用户名: 密码: 验证码:
长江口及其邻近海域微生物的多样性和生态分布特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江是我国流入东海的最大河流,平均年入海径流量为9.28×1011m3,占流入东海总径流量的84.4%,其中75%的径流量在4-9月丰水期时注入东海,并向东呈扇形扩展。长江口及其邻近海域在长江巨量径流、复杂流系结构和特殊的地形的共同影响下呈现出独特的“冲淡水转向”、“上升流”、“锋面迁移”等诸多现象,这些海流和水团又直接或间接的影响该海域温度、盐度、营养盐等理化因子,形成独特的生态环境特征。微生物即是生产者又是分解者,在海洋生态系统扮演重要角色,在生物地球化学循环中也具有重要意义。本论文针对长江口海域这一典型的河口生态系统,将微生物学、分子生物学和生态学等研究手段相结合,研究该海域微生物的时空分布规律、多样性,并根据多项分类学原则对具有代表性的微生物菌种进行详细研究。
     首先,长江口及其邻近海域水体细菌丰度具有明显的季节变化,平均丰度为春季>秋季>夏季>冬季。各个季节细菌丰度呈现出不同的水平和垂直分布特征:水平方面,春、秋季由长江口向外海逐渐升高,夏季南北两侧细菌丰度较高、中部海区较低,且底层具有大面积的低值区,冬季细菌丰度高值区位于舟山群岛东北;垂直方面、春季、秋季和冬季细菌丰度垂直分布较均匀,而夏季层化现象明显。病毒丰度也具有明显的季节变化,但各个水深的季节变化并不一致,病毒的水平特征为春、秋季由河口向外海升高,夏、冬季由河口向外海降低,垂直分布与细菌一致。从各环境因子与细菌、病毒的相关分析来看,温度、溶解氧和营养盐等环境因子与细菌丰度均没有明显的相关性,盐度在春季和秋季与细菌丰度之间呈显著正相关,可能对细菌分布有一定影响。此外病毒与细菌具有极其显著的正相关性,细菌丰度对病毒丰度可能有较强的影响。沉积物细菌丰度的季节变化为秋季>春季>夏季>冬季,水平分布方面春、冬季河口近岸区较高,夏、秋季外海陆架区较高。沉积物中的有机物含量和沉积物底质是影响细菌丰度的主要原因。
     其次,长江口及其邻近海域沉积物中的细菌具有较高的多样性,16SrRNA基因分析表明主要包括变形菌(Proteobacteria)、酸杆菌门(Acidobacteria)、硬壁菌门(Firmicutes)、放线菌门(Actinobacteria)、硝化螺旋菌门(Nitrospirae)、拟杆菌门(Bacteroidetes)、疣微菌门(Verrucomicrobia)、浮霉菌门(Planctomycetes)、绿弯菌门(Chloroflexi)、异常球菌-栖热菌门(Deinococcus-Thermus)和热袍菌门(Thermotogae),变形菌是该海域沉积物细菌的优势类群。不同环境沉积物细菌的多样性和群落结构有明显差异,长江河口内以陆源或淡水生境的细菌种类为主,东海陆架区则以海洋环境的种类为主,长江口门区则同时包含了海-陆(咸-淡水)两类环境的细菌16SrRNA基因序列。
     最后,从浙江近海沉积物中分离到两株嗜盐疑似新种Y215T和Y226T,并进行了多相分类学研究。结果表明,这两株菌株细菌为革兰氏阴性细菌,无鞭毛,在不同的培养条件下表现出不同的形态特征,主要脂肪酸成分分别为菌株Y215T:iso-C15:0,iso-C17:1ω9C,iso-C17:0,iso-C11:03-OH,C16:0,iso-C11:0和C18:1ω7c;菌株Y226T:iso-C15:0,iso-C11:03-OH,iso-C17:1ω9c,iso-C11:0和iso-C17:0;G+C mol%分别为54%和56.7%,与16S rRNA基因相似性最高的标准菌株杂交复兴率均显著低于70%这一微生物新种准则,系统发育分析则显示在Microbulbifer世系中分别处于不同的分支上。建议定义上述两株菌株为产微球茎菌属(Microbulbifer)的两个新的分类单元,命名为:海洋微球茎菌Microbulbifer marinus (ma.ri'nus. L. masc. adj. marinus, of the sea, marine)和乐清湾微球茎菌Microbulbifer yueqingensis (yue.qin.gen'sis. N.L. masc. adj. yueqingensis, belonging to Yueqing bay, the Chinese name of the Yueqing bay).
The Changjiang River (historically called the Yangtze River) is the third-largest river in the world, with a huge water discharge of9.28x1011m3per year, equivalent to84.4%of the total riverine discharge of the East China Sea. The Changjiang estuary, which is located offshore from the mouth of the Changjiang River, is an area where freshwater, Changjiang Diluted Water (CDW), is mixed with the Taiwan Warm Current (TWC) from the south and Yellow Sea Coastal Water (YSCW) from the north. Because it is the interface of land, freshwater and marine environments, this region is extremely complicated and dynamic. Bacteria, producer and decomposer, plays an important role in marine ecosystem and are recognized as important agents in biogeochemical processes in the earth. In this thesis, we aimed to study distribution and diversity of marine bacteria in the Changjiang Estuary and adjacent areas.
     Firstly, we studied temporal and spatial distribution of bacteria and virus in the Changjiang estuary and adjacent areas. Bacteria abundance in seawater showed a clearly seasonal variability, with an order of spring> autumn> summer> winter for average bacteria abundance. Horizontal distributions were different in the four seasons. In spring and autumn, bacteria abundance was low in river mouth and coastal areas but higher in offshore areas. In summer, bacteria abundance were higher in north and south areas, but lower in central part, furthermore, there was a large low abundance areas in bottom in south of31°N. In winter, bacteria abundance were higher in east of Zhoushan Islands. Vertical distribution were similar in spring, autumn and winter, that bacteria abundance in all depth(surface,10m, bottom) were quite similar, however, in summer, bacteria abundance decreased with depth which indicated a strong stratification. Virus abundance also had a seasonally variability, despite which were not the same in different depth. There were two opposite horizontal distribution styles for virus abundance, in spring and autumn, virus abundance were lower in river mouth and coastal areas but higher in offshore, while in summer and winter, virus abundance were higher in river mouth and coastal areas but lower in offshore. A positive relationship was found between salinity and bacteria abundance in spring and autumn, but no obvious correlation between other environmental factors (eg. temperature, dissolved oxygen, nutrients) and bacteria abundance were found. Furthermore, virus abundance showed a significant positive relationship with bacteria abundance. The order of sedimentary heterobacteria abundance in the four seasons was autumn> spring> summer> winter. In spring and winter, sedimentary heterobacteria abundance was higher in coastal areas, while in summer and autumn, it was higher in offshore areas. Concentration of organic matter and substrate of sediment could be the two main factors influencing distribution of sedimentary heterobacteria abundance.
     Secondly, diversity of bacteria in the Changjiang estuary and adjacent areas sediment were studied. Phylogenetic analyses were performed on the prokaryotic community and diversity based on the16S rRNA, bacterial phyla detected included the Proteobacteria, Acidobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Planctomycetes, Nitrospirae, Chloroflexi, Verrucomicrobia, Deinococcus-Thermus, Thermotogae. Proteobacteria was the dominant group in study area. However, community structure was quite different in all three kinds of sediment environments. Most clones obtained from the inlet of the Changjiang river related to uncultured bacteria from terrestrial and freshwater environment, clones obtained from East China Sea shelf related to uncultured bacteria from marine environment. Site in river mouth showed a higher diversity than the other two sites and a more compatible environment resource including both marine and terrestrial16S rRNA sequences.
     Finally, a systematic study had been conducted on the taxonomy of two strains isolated from coastal sediment of Zhejiang province in accordance with the principle of polyphasic taxonomy. The results showed that both the two strains were gram-negative and non-motile, they showed different cell form in different culture conditions. The predominant cellular fatty acids are iso-C15:0, iso-C17:1ω9c, iso-C17:0, iso-C11:0.3-OH, C16:0, iso-C11:0and C18:1ω7c for strain Y215T and iso-C15:0, iso-C11:03-OH, iso-C17:1ω9c, iso-C11:0and iso-C17:0for strain Y226T. The G+C content was54mol%and56.7%, respectively. The DNA-DNA relatedness between the two strains and type strains were significantly lower than that accepted as the phylogenetic definition of a species. On the basis of their distinct taxonomic characteristics, the two isolated strains represent two novel species of the genus Microbulbifer, for which the names Microbulbifer marinus sp. nov. and Microbulbifer yueqingensis sp. nov. are proposed. The type strains are Y215T (=CGMCC1.10657T=JCM17211T) and Y226T (=CGMCC1.10658T=JCM17212T), respectively.
引文
Amann, R. I., Luding, W., Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev.,59:143-169.
    Baty, A.M., Eastburn, C.C., Techkarnjanaruk, S., et al. (2000). Spatial and temporal variations in chitinolytic gene expression and bacterial biomass production during chitin degradation.Appl. Environ. Microb.,66:3574-3583.
    Beja, O., Aravind, L., Koonin, E. V., et al. (2000). Bacterial rhodopsin:evidence for a new type of phototrophy in the sea. Science,289:1902-1906.
    Beja, O., Suzuki, M.T., Koonin, E.V., et al. (2000). Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ Microbiol,2: 516-529.
    Beja, O., Spudich, E.N., Spudich, J.L., et al. (2001). Proteorhodopsin phototrophy in the ocean. Nature,411:786-789.
    Blight, S.P., Bentley, T.L., Lefevre, D., et al. (1995). Phasing of autotrophic and heterotrophic plankton metabolism in a temperate coastal ecosystem. Mar Ecol Prog Ser,128: 61-75.
    Bodrossy, L., Stralis-Pavese, N., Murrell, J.C., Radajewski, S., Weilharter, A., and Sessitsch, A. (2003). Development and validation of a diagnostic microbial microarray for methanotrophs. Environ Microbiol,5:566-582.
    Campbell, B.J., Waidner, L.A., Cottrell, M.T., et al. (2008). Abundance proteorhodopsin genes in the North Atlantic Ocean. Environ Microbiol,10:99-109.
    Cassler, M., Peterson, C.L., Ledger, A., et al. (2007). Use of Real-time qPCR to quantify members of the unculturable heterotrophic bacterial community in a deep sea marine songe, Vetulina sp. Microb Ecol, DOI 10.1007/s00248-007-9283-5.
    Church, M.J., Hutchins, D.A., DucHow, H.W., et al. (1999). Limitation of bacterial growth by dissolved organic matter and Iron in the Southern Ocean. Appl. Environ. Microb.,66:455-466.
    D'Amico, S., Collins, T., Marx, J-C., et al. (2006). Psychrophilic microorganisms:challenges for life. EMBO reports,7:385-389.
    Dang, H.Y., Zhang, X.X., Sun, J., et al. (2008). Diversity and spatial distribution of sediment ammonia-oxidizing crenarchaeota in response to estuarine and environmental gradients in the Changjiang Estuary and East China Sea. Microbiology,154:2084-2095.
    Danovaro, R., Dell, A., Corinaldesi, C., et al. (2008). Major viral impact on the functioning of benthic deep-sea ecosystems. Nature,454:1084.
    del Giorgio, P.A., and Cole, J.J. (2000). Bacterial energetic and growth efficiency. In D.L. Kirchman (ed.), Microbial Ecology of the Oceans,1st edn. Wiley-Liss, pp.289-325.
    Delong, E. F. (1996). Diversity of naturally occurring prokaryotes. Microbial Diversity in Time and Space. New York: Plenum Press.
    DeLong, E.F. (1992). Archaea in coastal marine enviroments. Proc Natl Acad Sci,89: 5685-5689.
    Derelle, E., Ferraz, C., Rombauts, S., et al. (2006). Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique feature. Proc Natl Acad Sci USA, 103:11647-11652.
    Durand, M.D. (2001). Phytoplankton populations dynamics at the Bermuda Atlantic Time-series station in the Sargaso Sea. Deep-Sea Res. II,48:1983-2003.
    Elke, J. and Jorg, O. (2004). Ecological significance of microdiversity:identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl. Environ. Microb.,70:4831-4839.
    Evans, C. Archer, S.D., Jaquet, S., et al. (2003). Direct estimates of the contribution of viral lysis and microzooplankton grazing to the decline of a Micromonas spp. Population. Aquat Microb Ecol,30:207-219.
    Feng, B.W., Li, X.R., Wang, J.H., et al. Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. FEMS Microbiol Ecol,70:236-248.
    Fogg, G.E. (1983). The ecological significance of extracellular products of phytoplankton photosysnthesis. Bot. Mar.,26:3-14.
    Foreman, C.M., and Covert, J.S. (2003). Linkages between dissolved organic matter composition and bacterial community structure. In S.E.G. Findlay, and R.L. Sinsabaugh (eds.), Aquatic Ecosystems: Interactivity of Dissolved Organic Matter. Academic Press, pp.343-362.
    Fuhrman, J.A., and Azam, F. (1982). Thymidine incorporation as a measure of hetrotrophic bacterioplankton production in marine surface waters:Evaluation and field results. Marine Biology,66:109-120.
    Fuhrman, J.A., McCallum, K. Davis, A.A. (1992). Novel major archaebacterial group from marine plankton. Nature,356:148-149.
    Fuhrman, J.A. and Ouverney, C.C. (1998). Marine microbial diversity studied via 16S rRNA sequences:cloning results from coastal waters and counting of native archaea with fluorescent single cell probes. Aquatic Ecology,32:3-15.
    Fuhrman, J.A. (1999). Marine viruses and their biogeochemical and ecological effects. Nature,399:541-548.
    Giovannoni, S.J., Britschgi, T.B., Moyer, C.L., et al. (1990). Genetic diversity in Sargasso Sea bacterioplankton. Nature,345:60-63.
    Gomez-Consarnau, L., Gonzalez, J.M., Coll-Llado, M., et al. (2007). Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature,445:210-213.
    Gomez-Consarnau, L., Akram, N., Liindell, K., et al. (2010). Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS biology,8:1-10.
    Gonzalez, N., Anadon, R., Viesca, L. (2003). Carbon flux through the microbial community in a temperate sea during summer: role of bacterial metabolism. Aquat Microb Ecol,33:117-126.
    Hagstrom, A., Pommier, T., Rohwer, F., et al. (2002). Use of 16S ribosomal DNA for delineation of marine bacterioplankton species. Appl. Environ. Microb.,68:3628-3633.
    Heine, M., and Chandra, S.B.C. (2009). The linkage between reverse gyrase and hyperthermophiles:A review of their invariable association. The Journal of Microbiology,47: 229-234.
    Hewson, I., Winget, D.M., Williamson, K.E., et al. (2006). Viral and bacterial assemblage covariance in oligotrophic waters of the West Florida Shelf (Gulf of Mexico). Journal of the Marine Biological Association of the UK,86:591-603.
    Hobbie, J.E., Daley, R.J., Jaspe, S. (1977). Use of nuclepore filters for counting bacteria by fluorescent microscopy. Appl. Environ. Microb.,33:1225-1228.
    Hopkinson Jr, C.S., and Smith, E.M. (2005). Estuarine respiration: an overview of benthic, pelagic, and whole system respiration. In P.A. del Giorgio and P.J. leB. Williams (eds.), Respiration in Aquatic Ecosystems. Oxford University Press, pp.122-146.
    Janssen, P.R., Coopman, G., Huys, J.,et al. (1996). Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiology,142:1881-1893.
    Jiao, N.Z., Zhang, Y., Zeng, Y.H., et al. (2007). Ecological anomalies in the East China Sea: Impacts of the Three Gorges Dam? Water Research,41:1287-1293.
    Lemee, R., Rochelle-Newall, E., Van Wembeke, F., et al. (2002). Seasonal variation of bacterial production, respiration and growth efficiency in the open NW Mediterranean Sea. Aquat Microb Ecol,29:227-237.
    Jenkins, B.D., Steward, G.F., Short, S.M., et al. (2004). Fingerprinting diazotroph communities in the Chesapeake Bay by using a DNA macroarray. Appl. Environ. Microb.,70: 1767-1776.
    Karl, D. M. (2002). Hidden in a sea of microbes. Nature,415:590-591.
    Kasting, J. F., and Siefert, J. L. (2002). Life and evolution of Earth's atmosphere. Science, 296:1066-1068.
    Kennedy, A. (1999). Bacterial diversity in agroecosystems. Agriculture Ecosystems & Environment,74(1-3):65-76.
    Kirchman, D.L. (2003). The contribution of monomers and other low-molecular weight compounds to the flux of dissolved organic material in aquatic ecosystems. In S.E.G. Findlay, and R.L. Sinsabaugh (eds.), Aquatic Ecosystems: Interactivity of Dissolved Organic Matter. Academic Press, pp.217-241.
    Kirchman, D.L., Meon, B., Cottrell, M.T., et al. (2000). Carbon versus iron limitation of bacterial growth in the California upwelling regime. Limnol Oceanogr,45:1681-1688.
    Kirchman, D.L., Dittel, A.I., Malmstrom, R.R., et al. (2005). Biogeography of major bacterial groups in the Delaware Estuary. Limnol Oceanogr,50:1697-1706.
    Kolber, Z.S., Van Dover, C.L., Niederman, R.A., et al. (2000). Baeterial Photosynthesis in surface waters of the open oeean. Nature,407:177-179.
    Kolber, Z.S., Plumley, F.G., Lang, A.S., et al. (2001). Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science,292:2492-2495.
    Labrenz, M., Brettar, I., Christen, R., et al. (2004). Development and application of a real-time PCR approach for quantification of uncultured bacteria in the central Baltic Sea. Appl. Environ. Microb.,70:4971-4979.
    Langlois, R.J., Hummer, D. LaRoche, J. (2008). Abundance and distribution of the dominant nifH phylotypes in the Northern Atlantic Ocean. Appl. Environ. Microb.,74:1922-1931.
    Lanoil, B., Sassen, R., La Due, M., et al. (2001). Bacteria and archaea physically associated with Gulf of Mexico gas hydrates. Appl. Environ. Microb.,67:5143-5153.
    Lau, W.W.Y., and Armbrust, E.V. (2006). Detection of glycolate oxidase gene glcD diversity among cultured and environmental marine bacteria. Environ Microbiol,8:1688-1702.
    Lau, W.W.Y., Keil, R.G., Armbrust E.V. (2007). Succession and diel transcriptional response of the glycolate-utilizing component of the bacterial community during a spring phytoplankton bloom. Appl. Environ. Microb.,73:2440-2450.
    Malmstrom R.R., Kiene, R.P., Cottrell, M.T., et al. (2004a). Contribution of SARI 1 bacteria to dissolved dimethylsulfoniopropionate(DMSP) in the North Atlantic and Gulf of Mexico. Limnol Oceanogr,49:597-606.
    Maranon, E., Holligan, P. M., Barciela, R., et al. (2001). Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar Ecol Prog Ser,216: 43-56.
    Moisander, P.H., Shiue, L., Steward, G.F., et al. (2006). Application of a nifH oligonucleotide microarray for profiling diversity of N2-fixing microorganisms in marine microbial mats. Environ Microbiol,8:1721-1735.
    Muyzer, G., Waal, E.C., Uittrlinden, A.G. (1993). Profiling of complex microbial population by denaturing gradient gel electrophoresis an alysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl. Environ. Microb.,59:695-700.
    Navarro, N., Agusti, S., and Duarte, C.M. (2004). Plankton metabolism and dissolved organic carbon use in the Bay of Palma, NW Mediterranean Sea. Aquat Microb Ecol,37:47-54.
    Osborn, A.M., Moore, E.R., Timmis, K.N. (2000). An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ. Microbiol.,2:39-50
    Orita, M. Iwahana, H., Kanazawa. H.. et al. (1989). Detection of polymorphisms of human DNA by gel electrophoresis as single strand conformation polymorphisms. Proc. Natl. Acad. Sci. 86:2766-2770.
    Pace, N.R., Stahl, D.A., Lane, D.J., et al. (1985). Analyzing natural microbial populations by rRNA sequences. ASM News,51:4-12.
    Pan, L.A., Zhang, J., Zhang, L.H. (2007). Picophytoplankton, nanophytoplankton, heterotrophic bacteria and virus in the Changjiang Estuary and adjacent coastal waters. J Plankton Research,29:187-197.
    Pedros-Alio, C. (2006). Marine microbial diversity:can it be determined? Trends in Microbiology,14:257-263.
    Perez, V., Fernandez, E., Maranon, E., et al. (2005). Latitudinal distribution of microbial plankton abundance, production and respiration in the Equatorial Atlantic in autumn 2000. Deep-Sea Res. I,52:861-880.
    Pomier, T., Pinhassi, J., Hagstrom, A. (2005) Biogeographic analysis of ribosomal RNA clusters from marine bacterioplankton. Aquat. Microb. Ecol,41:79-89.
    Reinthaler, T. (2005). Prokaryotic respiration and production in the open ocean. PhD Thesis, NIOZ.
    Reinthaler, T., and Herndl, G.L. (2005). Seasonal dynamics of bacterial growth efficiencies in relation to phytoplankton in the southern North Sea. Aquat Microb Ecol,39:7-16.
    Reinthaler, T., van Aken, H., Veth, C., et al. (2006a). Prokaryotic respiration and production in the meso-and bathypelagic realm of the eastern and western North Atlantic basin. Limnol Oceanogr,51:1262-1273.
    Robinson, C. (2008). Heterotrophic bacterial respiration. In D.L. Kirchman (ed.), Microbial Ecology of the Oceans,2nd edn. Wiley-Liss, pp.299-334.
    Robinson, C, and Willims, P.J.leB. (2005). Respiration and its measurement in surface marine waters. In P.A. del Giorgio and P.J.leB. Williams (eds.), Respiration in Aquatic Ecosystems, Oxford University Press.
    Rusch, D.B., Halpern, A.L., Heidelberg, K.B., et al. (2007). The sorcerer II Global Ocean Sampling expedition: I, The northwest Atlantic through the eastern tropical Pacific. PLoS Biol,5: e77.
    Schwalbach, M.S., and Fuhrman J.A. (2005). Wide-ranging abundances of aerobic anoxygenic phototrophic bacteria in the world ocean revealed by epifluorescence microscopy and quantitative PCR. Limnol Oceanogr,50:620-628.
    Sekiguchi, H., Koshikawa, H., Hiroki, H., et al. (2002). Bacterial distribution and phylogenetic diversity in the Changjiang Estuary before the construction of the Three Gorges Dam. Microbial Ecology,43:82-91.
    Shalapyonok, A., Olson, r.J., Shalapyonok, L.S. (2001). Arabian Sea phytoplankton during South West and Northeast Monsoons 1995:composition, size structure and biomass from individual cell properties measured by flow cytometry. Deep-Sea Res. II,48:1231-1261.
    Shiab, F.K., and Ducklow, H.W. (1995). Regulation of bacterial abundance an d production by substrate supply and bacterivory:a mesocosm study. Aquat Microbiol Ecol,30:239-255.
    Simon,M.,Grossart,H.-P.,Schweitzer,B.,et al.(2002).Microbial ecology of organic aggregates in aquatic ecosystems.Aguat Microb Ecol,28:175-211.
    Steward,G.F.,Jenkins,B.D.,Ward,B.B.,et al.(2004).Development and testing of a DNA macroarray to assess nitrogenase(nifH)gene diversity.Appl.Environ.Microb.,70:1455-1465.
    Suttle,C-A.(2005).Viruses in the sea.Nature,437:356-361.
    Suttle,C.A.(2007).Marine viruses-major players in the global ecosystem.Nature Reviews Microbiology.5:801-812.
    Schwalbach,M.S.,Hewson,I.,Fuhrman,J.A.(2004).Viral effects on bacterial community composition in marine plankton microcosms. Aguat Microb Ecol,34:117-127.
    Taroncher-Oldenburg,G.,Gnner,E.M.,Francis,C.A.,et al.(2003).Oligonucleotide microarray for the study of functional gene diversity in the nitrogen cycle in the environment. App,.Environ.Microb.,69:1159-1171.
    Torsvik,V.,Goksoyr,J.,Daae,F.(1990).High diversity in DNA of Soil bacteria.Appl. Environ.Microb.,56(3):782-787.
    Torsvik,V.,Salte,K.,Sorheim R,et al.(1990).Comparison of phenotypic diversity and DNA heterogeneity in a population of Soil bacteria.Appl.Environ.Microb.,56(3):776-781.
    Vos,P.R.,Hogers,M.,Bleeker,M.,et al.(1995).AFLP:a new technique for DNA fingerprinting.Nucleic Acids Res,23:4407-4414.
    Wang,P.,Xiao,X.,Wang,F.(2005).Phylogenetic analysis of Archaea in the deep-sea sediments of west Pacific Warm Pool.Extremophiles.9:209-217
    Wang,B.D.(2006).Cultural eutrophication I nthe Changjiang(Yangtze River)plume: History and perspective.Estuarine Coastal and Shelf Science,69:471-477.
    Ward,B.B.Molecular approaches to marine microbial ecology and the marine nitrogen cycle. (2005).Annual Review of Earth and Planetary Sciences,33:301-333.
    Waterbury,J.B.,Watson,S.W.,Guillard,R.R.L.,et al.(1979).Widespread occurrence of a unicellular,marine,planktonic,cyanobacterium.Nautre,277:293-294.
    Weinbauer,M.G.(2004).Ecology of prokaryotic viruses. FEMS Microbiology Reviews,28: 127-81.
    Weinbauer,M.G.,Fuks,D.,Puskaric,S.,et al.(1995).Diel,seasonal,and depth-related variability of viruses and dissolved DNA in the Northem Adriatic sea.Microb Ecol,30(1):25-41.
    Wen-Tso,L.,Marsh,T.L.,Cheng,H.,et al.(1997).Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ.Microb.,63:4516-4522.
    Winter,C.,Smit,A.,Hemdl,G.J.,et al.(2005).Linking bacterial richness With viral abundance and prokaryotic activity. Limnol Oceanogr,50:968-977.
    Wommack,K.E.,and Colwell,R.R.(2000).Virioplankton:Viruses in aquatic ecosystems. Microbiology and Molecular Biology Reviews.64:69-114.
    Worden,A.Z.,Nolan,J.K.,and Palenik,B.(2004).Assessing the dynamics and ecology of marine picophytoplankton:The importance of the eukaryotic component. Limnol Oceanogr,49: 168-179.
    Worden, A.Z., Cuvelier, M.L., Bartlett, D.H. (2006). In-depth analyses of marine microbial community genomics. Trends Microbiol,14:331-336.
    Williams, P.J. leB., and Jenkinson, N.W. (1982). A transportable microprocessor-controlled precise Winkler titrator suitable for field station and shipboard use. Limnology and Oceanography, 27:576-584.
    Yanagibayashi, M., Nogi, Y., Li, L., et al. (1999). Changes in the microbial community in Japan Trench sediment from a depth of 6292 m during cultivation without decompression. FEMS Microbiology letters,170:271-279
    Yokokawa, T., Nagata, T., Cottrell, M.T., et al. (2004). Growth rate of the major phylogenetic bacterial groups in the Delaware estuary. Limnol Oceanogr,49:1620-1629.
    Yutin, N., Suzuki, M.T., teeling, H., et al. (2007). Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environ. Microbiol.,9:1464-1475.
    Zhang, R., Weinbauer, M.G., Qian, P.Y. (2007). Viruses and flagellates sustain apparent richness and reduce biomass accumulation of bacterioplankton in coastal marine waters. Environ. Microbiol.,9:3008-3018.
    Zhang, R., Thiyagarajan, V. Qian, P.Y. (2008a). Evaluation of terminal-restriction fragment length polymorphism analysis in contrasting marine environments. FEMS Microbial Ecology,65: 169-178.
    Zabeau, M. and Vos, P. (1993). Selective restriction fragment amplification:a general method for DNA fingerprinting. European Patent Office, publication 0 534 858 A1, bulletin 93/13.
    Zingone, A., Sarno, D., Forlani, G. (1999). Seasonal dynamics in the abundance of Micromonas pusilla (Prasinophyceae) and its viruses in the Gulf of Naples (Mediterranean Sea). J Plank Res,21:2143-2159.
    白晓歌,汪岷,马晶晶,等.(2007).冬季和春季长江口及其近海水域浮游病毒丰度的分析.海洋与湖沼,38:367-372.
    李道季,张经,黄大吉,等.(2002).长江口外氧的亏损.中国科学(D辑),32:686~694.
    李玲玲,于志刚,姚庆祯,等.(2009).长江口海域营养盐的形态和分布特征.水生态学杂志,2:15~20.
    李云,李道季.(2007).长江口邻近海域浮游细菌分布与环境因子的关系.海洋通报,26:9-18.
    刘材材,项凌云,张昊飞,等.(2009).长江口异养细菌生态分布特征及其与环境因子的关系.海洋环境科学,28:1-4.
    刘敏,王子峰,朱开玲,等.(2008).应用PCR-DGGE技术分析长江口低氧区的细菌群落组成.高技术通讯,18:650~656.
    刘欣.(2010).胶州湾沉积物细菌多样性及菌群时空分布规律研究.青岛:中国科学院海洋研究所.
    史君贤,陈忠元,宁修仁,等.(1992).长江口及其附近海域细菌和三磷酸腺苷的分布特征.海洋与湖沼,23:288~296.
    石晓勇,王修林,陆茸,等.(2005,).东海赤潮高发区春季溶解氧和pH分布特征及影响因素探讨.海洋与湖沼,36:405~412.
    石晓勇,陆茸,张传松,等.(2006).长江口邻近海域溶解氧分布特征及主要影响因素.中国海洋大学学报(自然科学版),36:287~290.
    唐晓晖,王凡.(2004).长江口邻近海域夏、冬季水文特征分析.海洋科学集刊,46:42~66.
    王保栋,战闰,藏家业.(2002).长江口及其邻近海域营养盐的分布特征和输送途径.海洋学报,24(1):53~58.
    肖天,王荣.(2000).东海异养细菌生产力的时空分布.海洋与湖沼,31:664~670.
    张莹莹,张经,吴莹,等.(2007).长江口溶解氧的分布特征及影响因素研究.环境科学,28:1649~1654.
    赵三军,肖天,岳海东.(2003).秋季东、黄海异养细菌(Heterotrophic Bacteria)的分布特点.海洋与湖沼,34:295~305.
    Allen, J.G., Beutel, M.W., Call, D.R., et al. (2010). Effects of oxygenation on ammonia oxidation potential and microbial diverisity in sediment from surface-flow wetland mesocosms. Bioresour Teechnol,101:1389-1392.
    Baker, G.C., Smith, J.J., Cowan, D.A. (2003). Review and re-analysis of domain-specific 16S primers. J Microbiol Methods,55:541-555.
    Beal, E.J., House, C.H., Orphan, V.J. (2009) Manganese-and iron-dependent marine methane oxidation. Science,325:184-187.
    Ben Said, O., Goni-Urriza, M., El Bour, M., et al. (2010). Bacterial community structure of sediments of the Bizerte lagoon(Tunisia), a southern Mediterranean coastal anthropized lagoon. Microb Ecol,59:445-456.
    Borin, S., Brusetti, L., Daffonchio, D., et al. (2009). Biodiversity of prokaryotic communities in sediments of different sub-basins of the Venice lagoon. Res Microbiol,160:307-314.
    Borodina, E., Kelly, D.P., Schumann, P., et al. (2002). Enzymes of dimethylsulfone metabolism and the phylogenetic characterization of the facultative methylotrophs Arthrobacter sulfonivorans sp. nov., Arthrobacter methylotrophus sp. nov., and Hyphomicrobium sulfonivorans sp. nov. Arch Microbiol,177:173-183.
    Bowman, J.P., and McCuaig, R.D. (2003). Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol, 69:2463-2483.
    Ceh, J., Van Keulen, M., Bourne, D.G. (2011). Coral-associated bacterial communities no Ningaloo Reef, Western Australia. FEMS Microbiol Ecol,75:134-144.
    Ceja-Navarro, J.A., Rivera-Orduna, F.N., Patino-Zuniga, L., et al. (2010). Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities. Appl. Environ. Microbiol,76:3685-3691.
    Chaudhary, A., Haack, S.K., Duris, J.W., et al. (2009). Bacterial and archaeal phylogenetic diversity of a cold sulfur-rich spring on the shoreline of Lake Erie, Michigan. Appl Environ Microbiol 75:5025-5036.
    Costello, E.K., & Schmidt, S.K. (2006). Microbial diversity in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment. Environ Microbiol,8:1471-1486.
    Cottrell, M.T,, Waidner, L.A., Yu, L.Y., Kirchman, D.L. (2005). Bacterial diversity of metagenomic and PCR libraries from the Delaware River. Environ. Microbiol.,7:1883-1895.
    Edmonds, J.W., Weston, N.B., Joye, S.B., et al. (2009). Microbial community response to seawater amendment in low-salinity tidal sediments. Microb Ecol,58:558-568.
    Eloe, E.A., Shulse, C.N., Fadrosh, D.W., et al. (2010). Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. Environ. Microbiol. Rep, DOI:10.1111/j.1758-2229.2010.00223.x
    Engel, A.S., Meisinger, D.B., Porter, M.L., et al. (2010). Linking phylogenetic and functional diversity to nutrient spiraling in microbial mats from Lower Kane Cave(USA). ISME J,4: 98-110.
    Feng, B.W., Li, X.R., Wang, J.H., et al. (2009). Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. FEMS Microbiol Ecol,70: 236-248.
    Havemann, S.A., and Foster, J.S. (2008). Comparative characterization of the microbial diversities of an artificial microbialite model and a natural stromatolite. Appl. Environ. Microbiol, 74:7410-7421.
    Hedges, J.I., Hu, F.S., Devol, A.H., et al. (1999). Sedimentary organic matter preservation:a test for selective degradation under oxic conditions. Am J Sci,299:529-555.
    Hunter, E.M., Mills, H.J., Kostka, J.E. (2006). Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments. Appl. Environ. Microbiol,72: 5689-5701.
    Jiang, L, Zheng, Y., Peng, X., et al. (2009). Vertical distribution and diversity of sulfate-reducing prokaryotes in the Pearl River estuarine sediments. Southern China. FEMS Microbiol Ecol,70:93-106.
    Jiao, N.Z., Zhang, Y.H., Zeng, W.D., et al. (2007). Ecological anomalies in the East China Sea:impacts of the Three Gorges Dam? Water Research,41:1287-1293.
    Jukes, T.H., and Cantor, C.R. (1969). Evolution of protein molecules. In Mammalian Protein Metabolism (Munro, H. N., ed), New York:Academic Press, pp.21-132.
    Juretschko, S., Loy, A., Lehner, A., et al. (2002). The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst Appl Microbiol,25:84-99.
    Lecomte, J., St-Arnaud, M., Hijri, M. (2011). Isolation and identification of soil bacteria growing at the expense of arbuscular mycorrhizal fungi. FEMS Microbiol Lett,317:43-51.
    Li, D., Yang, M., Li, Z., et al. (2008). Change of bacterial communities in sediments along Songhua River in Northeastern China after a nitrobenzene pollution event. FEMS Microbiol Ecol, 65:494-503.
    Li, D.J., Zhang, J., Huang, D.J., et al. (2002). Oxygen depletion off the Changjiang (Yangtze River) Estuary. Sci China Ser, D 45:1137-1146.
    Li, D.J. and Daler, D. (2004). Ocean pollution from land-based sources:East China Sea, China. Ambio,33:107-113.
    Li, H., Yu, Y., Luo, W., et al. (2009). Bacterial diversity in surface sediments from the Pacific Arctic Ocean. Extremophiles,13:233-246.
    Lopez-Garcia, P., Duperron, S., Philippot, P., et al. (2003). Bacterial diversity in hydrothermal sediment and epsilonproteobacteria dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ. Microbiol.,5:961-976.
    Lueders, T., Kindler, R., Miltner, A., et al. (2006). Identification of bacterial microredators distinctively active in a soil microbial food web. Appl. Environ. Microbiol.,72:5342-5348.
    Mason, O.U., Stingl, U., Wilhelm, L.J., et al. (2007). The phylogeny of endolithic microbes associated with marine basalts. Environ. Microbiol.,9:2539-2550.
    Mohamed, N.M., Enticknap, J.J., Lohr, J.E., et al. (2008). Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl. Environ. Microbiol.,74: 1209-1222.
    Mueller-Spitz, S.R., Goetz, G.W., McLellan, S.L. (2009). Temporal and spatial variability in nearshore bacterioplankton communities of Lake Michigan. FEMS Microbiol Ecol,67:511-522.
    Neulinger, S.C., Jarnegren, J., Ludvigsen, M., et al. (2008). Phenotype-specific bacterial communities in the cold-water coral Lophelia pertusa (Scleractinia) and their implications for the coral's nutrition, health, and distribution. Appl. Environ. Microbiol.,74:7272-7285.
    Polymenakou, P.N., Bertilsson, S., Tselepides, A., et al. (2005). Bacterial community composition in different sediments from the Eastern Mediterranean Sea:a comparison of four 16S ribosomal DNA clone libraries. Microb Ecol,50:447-462.
    Polymenakou, P.N., Lampadariou, N., Mandalakis, M., et al. (2009). Phylogenetic diversity of sediment bacteria from the southern Cretan margin, Eastern Mediterranean Sea. Syst Appl Microbiol,32:17-26.
    Qiu, Q., Noll, M., Abraham, W.R., et al. (2008). Applying stable isotope probing of phospholipid fatty acid and rRNA methanotrophic bacterial communities in situ. ISME J,2: 602-614.
    Ravenschlag, K., Sahm, K., Amann, R. (2001). Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard). Appl Environ Microbiol,67: 387-395.
    Rui, J., Peng, J., Lu, Y. (2009). Succession of bacterial populations during plant residue decomposition in rice field soil. Appl. Environ. Microbiol.,75:4879-4886.
    Saitou, N., and Nei, M. (1987). The neighbour joining method:a new tool for reconstructing phylogenetic trees. Mol Biol Evol,4:406-425.
    Santelli, C.M., Orcutt, B.N., Banning, E., et al. (2008). Abundance and diversity of microbial life in ocean crust. Nature,453:653-656.
    Schauer, R., Bienhold, C., Ramette, A., et al. (2010). Bacterial diverisity and biogeography in deep-sea surface sediments of the South Atlantic Ocean. ISME J,4:159-170.
    Schloss, P.D., and Handelsman, J. (2005). Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Micorbiol,71: 1501-1506.
    Song, B., Kerkhof, L.J., Haggblom, M.M. (2002). Characterization of bacterial consortia capable of degrading 4-chlorobenzoate and 4-bromobenzoate under denitrifying conditions. FEMS MicrobiolLett,213:183-188.
    Sun, F., Wang, B., Liu, X., et al. (2010). Leisingera nanhaiensis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol,60:275-280.
    Sunagawa, s., DeSantis, T.Z., Piceno, Y.M., et al. (2009). Bacterial diversity and White Plague Disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME J,3:512-521.
    Tamura, K., Dudley, J., Nei, M., et al. (2007). MEGA 4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol,24:1596-1599.
    Tang, X., Gao, G., Qin, B., et al. (2009). Characterization of bacterial communities associated with organic aggregates in a large, shallow, eutrophic freshwater lake (Lake Taihu, China). Microb Ecol,58:307-322.
    Tas, N., Heilig, H.G., Van Eekert, M.H., et al. (2010). Concurrent hexachlorobenzene and chloroethene transformation by endogenous dechlorinating microorganisms in the Ebro River sediment. FEMS Microbiol Ecol,74:682-692.
    Teske, A., Alm, E., Regan, J.M., et al. (1994). Evolutionary relationships among ammonia-and nitrite-oxidizing bacteria. J Bacteriol,176:6623-6630.
    Tian, F., Chen, B., Yu, Y., et al. (2009). Bacterial, archaeal and eukaryotic diversity in Arctic sediment as revealed by 16S rRNA and 18S rrNA gene clone libraries analysis. Polar Biol,32: 93-103.
    Tiirola, M.A., Busse, H.J., Kampfer, P., et al. (2005). Novosphingobium lentum sp. nov., a psychrotolerant bacterium from a polychlorophenol bioremediation process. Int J Syst Evol Microbiol,55:583-588.
    Voordeckers, J.W., Do, M.H., Hugler, M., et al. (2008). Culture dependent and independent analyses of 16S rRNA and ATP citrate lyase genes:a comparison of microbial communities from different black smoker chimneys on the Mid-Atlantic Ridge. Extremophiles,12:627-640.
    Walsh, D.A., Zaikova, E., Howes, C.G., et al. (2009). Megagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science,326:578-582.
    Wasmund, K., Kurtboke, D.I., Burns, K.A., et al. (2009). Microbial diversity in sediments associated with a shallow methane seep in the tropical Timor Sea of Australia reveals a novel aerobic methanotroph diversity. FEMS Microbiol Ecol,68:142-151.
    Xing, W., Zhao, Y., Zuo, J.E. (2010). Microbial activity and community structure in a lake sediment for psychrophilic anaerobic wastewater treatment. J Appl Microbiol,109:1829-1837.
    Yoon, J.H., Oh, T.K., Park, Y.H. (2005). Erythrobacter seohaensis sp. nov. and Erythrobacter gaetbuli sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol,55:71-75.
    Zhang, R., Liu, B., Lau B.S., et al. (2007). Particle-attached and free-living bacterial communities in a contrasting marine environment: Victoria Harbor, Hong Kong. FEMS Microbiol Ecol,61:495-508.
    Zhang,Y. and Jiao, N. (2007). Dynamics of aerobic anoxygenic phototrophic bacteria in the East China Sea. FEMS Microbiol Ecol,61:459-469.
    Chun, J., Lee, J. H., Jung, Y., et al. (2007). EzTaxon:a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol,57, 2259-2261.
    De Ley, J., Cattoir, H. Reynaerts, A. (1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur JBiochem,12,133-142.
    Felsenstein, J. (1981). Evolutionary trees from DNA sequences:a maximum likelihood approach. J Mol Evol,17:368-376.
    Fitch, W. M. (1971). Toward defining the course of evolution:minimum change for a specific tree topology. Syst Zool,20,406-416.
    Gonzalez, J. M., Mayer, F., Moran, M. A., et al. (1997). Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 47,369-376.
    Huβ, V. A. R., Festl, H. Schleifer, K. H. (1983). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol,4,184-192.
    Leifson, E. (1963). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol, 85,1183-1184.
    Miyazaki, M., Nogi, Y., Ohta Y., et al. (2008). Microbulbifer agarilyticus sp. nov. and Microbulbifer thermotolerans sp. nov., agar-degrading bacteria isolated from deep-sea sediment. Int J Syst Evol Microbiol,58,1128-1133.
    Nishijima, N., Takadera, T., Imamura, N., et al. (2009). Microbulbifer variabilis sp. nov. and Microbulbifer epialgicus sp. nov., isolated from Pacific marine algae, possess a rod-coccus cell cycle in association with the growth phase. Int J Syst Evol Microbiol 59,1696-1707.
    Saitou, N., and Nei, M. (1987). The neighbor-joining method; a new method for reconstructing phylogenetic trees. Mol Biol Evol,4,406-425.
    Tamura, K., Dudley, J., Nei, M. et al. (2007). MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution,24,1596-1599.
    Tang, S.K., Wang, Y., Cai, M., et al. (2008). Microbulbifer halophilus sp. nov., a moderately halophilic bacterium from north-west China. Int J Syst Evol Microbiol,58,2036-2040.
    Thompson, J. D., Higgins, D. G., Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res,22,4673-4680.
    Wang, C.S., Wang Y., Xu, X.W., et al. (2009). Microbulbifer donghaiensis sp. nov., isolated from marine sediment of the East China Sea. Int J Syst Evol Microbiol,59,545-549.
    Wayne, L.G., Brenner, D.J., Colwell, R.R., et al. (1987). International Committee on systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol,37,463-464.
    Yoon, J.H., Kim, I.G., Shin, D.Y., et al. (2003a). Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol,53,53-57.
    Yoon, J.H., Kim, H., Kang, K.H., et al. (2003b). Transfer of Pseudomonas elongata Humm 1946 to the genus Microbulbifer as Microbulbifer elongatus comb. nov. Int J Syst Evol Microbiol, 53,1357-1361.
    Yoon, J.H., Kim, I.G., Oh, T.K. et al. (2004). Microbulbifer maritimus sp. nov., isolated from an intertidal sediment from the Yellow Sea, Korea. Int J Syst Evol Microbiol,54,1111-1116.
    Yoon, J.H., Jung, S.Y., Kang, S.J. et al. (2007). Microbulbifer celer sp. nov., isolated from a marine solar saltern of the Yellow Sea in Korea. Int J Syst Evol Microbiol,57,2365-2369.
    Ng, W.L., Yang, C.F., Halladay, J.T., et al. (1995). Protocol 25:Isolation of genomic and plasmid DNAs from Halobacterium halobium. In Archaea:a laboratory manual:Halophiles, pp.179-180. Edited by DasSarma, S. & Fleischmann, E.M. Newyork: Cold spring harbor laboratory press.
    慎佳泓,胡仁勇,李铭红,等.(2006).杭州湾和乐清湾滩涂围垦对湿地植物多样性的影响.浙江大学学报:理学版,33(3):324~328.
    杨俊毅,高爱根,宁修仁,等.(2007).乐清湾大型底栖生物群落特征及其对水产养殖的响应.生态学报,27(1):34--41.
    徐国锋,龙绍桥,秦铭俐,等.(2009).乐清湾养殖区富营养化现状分析与评价.海洋环境科学,28:59~61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700