用户名: 密码: 验证码:
集成介电电泳检测芯片系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微流控芯片是生化微分析系统(Bio-MEMS,Bio-Micro-electromechanicalSystem)技术发展的重要方向之一。由于介电电泳芯片可实现对细胞的非侵入式操控、能最大限度地保持被测样品的生理活性,从而成为人们进行微环境中细胞、细菌等操控、分析研究的热点与前沿。
     本论文在研究分析介电电泳芯片技术研究现状的基础上,针对介电电泳芯片存在的细胞富集、分离、检测一体化集成加工技术等问题,提出了实现介电电泳富集电极、微通道网络、在线检测系统等一体化集成的介电电泳芯片系统新思想与新方法;研究分析了介电电泳富集、流体力与介电电泳力联用的连续细胞分离的机理和方法;建立了基于叉指式阵列电极和水力聚焦原理的介电电泳芯片的电场和流场模型,通过相应的模拟分析,确定了介电电泳芯片系统的整体结构;提出了在芯片系统上集成LED诱导透射式荧光检测系统和阻抗检测器两种不同检测原理互补的在线双检测系统的新思想与新方法;基于实验室MEMS加工技术平台,完成了芯片加工工艺流程、芯片版图、外围电路、检测电路、应用软件等设计,成功研制出集成介电电泳检测芯片系统原理样机。以红细胞和肝癌细胞的混合细胞液为样品体系,进行了介电电泳原位富集、连续分离、光/电在线检测等实验,验证了集成介电电泳检测芯片系统的主要功能。
     论文的主要研究工作包括:
     ①在研究介电电泳芯片及其检测技术的国内外研究现状和发展趋势基础上,分析了介电电泳芯片分析系统存在的主要不足,提出了本论文的研究目标和主要研究内容;
     ②分析研究了介电电泳富集机理及其主要影响因素,探讨了流体力与介电电泳力联用的连续细胞分离的方法,创新性地提出在介电电泳芯片系统上集成LED诱导透射式荧光检测系统和阻抗检测器的在线双检测系统的新思想;
     ③建立了基于叉指式阵列电极和水力聚焦原理的介电电泳芯片的电场和流场模型,通过相应的模拟分析,确定了介电电泳芯片系统的结构参数;完成了LED诱导透射式荧光检测系统的构建和阻抗检测器的设计;
     ④基于实验室MEMS加工技术平台,完成了芯片加工工艺流程和版图设计,成功研制出满足设计指标要求的集成介电电泳检测芯片;通过集成介电电泳检测芯片、光/电在线双检测系统、外围电路、检测电路等模块的集成设计,成功研制出集成介电电泳检测芯片系统原理样机;
     ⑤开展了基于本论文研制的集成介电电泳检测芯片系统的应用实验研究。分别以肝癌细胞和人体小梁网细胞为实验样品,验证了小型LED诱导透射式荧光检测系统对单细胞的响应能力以及阻抗检测器对细胞生理状态的监测能力。以红细胞和肝癌细胞的混合细胞液为样品体系,进行了介电电泳原位富集、连续分离、光/电在线检测等实验研究。实验结果表明,集成介电电泳检测芯片系统对肝癌细胞的nDEP原位富集效率达到87.5%,对连续分离后的肝癌细胞的捕获率大于85%,小型荧光检测系统和阻抗检测器分别实现了细胞计数检测功能和生理状态的在线检测和识别功能,验证了集成介电电泳检测芯片系统的可行性和有效性。
Microfluidic chip is one of the most important development directions among theBio-MEMS (Bio-Micro-electromechanical System). Dielectrophoresis Chip (DC),which is based on invasive cell operation and has the advantage of keeping cellphysiological activity, is always the research hotspot and fronts for studying andmanipulating cells and bacteriain in the micro environment.
     Based on study the background of the DC technology, this dissertation aiming atthe problem of integrating the cell enrich, separation, detection analysis, and chipsystem, proposed a novel plan and new method of developing DC system that integratsdielectrophoresis enrich microelectrodes, microchannel network, on-line detectionsystem together; it was studied the factors that effect the dielectrophoresis enrichprocess, and the continuous separation condition for dielectrophoresis force and fluidforce coupling technique; it was also established the electric model and fluid model forDC based on interdigitated microelectrodes array and hydrodynamic focusing principle,respectively, and the overall design for the DC was determined by solving these models;it was proposed a new idea of integrating on-line dual detection system that LEDinduced transmitted fluorescence detection system and impedance sensor together onthe DC system; based on the MEMS fabrication platform in the lab, by finishing layoutand fabrication process design, and by combining the peripheral control circuit,detection circuit together, it was successfully developed a prototype of integrateddielectrophoresis chip detection system. Using the mixed red blood cells andHepatocarcinoma cells as experiment sample, the main function of the integrateddielectrophoresis chip detection system was verified.
     The main contributions of this work are listed as follows:
     ①Based on reviewing literature and references on DC and its detectiontechnology, the main problems on the current DC analysis system were pointed out.Motivated by the above observation, the research objectives and contents of this workwere developed, respectively;
     ②It was studied the dielectrophoresis enrich mechanism and the effect factors,and the continuous separation condition for dielectrophoresis force and fluid forcecoupling technique was discussed; it was innovatively proposed a new idea ofintegrating on-line dual detection system which includes LED induced transmitted fluorescence detection system and impedance sensor together on the DC system;
     ③It was established the electric model and fluid model for DC based oninterdigitated microelectrodes array and hydrodynamic focusing principle, respectively,and the overall design for the DC system was determined by solving these models; Itwas set up the LED induced transmitted fluorescence detection system and impedancesensor was designed.
     ④Based on the MEMS fabrication platform in the lab, by finishing fabricationprocess and layout design, the integrated dielectrophoresis detection chip wassuccessfully developed, which was satisfied with the design index. It was accomplishedthe integrated dielectrophoresis detection chip, optical/electric on-line dual detectionsystem, control circuit and other modules integrated together, and successfullydeveloped a prototype of integrated dielectrophoresis detection chip system.
     ⑤The application experiments based on the developed integrateddielectrophoresis detection chip system were studied. Using the Hepatocarcinoma cellsand human trabecular meshwork endothelium cells as experiment sample respectively, itis verified the single cell response ability for LED induced transmitted fluorescencedetection system, and the ability which can monitor cell physiological status by theintegrated impedance sensor. Using the suspension that mixed red blood cells andHepatocarcinoma cells together as experiment sample, the dielectrophoresis in situenrich, continuous separation, online dual detection experiments were done. The resultsshowed that the nDEP in situ enrich efficiency for Hepatocarcinoma cells can reach to87.5%, and the capture efficiency for Hepatocarcinoma cells in the mixed cellsuspension is greater than85%. The compact fluorescence detector and the integratedimpedance detector accomplished the functions of cell number counting detection andcell physiological state online identification, respectively, which demonstrated thefeasibility and validity of the developed integrated dielectrophoresis detection chipsystem.
引文
[1]黄成军.基于介电电泳原理的生物芯片的构建及其在细胞分析中的应用研究[D]:[博士学位论文].武汉:华中科技大学,2006:4.
    [2] A. Manz, B. Bechker. Microsystem Technology in Chemistry and Life Sciences, Topics incurrent chemistry194[M]. Springer-Verlag, Berlin, Germany,1998.
    [3] Y. C. Lim, A. Z. Kouzani, W. Duan. Lab-on-a-chip: A component view [J]. MicrosystemTechnologies-micro-and Nanosystems-information Storage and Processing System,2010,16(12):1995-2015.
    [4]徐溢.集成生化低电压芯片电泳系统的基础理论及关键技术研究[D]:[博士学位论文].重庆:重庆大学,2006.
    [5] T. Thorsen, S. M. Maerkl, S. R. Quake. Microfluidic large-scale integration [J]. Science,2002,298(5593):580-584.
    [6]林炳承,秦建华.微流控芯片实验室[M].北京:科学出版社,2008.
    [7] http://en.wikipedia.org/wiki/Dielectrophoresis.
    [8] H. A. Pohl. The motion and precipitation of suspensoids in divergent electric fields [J].Journal of Applied Physics,1951,22(7):869-871.
    [9] H. A. Pohl. Dielectrophoresis [M]. New York: Cam bridge University Press,1978:350-432.
    [10] G. H. Markx, R.Pethig. Dielectrophoretic separation of cells: Continuous separation [J].Biotechnology and Bioengineering,1995,45:337-343.
    [11] D. Gasperis. Microfluidic cell spearation by2dimensional dielectrophoresis [J]. BiomedicalMicrodevices,1999,2:41-49.
    [12] Y. Huang, J. Yang, X. B. Wang, et al. Cutting edge communication: the removal of humanbreast cancer cells from hematopoietci CD+34stem cells by dielectrophoretic field-flow-fractionation [J]. J. Hematotherapy&Stem Cell Research.1999,8:481-490.
    [13] F. F. Becker, X. B. Wang, Y. Huang, et al. Separation of human breast cancer cells fromblood by differential dieletric affinity [J]. Pro. Nat. Acad. Sci. U. S. A,1995,29:860-864.
    [14] P. R. C. Gascoyne, X. B.Wang, Y. Huang, et al. Dielectrophoretic separation of cancer cellsfrom blood [J]. IEEE Trans. Ind. Appl.,1997,33:670-678.
    [15] J. Cheng, L. J Kricka., E. L. Sheldon Sample preparation in microstructured devices,microstructure and microsystems. Beilin: Springer-Verlag,1998,194:215-231.
    [16]徐溢,郝敦玲,曾雪等.生化样本的芯片介电电泳富集和分离研究进展[J].化学通报,2009,1:4-9.
    [17]曾雪,徐溢,曹强等.介电电泳芯片的结构设计与模拟分析进展[J]. MEMS器件与技术,2009,46(1):34-41.
    [18] H. Blanca, E. Lapizco, A. Blake, et al. Dielectro-phoretic concentration and separation of liveand dead bacteria in an array of insulators [J]. Analytical Chemistry,2004,76(6):1571-1579.
    [19] E. B. Cummings. Streaming dielectrophoresis for continuous flow microfluidic devices [J].IEEE Engineering in Medicine and Biology Magazine,2003,22(6):75-84.
    [20] I. Ciprian, G. L. Xu, C. Felicia, et al. A3-D dielectro-phoretic filter chip [J]. Electrophoresis,2007,28(7):1107-1114.
    [21]魏庆华,黄忠仁,吕金塗等.以SU-8制作微圆柱阵列之介电泳晶片应用于微小粒子分离与集中[C].高雄中山大学,[机械工程系所]会议论文:2006.徐溢,曹强,曾雪等.介电电泳芯片及其在细胞分析中的应用[J].化学通报,2009,7:594-602.
    [22]徐溢,曹强,曾雪等.介电电泳芯片及其在细胞分析中的应用[J].化学通报,2009,7:594-602.
    [23] S. Golan, D. Elata, M. Orenstein, et al. Floating electrode dielectrophoresis [J]. Electro-phoresis,2006,27(24):4919-4926.
    [24] S. Golan, D. Elata, U. Dinnar. Hybrid dielectrophoresis devices that employ electricallyfloating electrodes [J]. Sensors and Actuators A,2008,142(1):138-146.
    [25] H. B. Li, R. Bashir. Dielectrophrotic sepatation and manipulation of live and heat-treatedcells of Listeria on microfbricated devices with interdigitated electrodes [J]. Sensors andActuators B,2002,86(2-3):215-221.
    [26] D. F. Chen, H. Dua, H. W. Li. Bioparticle separation and manipulation using dielectro-phoresis [J]. Sensors and Actuators A,2007,133(2):329-334.
    [27] F. Aldaeus, Y. Lin, G. Amberg, et al. Multi-step dielectrophoresis for separation of particles[J]. Journal of Chromatography A,2006,1131(1-2):261-266.
    [28] I. R. Perch-Nielsen, D. D. Bang, C. R. Poulsen, et al. Removal of PCR inhibitors usingdielectrophoresis as a selective filter in a microsystem [J]. Lab on a Chip,2003,3(3):212-216.
    [29] S. Rajaraman, H. S. Noh, J. P. Hesketh. Rapid, low cost microfabrication technologiestoward realization of devices for dielectrophoretic manipulation of particles and nanowires[J]. Sensors and Actuators B,2006,114:392-401.
    [30] J. S. Andrewsa, V. P. Masona, I. P. Thompson, et al. Construction of artificially structuredmicrobial consortia (ASMC) using dielectrophoresis: Examining bacterial interactions viametabolic intermediates within environmental biofilms [J]. Journal of MicrobiologicalMethods,2006,64(1):96-106.
    [31] J. Oblak, D. Krizaj, S. Amon, et al. Feasibility study for cell electroporation detection andseparation by means of dielectrophoresis [J]. Bioelectrochemistry,2007,71(2):164-171.
    [32] R. Pethig, Biodetection using micro-physimetry tools based on electrokinetic phenomena [J].Implementation Strategies and Commercial Opportunities,2005,129-142.
    [33] A. Docoslis, P. Alexandridis. One-, two-, and three-dimensional organization of colloidalparticles using nonuniform alternating current electric fields [J]. Electrophoresis,2002,23(14):2174-2183.
    [34] F. Grom, J. Kentsch, T. Müller, et al. Accumulation and trapping of hepatitis A virusparticles by electrohydrodynamic flow and dielectrophoresis [J]. Electrophoresis,2006,27(7):1386-1393.
    [35] Ho C T, Lin R Z, Chang W Y,et al. Rapid heterogeneous liver-cell on-chip patterning via theenhanced field-induced dielectrophoresis trap [J]. Lab on a Chip,2006,6:724-734.
    [36] F. E. H. Tay, L. Yu, A. J. Panga, et al. Electrical and thermal characterization of a dielectro-phoretic chip with3D electrodes for cells manipulation [J]. Electrochimica Acta,2007,52(8):2862-2868.
    [37] T. Yasukawa, M. Suzuki, T. Sekiya. Flow sandwich-type immunoassay in microfluidicdevices based on negative dielectrophoresis [J]. Biosensors and Bioelectronics,2007,22(11):2730-2736.
    [38] Sungyoung Choi, Je-Kyun Park. Microfluidic system for dielectrophoretic separation basedon a trapezoidal electrode array [J]. Lab on a Chip,2005,5,1161-1167.
    [39] M Dürr, J Kentsch,T Müller. Microdevices for manipulation and accumulation of micro‐and nanoparticles by dielectrophoresis [J]. Electrophoresis,2003,24(4):722-731.
    [40] K. Morishimaa, F. Araia, T. Fukudab, et al. Screening of single Escherichia coli in micro-channel system by electric field and laser tweezers [J]. Analytica Chimica Acta,1998,365(1-3):273-278.
    [41] F. Arai, A. Ichikawa, M. Ogawa, et al. High-speed separation system of randomly suspendsingle living cells by laser trap and dielectroresis [J]. Electrophoresis,2001,22(2):283-288.
    [42] J. Suehiro, A. Ohtsubo, T. Hatano, et al. Selective detection of bacteria by a dielectrophoreticimpedance measurement method using an antibody-immobilized electrode chip [J]. Sensorsand Actuators B,2006,119(1):319-326.
    [43] L. Yang, P. P. Banada, A. K. Bhunia, et al. Effects of dielectrophoresis on growth, viabilityand immuno-reactivity of listeria monocytogenes [J]. Journal of Biological Engineering,2008,2:6.
    [44] T, Yasukawa, M. Suzuki, T. Sekiya. Flow sandwich-type immunoassay in microfluidicdevices based on negative dielectrophoresis [J]. Biosensors and Bioelectronics,2006,22(11):2730-2736.
    [45] http://en.wikipedia.org/wiki/Antigen-antibody_complex.
    [46] I. Doh, Y-H Cho. A continuous cell separation chip using hydrodynamic dielectrophoresis(DEP) process [J]. Sensors and Actuators A,2005,121(1):59-65.
    [47]郝敦玲.芯片介电电泳细胞DEP富集过程研究[D]:[硕士学位论文].重庆:重庆大学,2008:6.
    [48]曾雪.微流控芯片介电电泳过程的模拟分析和芯片设计研究[D]:[硕士学位论文],2009:6.
    [49]薛巍,姜雯.微流控芯片检测技术进展[J].化学分析计量,2007,16(3):77-79.
    [50]曾元儿,张凌.仪器分析[M].北京:科学出版社,2007.
    [51] J. Fu, F. Qun, T. Zhang, et al. Laser-induced fluoresence detection system for microfludicchips based on an orthogonal optial arrangement [J]. Analytical Chemistry,2006,78(1),3827-3834.
    [52]刘长春,崔大付,蔡浩源等.集成光纤的PDMS夹心式微流控芯片及便携式LED诱导荧光检测系统[C].第三届全国微全分析系统学术会议,2005,10,武汉:80-81.
    [53]罗国安,姚波,王立铎等.用于微流控芯片系统的荧光检测装置[P].200510070976.7.
    [54]杨丙成,关亚风,谭峰等.发光二极管诱导荧光检测器的研制[J].分析实验室,2003,22(5):89-92.
    [55] S. Wang, X. Huang, Z. Fang, et al. Miniaturized liquid core waveguide-capillary electro-phoresis system with flow injection sample introduction and fluorometric detection usinglight-emitting diodes [J]. Analytical Chemistry,2001,73(18):4545-4549.
    [56]闫琴,肖华,庞代文,程介克.芯片毛细管电泳荧光光子计数器检测系统[C].首届微全分析会议论文集,北京清华大学:2001.
    [57] J. R. Webster, M. A. Burns, D. T. Burke, et al. Monolithic capillary electrophoresis devicewith integrated fluorescence detector [J]. Analytical Chemistry,2001,73(7):1622-1626.
    [58] M. L. Chabinyc, D. T. Chiu, J. C. McDonald, et al. An integrated fluorescence detectionsystem in poly (dimethylsiloxane) for microfluidic applications [J]. Analytical Chemistry,2001,73(18):4491-4498.
    [59] D. Holmes, H. Morgan, N. G. Green. High throughput particle analysis: Combining dielectro-phoretic particle focussing with confocal optical detection [J]. Biosensors and Bioelectronics,2006,21(8):1621-1630.
    [60] Z. Wang, O. Hansen, P. K. Petersen, et al. Dielectrophoresis microsystem with integratedflow cytometers for online monitoring of sorting efficiency [J]. Electrophoresis,2006,27(24):5081-5092.
    [61] http://www.genengnews.com/new-products/microfluidic-chip-coupling/3809/.
    [62]闫琴,肖华,庞代文,程介克.芯片毛细管电泳荧光光子计数器检测系统[C].首届微全分析会议论文集,北京清华大学:2001.
    [63] W. Gu, Y. Zhao. Cellular electrical impedance spectroscopy: An emerging technology ofmicroscale biosensors [J]. Expert Review of Medical Devices,2010,7(6):767-779.
    [64] J. M. Torrents, P. Juan-Garcia, and A. Aguado. Electrical impedance spectroscopy as atechnique for the surveillance of civil engineering structures: Considerations on the galvanicinsulation of samples [J]. Measurement Science and Technology,2007,18:1958-1962.
    [65] J. Wu, Y. Ben, and H. C. Chang. Particle detection by electrical impedance spectroscopywith asymmetric-polarization AC electroosmotic trapping [J]. Microfluidics and Nanofluidics,2005,1:161-167.
    [66] O. Casas, R. Bragos, P. J. Riu, et al. Rodriguez-Sinovas, A. Carreno, and J. Cinca. In vivoand in situ ischemic tissue characterization using electrical impedance spectroscopy [J].Annals of the New York Academy of Science,1999,873:51-58.
    [67] J. E. da Silva, J. P. de Sa, and J. Jossinet. Classification of breast tissue by electricalimpedance spectroscopy [J]. Medical&Biological Engineeing&Computing,2000,38:26-30.
    [68] Wound Healing Assay: The ECIS Method. www.biophysics.com/application/woundheali-ng.html.
    [69] Y. Pan, M. Guo, Z. Nie, et al. Selective collection and detection of leukemia cells on amagnet-quartz crystal microbalance system using aptamer-conjugated magnetic beads [J].Iosensors and Bioelectronics,2009,25(7):1609-1614.
    [70] P. Hewa, M. Thamara, G. A. Tannock, et al. The detection of influenza A and B viruses inclinical specimens using a quartz crystal microbalance [J]. Journal of Virological Methods,2009,162(1-2):14-21.
    [71] K. Chen, H. Obinata, T. Izumi. Detection of G protein-coupled receptor-mediated cellualrresponse involved in cytoskeletal rearrangement using surface plasmon resonance [J].Biosensors and Bioelectronics,2010,25(7):1675-1680.
    [72] Y. Wang, X. Zhu, M. Wu, et al. Simultaneous and label-free determination of wild-type andmutant p53at a single surface plasmon resonance chip preimmobilized with consensus DNAand monoclonal antibody [J]. Analytical Chemistry,2009,22:1813-1823.
    [73] J. Fritz. Cantilever biosensors [J]. Analyst,2008,133:855-863.
    [74] C. Xiao, J. H. Luong. A simple mathematical model for electric cell-substrate impedancesensing with extended applications [J]. Biosensors and Bioelectronics,2010,25:1774-1780.
    [75] T. S. Hug. Biophysical methodes for monitoring cell-substrate interactions in drug discovery[J]. Assay and Drug Development Technologies,2003,1:497-488.
    [76] A. R. Rahman, C. M. Lo, S. Bhansali. A detailed model for high-frequency impedancecharacterization of ovarian cancer epithelial cell layer using ECIS electrodes [J]. IEEE Tran-sactions on Biomedical Engeering,2009,56:485-492.
    [77] K. Cheung, S. Gawad, P. Renaud. Impedance spectroscopy flow cytometry: On-chip label-free cell differentiation [J]. Cytometry Part A,2005,65A (2):124-132.
    [78] S. Gawad, L. Schild, P. Renaud. Micromachined impedance spectroscopy flow cytometer forcell analysis and particle sizing [J]. Lab on a Chip,2001,1(1):76-82.
    [79] M. Yang, C. C. Lim, R. Liao, et al. A novel microfluidic impedance assay for monitoringendothelin-induced cardiomyocyte hypertrophy [J]. Biosensors and Bioelectronices,2007,22:1688-1693.
    [80] K. H. Kang, D. Q. Li, Force acting on a dielectric particle in a concentration gradient by ionicconcentration polarization under an externally applied DC electric field [J]. Journal ofColloid and Interface Science,2005,286:792-806.
    [81]计光华,计洪苗.微流动及其元器件[M].北京:高等教育出版社,2009.
    [82] J. Gimsa, D. Wachner. A polarization model overcoming the geometric restrictions of thelaplace solution for spheroidal cells: Obtaining new equations for field induced forces andtrasmenbrane potential [J]. Biophysical Journal,1999,77:1316-1326.
    [83] J. Gimsa, D. Wachner. A unified resistor-capacitor model for impedance, dielectrophoresis,electrototation, and induced transmembrane potential [J]. Biophysical Journal,1998,75:1107-1116.
    [84] A. Irimajiri, T. A. HanaiInouye. A dielectric theory of multi-stratified shell model with itsapplication to a lymphoma cell [J]. Journal of Theoretical Biology,1979,78:251-269.
    [85] C. Grosse, H. A. Schwan. Cellular membrane potentials induced by alternating fields [J].Biophysical Journal,1992,63:1632-1642.
    [86] A. Castellanos, A.Ramos, A. Gonza’lez, et al. Electrohydrodynamics and dielectrophoresis inmicrosystems: scaling laws [J]. Journal of Physics D: Applied Physics,2003,36,2584-2597.
    [87] T. B. Jones. Influence of scale on electrostatic forces and torques in AC particulateelectrokinetics [C]. IEE Proceedings-Nanobiotechnology,2003,150(2):39-46.
    [88] A. Ramos, H. Morgan, N. G. Green, et al. Ac electrokinetics: a review of forces in microelec-trode structures [J]. Journal of Physics D: Applied Physics,1998,31(18),2338-2353.
    [89] G. H. Markx, R. Pethig. Dielectrophoresis separation of cells-continous separation [J].Biotechnology and Bioengineering,1995,45(4):337-343.
    [90] F. F. Becker, X. B. Wang, Y. Huang, et al. The removal of human leukaemia cells fromblood using interdigitated microelectrodes [J]. Journal of Physics D: Applied Physics.1994,27:2659-2262.
    [91] A. J. Goldman, R. G. Cox, H. Brenner. Slow viscous motion of a sphere parallel to a planewall—II Couette flow [J]. Chemical Engineering Science,1967,22:653-660.
    [92] J. Voldman, R. A. Braff, M. Toner, et al. Holding forces of single-particle dielectrophoretictraps [J]. Biophysical Journal.2001,80(1):531-542.
    [93]胡朝颖,刘清君,张远帆等.细胞阻抗传感器优化设计及其在毒素监测中的应用[J].传感技术学报,2010,23(3):291-296.
    [94]肖名飞,杨兴,周兆英.细胞阻抗谱检测芯片的设计及实验[J].纳米技术与精密工程,2007,5(4):302-306.
    [95]黄海滨,任超世.阻抗谱分析法测量红细胞聚集特性[J].医学研究杂志,2006,35(4):66-67.
    [96] S. Grimnes, B. G. Martin. Bioimpedance and bioelectricity basic,2nd Edition [M]. SanDiego: Academic Press,2008.
    [97] Y. H. Cho, N. Takama, T. Yamamoto, et al. Characterization of single red blood cell usingtwin microcantilever type sensor array [C]. The13th International Conference on Solid StateSensors, Actuators and Microsystems. Seoul, Korea,2005:1692-1695.
    [98] Y. Lin, M. Li, C. Fan, et al. A microchip for electroporation of primary endothelial cells [J].Sensors and Actuators A,2003,108:12-19.
    [99] J. R. Melcher, G. I. Taylor. Electrohydrodynamics: A review of the role of interfacial shearstresses [J]. Annual Reviews: Fluid Mechanics,1969,1:111-146.
    [100] A. Ramos, H. Morgan, N. G. Green, et al. AC electrokinetics: A review of forces in micro-electrodestructures [J]. Joural of Physics D: Applied Physics,1998,31:2338-2353.
    [101] D. A. Aville. Electrohydrodynamics: The Taylor-Melcher leaky dielectric model [J]. AnnualReviews: Fluid Mechanics,1997,29,27-64.
    [102] A. Gonzalez, A. Ramos, N. G. Green, et al. Fluid flow induced by non-uniform ac electricfields in electrolytes on microelectrodes II: A linear double-layer analysis [J]. PhysicalReview E,2000,61:4019-4028.
    [103] N. G. Green, A. Ramos, A. Gonz’alez, et al. Fluid flow induced by non-uniform ac electricfields in electrolytes on microelectrodes III: Observation of streamlines and numerical simu-lation [J]. Physical Review E,2000,66(2):26-30.
    [104]刘守坤,苏显中,金庆辉等.一种基于微流控芯片技术的流式细胞计数系统[J].传感器与微系统,2009,28(10):100-113.
    [105]雒文伯,梁智创,蔡建雄等.具有三维聚焦之微型流式细胞/颗粒计数仪[J].功能材料与器件学报,2008,14(2):436-440.
    [106] P. S. Dittrich, P.Schwille. An integrated microfluidic system for reaction, high-sensitivitydetection, and sorting of fluorescent cells and particles [J]. Analytical Chemistry,2003,75(21):5767-5774.
    [107] A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, et al. Integrating advanced functionality in amicrofabricated high-throughput fluorescent-activated cell sorter [J]. Lab on a Chip,2003,3(1):22-27.
    [108]杨静,杨君,许蓉.一种微流控细胞分离芯片及其流场分析[J].仪器仪表学报,2009,30(7):1508-1511.
    [109] Hep G2: http://en.wikipedia.org/wiki/Hep_G2.
    [110] X. Wang, Y. Huang, P. Gascoyne, et al. Dielectrophoretic manipulation of particles [J]. IEEETransactions on Industry Application,1997,33(3):660-669.
    [111] D. Xiao, S. Zhao, H. Yuan, et al. CE detector based on light-emitting diodes [J]. Electro-phoresis,2007,28:233-242.
    [112] S. Hillebrand, J. Schoffen, M. Mandaji, et al. Performance of an ultravillet light-emittingdiode-induced fluoresence detector in capillary electrophoresis [J]. Electrophoresis,2002,23:2445-2448.
    [113] T. Wilson, Optical sectioning in confocal fluorescent microscopes [J]. Journal of Microscopy,1989,154:143.
    [114] J. C. A. Maxwell, Treatise on electricity and magnetism [M]. Dover Press: New York,1954.
    [115] AD645Datasheet, Analog Device Corporation.
    [116] D. E. Johnson.有源滤波器精确设计手册[M].北京:电子工业出版社,1984.
    [117]胡宏华.微流控分析芯片的激光诱导荧光微球检测[D]:[博士学位论文].杭州:浙江大学,2006.
    [118]张涛.非共焦微球激光诱导荧光检测实验系统的研制[D]:[博士学位论文].杭州:浙江大学,2004.
    [119]林磊,莫玉龙,侯卫东.电阻抗成像系统的设计和实现[J].计算机工程,2002,28(7):75-76.
    [120]孙永文,韩建国.便携式生物电阻抗测量系统设计[J].计算机测量与控制,2005,13(7):645-646.
    [121]孙建新.集成低电压电泳芯片控制与数据采集系统[D]:[硕士学位论文],2010:6.
    [122]鸿海科技.小型开关电源: http://honghaitech.cn.alibaba.com.
    [123]司徒镇强,吴军正.细胞培养[M],西安:世界图书出版社,2004:73-74.
    [124]平伟,付向宁,孙威.循环肿瘤细胞的研究进展[J].医学与哲学,2011,6(36):37-38.
    [125]乔媛媛.循环肿瘤细胞及其肿瘤转移复发的相关性研究[J].现代肿瘤医学,2011,9(19):1877-1880.
    [126]周小昀,李龙芸.检测循环肿瘤细胞(CTC)在临床肿瘤诊断和治疗中的作用[J].癌症进展杂志,2006,3(4):240-243.
    [127] S. Mocellin, U. Keilholz, C. R. Rossi, et al. Circulating tumor cells: the ‘leukemic phase’ ofsolid cancers [J]. Trends in Molecular Medicine,2006,12(3):130-139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700