.
    [49]Byler DM, Harold M. Farrell J, Susi H. Raman spectroscopic study of casein structure[J]. J Dairy Sci 1988,71:2622-2629.
    [50]Graham E R B MGM, McKenzie H A.. On the isolation and conformation of bovine P-casein A[J]. International Journal of Biological Macromolecules,1984,6:155-161.
    [51]Home DS. Casein structure, self-assembly and gelation[J]. Current Opinion in Colloid and Interface Science,2002,7456-461.
    [52]Kumosinski TF, Uknalis J, Cooke PH, et al. Correlation of refined models for casein submicelles with electron microscopic studies of casein[J]. Lebensm.-Wiss. u.-Technol, 1996,29:326-333.
    [53]杨楠,梁琪,甘伯中,等.热处理对牛乳酪蛋白胶束结构影响的研究进展[J].中国乳品工业,2012,40(1):46-49.
    [54]韩清波,刘晶.酪蛋白胶束结构及其对牛乳稳定性的影响[J].中国乳品工业, 2007,35(2):43-45.
    [55]Walstra P. Casein sub-micelles:do they exist?[J]. International Dairy Journal,1999,9: 189-192.
    [56]Waugh DF, Noble RW. Casein Micelles. Formation and Structure II. [J]. Journal of the American Chemical Society,1965,87:2246-2257.
    [57]Home DS. Casein interactions:casting light on the black boxes, the structure in dairy products[J]. International Dairy Journal,1998,8:171-177.
    [58]Pieter W. On the Stability of Casein Micelles[J]. Journal of Dairy Science,1990,73: 1965-1979.
    [59]http://wenku.baidu.com/view/7026c701b52acfc789ebc9e6.html###.
    [60]文鹏程,余丹丹,汪昕昕,等.不同处理条件对乳铁蛋白构象的影响研究[J].光谱学与光谱分析,2012,32(1):162-165.
    [61]Mao XY, Tong PS, Gualco S, et al. Effect of NaCl addition during diafiltration on the solubility, hydrophobicity, and disulfide bonds of 80% milk protein concentrate powder[J]. Journal of Dairy Science,2012,95:3481-3488.
    [62]Schorsch C, Jones MG, Norton IT. Micellar casein gelation at high sucrose content[J]. J. Dairy Sci,2002,85:3155-3163.
    [63]Lamba J, Paul S, Hasija V, et al. Monitoring protein folding and unfolding pathways through surface hydrophobicity changes using fluorescence and circular dichroism spectroscopy[J]. Biochemistry (Moscow),2009,74(4):393-398.
    [64]段文达,頔翁,潘思轶,等.分子间作用力对大豆蛋白凝胶形成的影响[J].食品科学,2009,30(13):60-63.
    [65]Liu Y, Guo R. pH-dependent structures and properties of casein micelles[J]. Biophys Chem,2008,136(2-3):67-73.
    [66]秦宜德,邹思湘.乳蛋白的主要组分及其研究现状[J].生物学杂志,2003,20(2):5-7.
    [67]郭本恒.乳品化学.北京:中国轻工业出版社;2007.
    [68]赵新淮.《乳品化学》.北京:科学出版社;2007.
    [69]庞鹏,杨朝晖,杨晓伟,等.β-乳球蛋白凝胶及其应用[J].食品工程,2007,4:19-21.
    [70]崔旭海,孔保华.环境条件对乳清蛋白凝胶特性和微观结构的影响[J].中国农业科学,2008,41(3):800-807.
    [71]木泰华,孙艳丽,畏右工门菅.β-乳球蛋白加压凝胶的生成及其物化特性研究[J].中国农业科学,2005,38(8):1652-1657.
    [72]Kehoe JJ, Foegeding EA. Interaction between β-casein and whey proteins as a function of pH and salt concentration[J]. Journal of Agricultural and Food Chemistry,2011,59: 349-355.
    [73]Kethireddipalli P, Hill AR, Dalgleish DG Interaction between casein micelles and whey protein κ-casein complexes during renneting of heat-treated reconstituted skim milk powder and casein micelle serum mixtures[J]. J. Agric. Food Chem.,2011,59: 1442-1448.
    [74]Croguennec T, Li N, Phelebon L, et al. Interaction between lactoferrin and casein micelles in skimmed milk[J]. International Dairy Journal,2012,27(1-2):34-39.
    [75]Anema SG, Li Y. Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size[J]. J Dairy Res, 2003,70(1):73-83.
    [76]Ramchandran L, Shah NP. Effect of exopolysaccharides on the proteolytic and angiotensin-I converting enzyme-inhibitory activities and textural and rheological properties of low-fat yogurt during refrigerated storage[J]. J Dairy Sci,2009,92(3): 895-906.
    [77]李全阳,夏文水,徐德平.一种乳酸菌胞外多糖糖链结构解析[J].高等学校化学学报,2007,28(4):655-657.
    [78]Hassan AN, Frank JF, Farmer MA. Observation of encapsulated lactic acid bacteria using confocal scanning laser microscopy[J]. Journal of Dairy Science,1995,78: 2624-2628.
    [79]Cerning J. Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria[J]. lait,1995,75:463-472.
    [80]Welman AD, Maddox IS. Exopolysaccharides from lactic acid bacteria:perspectives and challenges[J]. Trends in Biotechnology,2003,21(6):269-274.
    [81]Ramchandran L, Shah NP. Characterization of functional, biochemical and textural properties of synbiotic low-fat yogurts during refrigerated storage[J]. LWT-Food Science and Technology,2010,43(5):819-827.
    [82]Patricia Ruas-Madiedo JH, Pieternela Zoon. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria[J]. International Dairy Journal, 2002,12:163-171.
    [83]Vaningelgem F, Zamfir M, Mozzi F, et al. Biodiversity of exopolysaccharides produced by streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics[J]. Applied and Environmental Microbiology, 2004,70(2):900-912.
    [84]Folkenberg DM, Dejmek P, Skriver A, et al. Interactions between EPS-producing Streptococcus thermophilus strains in mixed yoghurt cultures[J]. Journal of Dairy Research,2006,73(4):385-393.
    [85]Pigeon RM, Cuesta EP, Gililliand SE. Binding of free bile acids by cells of yogurt starter culture bacteria[J]. J Dairy Sci,2002,85(11):2705-2710.
    [86]Vinderola G, Perdigon G, Duarte J, et al. Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity[J]. Cytokine,2006,36(5-6):254-260.
    [87]Prasanna PHP, Grandison AS, Charalampopoulos D. Screening human intestinal Bifidobacterium strains for growth, acidification, EPS production and viscosity potential in low-fat milk[J]. International Dairy Journal,2012,23(1):36-44.
    [88]Salazar N, Gueimonde M, Hernandez-Barranco AM, et al. Exopolysaccharides Produced by Intestinal Bifidobacterium Strains Act as Fermentable Substrates for Human Intestinal Bacteria[J]. Applied and Environmental Microbiology,2008,74(15): 4737-4745.
    [89]Ruas-Madiedo P, Alting AC, Zoon P. Effect of exopolysaccharides and proteolytic activity of Lactococcus lactis subsp. cremoris strains on the viscosity and structure of fermented milks[J]. International Dairy Journal,2005,15(2):155-164.
    [90]Zhang T, Zhang Z, Yan H, et al. Effects of stabilizers and exopolysaccharides on physiochemical properties of fermented skim milk by Streptococcus thermophilus ST1[J]. African Journal of Biotechnology,2012,11(22):6123-6130.
    [91]Hassan AN. ADSA foundation scholar award:possibilities and challenges of exopolysaccharide-producing lactic cultures in dairy foods[J]. Journal of Dairy Science,2008,91(4):1282-1298.
    [92]Ayala-Hernandez I, Hassan AN, Goff HD, et al. Effect of protein supplementation on the rheological characteristics of milk permeates fermented with exopolysaccharide-producing Lactococcus lactis subsp. cremoris[J]. Food Hydrocolloids,2009,23(5):1299-1304.
    [93]Alp G, Aslim B. Relationship between the resistance to bile salts and low pH with exopolysaccharide (EPS) production of Bifidobacterium spp. isolated from infants feces and breast milk[J]. Anaerobe,2010,16(2):101-105.
    [94]Hassan AN, Frank JF, Schmidt KA. Textural properties of yogurt made with encapsulated nonropy lactic cultures[J]. Journal of Dairy Science,1996,79: 2098-2103.
    [95]Levander F, Svensson M, Radstrom P. Small-scale analysis of exopolysaccharides from Streptococcus thermophilus grown in a semi-defined medium[J]. BMC Microbiology, 2001,1(23):1-5.
    [96]Folkenberg DM, Dejmek P, Skriver A, et al. Sensory and rheological screening of exopolysaccharide producing strains of bacterial yoghurt cultures[J]. International Dairy Journal,2006,16(2):111-118.
    [97]Ramchandran L, Shah NP. Effect of exopolysaccharides and inulin on the proteolytic, angiotensin-I-converting enzyme-and a-glucosidase-inhibitory activities as well as on textural and rheological properties of low-fat yogurt during refrigerated storage[J]. Dairy Science and Technology,2009,89(6):583-600.
    [98]卫晓英.乳酸菌胞外多糖对凝固型酸乳质构的影响[D]:山东农业大学;2010.
    [99]李全阳.酸乳质量及其胞外多糖的研究[D]:江南大学;2004.
    [100]胡坤,赵谋明,彭志英.乳化剂和多糖对蛋白质乳浊液的稳定性的影响[J].食品与发酵工业,2002,28(6):61-65.
    [101]陈昀,赵谋明,孙哲浩.蛋白质与多糖类交互作用研究进展[J].食品科学,2001,22(4):90-93.
    [102]Cucheval A, Al-Ghobashy MA, Hemar Y, et al. Direct measurements of interfacial interactions between pectin and kappa-casein and implications for the stabilisation of calcium-free casein micelle mimics[J]. J Colloid Interface Sci,2009,338(2):450-462.
    [103]Fernandez C, Ausar SF, Badini RG, et al. An FTIR spectroscopy study of the interaction between as-casein-bound phosphoryl groups and chitosan[J]. International Dairy Journal,2003,13(11):897-901.
    [104]Spagnuolo P, Dalgleish D, Goff H, et al. Kappa-carrageenan interactions in systems containing casein micelles and polysaccharide stabilizers[J]. Food Hydrocolloids, 2005,19(3):371-377.
    [105]Guna Sekhar PM, Prakash V. Interaction of selected cosolvents with bovine alpha-lactalbumin[J]. Int J Biol Macromol,2008,42(4):348-355.
    [106]Mestdagh F, Kerkaert B, Cucu T, et al. Interaction between whey proteins and lipids during light-induced oxidation[J]. Food Chemistry,2011,126(3):1190-1197.
    [107]Yang F, Jr., Zhang M, Chen J, et al. Structural changes of alpha-lactalbumin induced by low pH and oleic acid[J]. Biochim Biophys Acta,2006,1764(8):1389-1396.
    [108]Chatham JC, Forder JR. Lactic acid and protein interactions implications for the NMR visibility of lactate in biological systems[J]. Biochimica et Biophysica Acta, 1999,1426:177-184.
    [109]余丹丹,昊张,丁庆波,等.咖啡酸与乳蛋白结合的光谱特性及结合物抗氧化活性变化[J].光谱学与光谱分析,2012,32(4):1061-1067.
    [110]Arts MJTJ, Haenen GRMM, Voss H-P, et al. Masking of antioxidant capacity by the interaction of flavonoids with protein[J]. Food and Chemical Toxicology,2001,39: 787-791.
    [111]贾昊迪,王建明,刘宪英,等.绿原酸与牛血清白蛋白的相互作用及酒精对其的影响[J].时珍国医国药,2011,22(6):1335-1337.
    [112]FAO. Bulletiin of the international dairy federation[J]. The world dairy situation, 2010,Bulletin No.446/2010.
    [113]Cruz LC. Recent Developments in the Buffalo industru in Asia[J]. Proceedings 9th World Buffalo Congress,2010.
    [114]Lindmark-Mansson H, Fonden R, Pettersson H-E. Composition of Swedish dairy milk[J]. International Dairy Journal,2003,13(6):409-425.
    [115]Benincasa C, Lewis J, Sindona G, et al. The use of multi element profiling to differentiate between cow and buffalo milk[J]. Food Chemistry,2008,110(1):257-262.
    [116]Maurice-Van Eijndhoven MHT, Hiemstra SJ, Calus MP. Short communication:milk fat composition of 4 cattle breeds in the Netherlands[J]. J. Dairy Sci,2011,94(2): 1021-1025.
    [117]Huppertz T, Zobrist MR, Uniacke T, et al. Effects of high pressure on some constituents and properties of buffalo milk[J]. J Dairy Res,2005,72(2):226-233.
    [118]姚春杰,李全阳,黄忠闯.广西水牛奶与荷斯坦牛奶工艺学特性比较[J].中国乳品工业,2011,39(3):30-34.
    [119]赵红玲,李全阳,王婷婷,等.乳化剂对乳体系稳定性的影响[J].食品与发酵工业,2009,35(8):160-163.
    [120]赵正涛,李全阳,王秀菊,等.不同酸度条件下牛乳乳清蛋白的稳定性[J].食品与发酵工业,2009,35(8):156-159.
    [121]Laemmli UK. Cleavage of structural proteins during the assembly of the head of the head of bacteriophage T4[J]. Nature,1970,227:680-685.
    [122]Jeurnink TJM, Kruif KGD. Changes in milk on heating:viscosity measurements[J]. Journal of Dairy Research 1993,60:139-150.
    [123]Pu B, Chen D. A study of the measurement of surface and interfacial tension by the maximum liquid drop volume method[J]. Journal of Colloid and Interface Science, 2001,235(2):273-277.
    [124]Donato L, Alexander M, Dalgleish D. Acid gelation in heated and unheated milks: interactions between serum protein comlexes and the surfaces of casein micells[J]. J.Agric.Food Chem,2007,55:4160-4168.
    [125]Gaiani C, Mullet M, Arab-Tehrany E, et al. Milk proteins differentiation and competitive adsorption during spray-drying[J]. Food Hydrocolloids,2011,25(5): 983-990.
    [126]Permprasert J, Devahastin S. Evaluation of the effects of some additives and pH on surface tension of aqueous solutions using a drop-weight method[J]. Journal of Food Engineering,2005,70(2):219-226.
    [127]Bouzid H, Rabiller-Baudry M, Paugam L, et al. Impact of zeta potential and size of caseins as precursors of fouling deposit on limiting and critical fluxes in spiral ultrafiltration of modified skim milks[J]. Journal of Membrane Science,2008,314(1-2): 67-75.
    [128]Giilseren I, Alexander M, Corredig M. Probing the colloidal properties of skim milk using acoustic and electro acoustic spectroscopy. Effect of concentration, heating and acidification[J]. Journal of Colloid and Interface Science,2010,351(2):493-500.
    [129]Klein M, Aserin A, Ben Ishai P, et al. Interactions between whey protein isolate and gum Arabic[J]. Colloids Surfaces B:Bio interfaces,2010,79(2):377-383.
    [130]Bazinet L, Pouliot Y, Castaigne F. Relative contributions of charged species to conductivity changes in skim milk during electrochemical acidification[J]. Journal of Membrane Science,2010,352(1-2):32-40.
    [131]Aschaffenburg R, Sen A. Comparsions of caseins of buffalo's and cow's milk[J]. Nature,1963,197:797-799.
    [132]Ferranti P, Scaloni A, Caira S, et al. The primary structure of water buffalo as 1-and β-casein:identification of phosphorylation sites and characterization of a Novel β-casein variant[J]. Journal of Protein Chemistry,1998,17(8):835-844.
    [133]王丽娜.南方水牛奶酪蛋白与其他乳源酪蛋白差异性的研究:暨南大学;2011.
    [134]Feligini M, Bonizzi I, Buffoni JN, et al. Identification and quantification of αs1, as2, β, and κ-caseins in water buffalo milk by reverse phase-high performance liquid chromatography and mass spectrometry[J]. J. Agric. Food Chem,2009,57:2988-2992.
    [135]Elsayed S, Hilly DJ, T.V.Do. Evaluation of the Allergenicity and Antigenicity of Bovine-Milk asl-Casein using Extensively Purified Synthetic Peptides[J]. Scandinavian Journal of Immunology,2004,60(5):486-493.
    [136]Hassan AN, F FJ, A SK. Textural properties of yogurt made with encapsulated no ropy lactic cultures[J]. J Dairy Sci,1996,79:2098-2103.
    [137]李全阳,夏文水.市场流行搅拌型酸奶流变学特性的初步研究[J].食品工业科技,2003,5:43-47.
    [138]Lee WJ, Lucey JA. Formation and physical properties of yogurt[J]. Asian-Aust. J. Anim. Sci.,2010,23(9):1127-1136.
    [139]Lee W. Structure-function relationships affecting the physical, microstructureal, and sensory properties of yogurt:University of Wisconsin-Madison; 2005.
    [140]Purwanti N, Smiddy M, Jan van der Goot A, et al. Modulation of rheological properties by heat-induced aggregation of whey'protein solution[J]. Food Hydrocolloids,2011,25:1482-1489.
    [141]Sodini I, Lucas A, Oliveira MN, et al. Effect of milk base and starter culture on acidification, texture, and probiotic cell counts in fermented milk processing[J]. J. Dairy Sci,2002,85:2479-2488.
    [142]Sodini I, Remeuf F, Haddad S, et al. The relative effect of milk base, starter, and process on yogurt texture:a review[J]. Crit Rev Food Sci Nutr,2004,44(2):113-137.
    [143]白文娟.广西水牛奶Cheddar干酪制作关键技术研究:广西大学;2012.
    [144]Folkenberg DM, Dejmek P, Skriver A, et al. Relation between sensory texture properties and exopolysaccharide distribution in set and in stirred yoghurts produced with different starter cultures[J]. Journal of Texture Studies,2005,36:174-189.
    [145]Marshall VM, Rawson HL. Effect of exopolysaccharide-producing strains of thermophilic lactic acid bacteria on the textuer of stirred yoghurt[J]. International Journal of Food Science and Technology,1999,34:137-143.
    [146]Marle MEv, Ende Dvd, Kruif CGd, et al. Steady-shear viscosity of stirred yogurts with varying ropiness[J]. Journal of Rheo logy,1999,43:1643-1663.
    [147]Mende S, Peter M, Bartels K, et al. Addition of purified exopolysaccharide isolates from S.thermophilus to milk and their impact on the rheo logy of acid gels[J]. Food Hydrocolloids,2013,32(1):178-185.
    [148]杨同香,王芳,李全阳.温度对酸乳中乳酸菌胞外多糖作用机制的研究[J].食品工业科技,2012,33(9):58-61.
    [149]李全阳,赵正涛,卫晓英,赵红玲,孙京田,戴美学.一种外源性增稠剂对酸乳流变学及其微观结构特性的影响[J].中国食品学报,2009,9(3):43-49.
    [150]赵正涛,李全阳,卫晓英,等.黄原胶对酸乳凝胶特性的影响及其作用机理探讨[J].食品工业科技,2009,5(30):154-157.
    [151]李全阳,夏文水,祝丽香,等.一种乳酸菌多糖对酸乳凝胶的影响机理[J].高等学校化学学报,2007,28(5):868-871.
    [152]李荣华.乳蛋白对凝固型酸奶流变学特性及微观结构的影响‘[D]:东北农业大学;2007.
    [153]Lucey JA, Tamehana M, Singh H, et al. A comparison of the formation, rheologicalproperties and microstructure of acid skim milk gels made with a bacterial culture or glucono-δ-lactone[J]. Food Research International,1998,31(2):147-155.
    [154]Zhang L. Image of micro structure of exopolysaccharides in low fat yoghurt[J].2012.
    [155]李全阳,夏文水.试论搅拌型酸奶的流变学特性[J]. Dairy Guide,2004:26-28.
    [156]李全阳等.市场流行搅拌型酸奶流变学特性的初步研究[J].食品工业科技,2003,24(5):43-47.
    [157]高奇.凝胶型酸乳的制备及其质构流变特性研究;2006.
    [158]李全阳,赵正涛等.一种外源性增稠剂对酸乳流变学及其微观结构特性的影响[J].中国食品学报,2009,9(3):43-49.
    [159]A.N. Hassan RI, T. Janzen, K..B. Qvist. Micro structure and Rheology of Yogurt Made with Cultures Differing Only in Their Ability to Produce Exopolysaccharides[J]. Journal of Dairy Science,2003,86(5).
    [160]Hassan AN, Ipsen R, Janzen T, et al. Microstructure and rheology of yogurt made with cultures differing only in their ability to produce exopolysaccharides[J]. J Dairy Sci, 2003,86(5):1632-1638.
    [161]Corredig M, Sharafbafi N, Kristo E. Polysaccharide-protein interactions in dairy matrices, control and design of structures[J]. Food Hydrocolloids,2011,25(8): 1833-1841.
    [162]Cayot P, Courthaudon J-L, Lorient D. Purification of as-, β-and κ-caseins by batchwise ion-exchange separation[J]. Journal of Dairy Research,1992,59:551-556.
    [163]Plank J, Andres PR, Krause I, et al. Gram scale separation of casein proteins from whole casein on a Source 30Q anion-exchange resin column utilizing fast protein liquid chromatography(FPLC)[J]. Protein Expr Purif, 2008,60(2):176-181.
    [164]赵正涛,李全阳,赵红玲,等.牛乳中酪蛋白的分离及其特性的研究[J].食品与发酵工业,2009,35(1):169-172.
    [165]Obispo SL. Effect of sodium chloride addition during diafiltration on the solubility of milk protein concentrate[J]. Master degree thesis of California Polytechnic State University 2010,Ms.
    [166]吴新.脉冲电场对牛乳蛋白功能性质和结构的影响[D]:江南大学;2009.
    [167]王璋,许时婴,江波,等.食品化学.第三版.北京:中国轻工业出版社;2007.
    [168]Stroylova YY, Zimny J, Yousefi R, et al. Aggregation and structural changes of as1-, β-and κ-caseins induced by homocysteinylation[J]. Biochimica et Biophysica Acta, 2011,1814(10):1234-1245.
    [169]Qi PX, Onwulata CI. Physical properties, molecular structures, and protein quality of texturized whey protein isolate:Effect of extrusion moisture content[J]. Journal of Dairy Science,2011,94(5):2231-2244.
    [170]Kato A, Nakai S. Hydrophobicity determinated by a fluorescence frobe method and its correlation with surface properties of proteins[J]. Biochim et Biophysica Acta, 1980,624.
    [171]H. M. Farrell J, Qi PX, Wickham ED, et al. Secondary structural studies of bovine caseins structure and temperature dependence of β-casein phosphopeptide (1-25) as analyzed by circular dichroism, FTIR spectroscopy, and analytical ultracentrifugation[J]. Journal of Protein Chemistry,2002,21(5):307-321.
    [172]Chakraborty A, Basak S. pH-induced structural transitions of caseins[J]. Journal of Photochemistry and Photobiology B:Biology,2007,87(3):191-199.
    [173]刘燕.酪蛋白胶束结构与功能特性的研究[D]:扬州大学;2007.
    [174]Qi PX, Wickham ED, Piotrowski EG, et al. Implication of C-terminal deletion on the structure and stability of bovine β-casein[J]. The Protein Journal,2005,24(7-8): 431-444.
    [175]Akintayo ET, Oshodi AA, Esuoso KO. Effects of NaCl, ionic strength and pH on the foaming and gelation of pigeon pea (Cajanus cajan) protein concentrates [J]. Food Chemistry,1999,66:51-56.
    [176]Ouanezar M, Guyomarc'h F, Bouchoux A. AFM imaging of milk casein micelles: evidence for structural rearrangement upon acidification[J]. Langmuir,2012,28(11): 4915-4919.
    [177]Farrell JHM, Jimenez-Flores R, Bleck GT, et al. Nomenclature of the proteins of cows'milk-sixth revision[J]. J Dairy Sci,2004,87:1641-1674.
    [178]Stanciuc N, Rapeanu G, Bahrim G, et al. pH and heat-induced structural changes of bovine apo-a-lactalbumin[J]. Food Chemistry,2012,131(3):956-963.
    [179]Kelkar DA, Chaudhuri A, Haldar S, et al. Exploring tryptophan dynamics in acid-induced molten globule state of bovine alpha-lactalbumin:a wavelength-selective fluorescence approach[J]. Eur Biophys J,2010,39(10):1453-1463.
    [180]Semisotnov GV, Rodionova NA, Razculyaev OI, et al. Study of the "Molten Globule" intermediate state in protein folding by a hydrophobic fluorescent probe[J]. Biopolyiners,1991,31(119-128).
    [181]Grufferty MB, Fox PF. Effect of added NaCl on some physicochemical properties of milk[J]. Irish Journal of Food Science and Technology,1985,9(1):1-9.
    [182]Ray CL, Maubois J-L, Gaucheron F, et al. Heat stability of reconstituted casein micelle dispersions:Changes induced by salt addition[J]. Lait,1998,78:375-390.
    [183]Huppertz T, Fox PF. Effect of NaCl on some physico-chemical properties of concentrated bovine milk[J]. International Dairy Journal,2006,16(10):1142-1148.
    [184]Hassan AN, Ipsen R, Janzen T, et al. Microstructure and rheology of yogurt made with cultures differing only in their ability to produce exopolysaccharides[J]. Journal of Dairy Science,2003,86:1632-1638.
    [185]Chardot V, Banon S, Misiuwianiec M, et al. Growth kinetics and fractal dimensions of casein particles during acidification[J]. J. Dairy Sci,2003,85:8-14.
    [186]Marcel Boulet, Michel Britten, Lamarche F. Dispersion of food proteins in water-alcohol mixed dispersants[J]. Food Chemistry,2001,74:69-74.
    [187]Pourjavadi A, Kurdtabar M. Collagen-based highly porous hydrogel without any porogen:Synthesis and characteristics[J]. European Polymer Journal,2007,43(3): 877-889.
    [188]Debnath DK, Mukhopadhyay K, Basak S. Acid-induced denaturation and refolding of prothrombin[J]. Biophys Chem,2005,116(2):159-165.
    [189]Burke SE, Barrett CJ. pH-responsive properties of multilayered poly(L-lysine)/ hyaluronic acid surfaces[J]. Bio macro molecules,2003,4:1773-1783.
    [190]Liu Y, Guo R. Interaction between casein and the oppositely charged surfactant [J]. Biomacromolecules,2007,8:2902-2908.
    [191]Qi PX, Onwulata CI. Physical properties, molecular structures, and protein quality of texturized whey protein isolate:effect of extrusion temperature[J]. J Agric Food Chem, 2011,59(9):4668-4675.
    [192]Alaimo MH, Jr HMF, Germann MW. Conformational analysis of the hydrophobic peptide asl-casein (136-196)[J]. Biochim Biophys Acta,1999,1431:410-420.
    [193]McMahon DJ, Du H, McManus WR, et al. Microstructural changes in casein supramolecules during acidification of skim milk[J]. J. Dairy Sci,2009,92: 5854-5867.
    [194]McMahon DJ, Oommen BS. Supramolecular structure of the casein micelle[J]. J. Dairy Sci,2008,91(5):1709-1721.
    [195]Liu Y, Guo R. Interaction between casein and sodium dodecyl sulfate[J]. J Colloid Interface Sci,2007,315(2):685-692.
    [196]Renkema JMS, Jongh HHJd, Lakemond CMM, et al. The effect of pH on heat denaturation and gel forming properties of soy proteins[J]. Journal of Biotechnology, 2000,79:223-230.
    [197]迟玉杰,剑姜,薇赵.糖基化反应对大豆7s球蛋白凝胶流变性质的影响[J].农业机械学报,2013,44(3):167-173.
    [198]滨于,迟玉杰.糖基化对卵白蛋白分子特性及乳化性的影响[J].中国农业科学,2009,42(7):2499-2504.
    [199]陈欣,黄和,李中权.糖基化反应改善水产蛋白功能特性的研究进展[J].中国食物与营养,2010,4:35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700