用户名: 密码: 验证码:
陶瓷耐磨硬涂层微动接触应力有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一般来说接触区域的弹塑性应力状态是疲劳裂纹萌生和扩展的主要控制因素。对于硬质涂层,当承载时基体与涂层的变形差异较大,容易在涂层/基体界面形成裂纹,并导致涂层的快速剥落。因此,硬涂层/基体系统的微动疲劳失效和破坏往往与涂层表面及界面最大接触应力(最大拉应力,最大剪应力,Von Mises应力)密切相关。本课题针对球形压头和柱形压头作用下陶瓷耐磨硬涂层在微动接触条件下的接触应力,基于大型有限元软件ADINA,建立接触模型进行有限元分析,详细探讨不同摩擦系数μ,弹性摸量比及涂层厚度比等参数对涂层/基体接触应力分布的影响。为微动条件下硬涂层设计提供理论指导。
     本课题的主要研究内容如下:1)陶瓷耐磨硬涂层/基体特征分析;2)球压头及柱压头作用涂层/基体系统的接触应力分析及有限元建模;3)基于ADINA软件平台,分别对球形、圆柱形压头单涂层/基体系统正接触,圆柱形压头微动接触及双涂层(中间层)微动接触条件下接触应力场进行有限元计算,详细分析了材料特性(弹性摸量比)涂层厚度比及摩擦系数等因素对表面、亚表面及结合界面上最大接触应力(最大拉应力,最大剪应力应力,Von Mises应力)分布的影响,为微动条件的硬涂层正确设计提供理论指导。
It is well known, the stress state in the contact zone is one of the most important factors for the evaluation of initation and growing of fatigue cracks .The maximum contact stress(maximum tensile stress, maximum shearing stress and maximum von Mises stress) are important factors for the design of hard coatings/substrat, because surface damage, delamination and spalling of the hard coating are usually caused by these maxmum stresses.Therefore, aqualitative analysis of these stresses is important. The aim of this paper is to describe a finite element method used to investigate the contact stresses of hard coating/substrate under fretting contact. The finite element commercial code ADINA has been used. The stresses have been computed for various values of the coating-to-substrate Young'moudelus ratio, friction coefficient and coating thickness.
    The main contend of the thesis is as follow:
    l)The character of the hard coating/substrate was analyzed.
    2) The distribution of cantact stress, was analyzed theoretically first and then a finite element analysis has been carried out to obtain the contact stress of the hard coating/substrate when using spherical or cylindrical fretting pads.
    3) The influence of values of the coating-to-substrate Young' moudelus ratio,friction coefficient and coating thickness on the distribution of contact stress(maximum tensile stress, maximum shearing stress and maximum von Mises stress) on surface subsurface and interface bonding of coating/substrate system was analyzed .it can be helpful to the design of hard coating/substrate under fretting contact.
引文
[1] 刘家浚等,材料磨损原理及其耐磨性 清华大学出版社 1993
    [2] 徐滨士,刘世参.表面工程.北京:机械工业出版社,2000,6
    [3] 曲敬信,汪凡宏.表面工程手册.北京:化学工业出版社,1998.
    [4] Meyer L K, Hauert R. Tribological properties of a-C:H multiplayer structures. Thin SolidFilms, 1999, 338: 172-176.
    [5] Chicot D, Benarioua Y, Lesage J. Hardness measurements of Ti and TiC multilayers: amodel. Thin Solid Films, 2000, 359: 228-235.
    [6] Oda M, Hara T. Tribological evaluation of boriding metal by acoustic emission technique.日本机械学会论文集(C编),1995,61(591):328-334.
    [7] Dreer S, Erismer民Wilhartiz P. Multidimensional optimization of process parameters by experimental design for the deposition of aluminium and silicon oxynitride films with predictable composition[J]. Surf. and Coatings Tech., 1999, 114: 29-38.
    [8] Porownawcze B, Zuzycia T, Tin P. Comparison of wear and friction measurements of TiNcoatings. J. of Trib., 1995, 1: 7-25.
    [9] Li D Y, Liu R. The mechanism responsible for high wear resistance of Pseudo-elastic TiNi alloy-a novel tribo-material. Wear, 1999, 225-229: 777-783.
    [10] Yamamoto T. Tribology of DLC films for thin film media overcoat. Trib., 1996,41(9): 760-765.
    [11] Michler J, Mermoux M, Kaenel Y V, et al. Residual stress in diamond films:origins andmodeling. Thin Solid Films, 1999, 357: 189-201.
    [12] Wang P Z, Hutchings I M. Diamondlike carbon (DLC) film and its tribology-a literaryreview and some experiments. Proc. of the second inter. Conf on Surf. Eng., 1999, 370-374.
    [13] Itoh Y, Itoh A, Azuma H, et al. Tribological properties of Nitrogen ion implanted Ti alloy. 表面技术, 1996, 47(4): 345-348.
    [14] Sherbiny M E. The friction of solid film lubricants: a theoretical approach. Proc. of 3rdInter. Conf. on Solid Lub., 1984, ASLE SP-14, 3949.
    [15] 巧薛群基,陈建敏粘结固体润滑涂层的研究及其应用.第二届表面工程国际会议论文集,1999,1318.
    [16] 徐可为,何家文.金属薄膜的力学性能研究.第二届表面工程国际会议论文集,1999,38-43.
    [17] Godet M, Berthier Y Leroy J M, et al. Coating design methodology, in Tribological Designof Machine elements. Proc. of 15th Leeds-Lyon Symp. on Trib., 1998, 53-59.
    [18] Hardwick D A. The mechanical properties of thin films: a review. Thin Solid Films, 1987, 154: 109-124
    [19] Schulze G W, Erdogan F. Periodic cracking of elastic coatings. Int. J. of Solids Struct., 1998, 35(28-29): 3615-3634
    [20] 魏东,刘佐民.金属基/陶瓷涂层的接触应力有限元分析.武汉理工大学硕士论文 2001
    [21] 刘爱香等.金属基陶瓷涂层的制备和应用及发展表面技术,1998,28(1)
    [22] 徐滨士,刘世参.表面工程.北京:机械工业出版社,2000,6
    [23] 刘江南.金属表面工程学.北京:兵器工业出版社,1995,12
    [24] 陈学良,大森明,荒田吉明.低气压等离子喷涂涂层结构的研究.焊接学报,1988,9(4)
    [25] 徐滨士等 表面工程的理论与技术,北京:国防工业出版社,1999,7
    [26] Mervin, J.E.& Johnson, K.L(1963)Analisis of plastic deformation inrolling contact
    [27] Burmister.& Liu C K. Stresses Due to Tangential and Normal Load on an Elastic Solid With Application to Some Contact Stress. Problem, Trans. ASME, Jounal of AppliedMech, 1945, 75: 157-166
    [28] Cheng, H.A numerical solution of the elastohydrodynamic film thickness in elliptical cotact. Trans. ASME, series F, 92,155
    [29] O' Sullivan T C, King R B. Sliding contact field due to a spherical indenter on a layered elastic half-space. ASME Journal of Tribology, 1988, 110: 235-240
    [30]Kua C H, Keer L M. Contact stress analysis of a layered transversely isotropic helf-space. Journal of tribology, 1992, 114: 253-262.
    [32]O'Sullivan T C, King R B. Sliding sliding contact stress in a two dimension layerd elastic half-space. Int. J. Solids Struct. 1987, 23: 581-597
    [33]Komvopoulos K. Finite analysis of a layered elastic solid in normal contact with a rigidsurface. Joumal of tribology, 1988, 110: 477-485.
    [34]Djabell &, Arnell R.D Finite Element Analysis of Contact Stress in Elastic Double-layer Systems under Normal Load. Thin Solid Film, 1993,223:98~108
    [35]Meletis E I, Erdemir A, Fenske G.R Tribologicat Charaticteritics of DLC films and doublex nitriding/DLC coating treatments, surface and coatings technology. 1995, 73(3): 185-197
    [36]Voevodin A A, Meletis. Wear resistant coating deposited by electron enhanced close field unbalance Magnetron sputtering..surface and coatings technology. 1995, 73(3): 185-197
    [37]Stephens L S Yan Liu. Meletis E I. Finite element anasys of the intial yielding behavior of a hard coating/substrate system with functionally graded interface under indentation and friction. J. of Trib., 2000, 122: 381-387.
    [38]阎洪.金属表面处理新技术.北京:冶金工业出版社, 1996.
    [39]kunol. K. Iyer, Peak contact pressure, cyclic stress amplitudes, contact semi-width and slip amplitude: relative acts onfretting fatigue life, Int. J. Fatigue 23(2001) 193-206.
    [40]J. chivers. V. Lamaq, M.C. Dubourg, L. Vincent, Crack path prediction under fretting fatigue-a theoretical and experimental approach, J. Tribol. 118(1996) 711-720.
    [41] Gordelier. Arnell R D. Finite element analysis of the contact stresses in elastic double-layer systems under normal load. Thin Solid Films, 1993, 223: 98 108
    [42] D. Nowell, D.A. Hills, Contact problems in corporating elastic layers, Int. J. Solids Struct. 24(1) (1998)105-115.
    [43] Odfalk &Vingsbo. Elasto-plastic element analysis of fretting stresses in pre-stressed strip in contact withcylindrical pad, Finite Elements Anal. Des. 36 (2000) 171-187.
    [44] P.A. McVeigh, T.N. Farris, Finite element analysis off retting stresses, J. Tribol. 119(1997)797-801.
    [45] Jonhson K.L.Contact Mechanics. Cambridge: Cambridge UniversityPress, 1992
    [46] C.T. Tsai, S. Mall, Elasto-plastic_nite element analysis off retting stresses in pre-stressed strip in contact with cylindrical pad, Finite Elements Anal. Des. 36(2000) 171-187.
    [47] A.E. Giannakopoulos, S. Suresh, A three-dimensional analysis of fretting fatigue, Acta Mater. 46(2) (1997)177-192.
    [48] B.U. Wittkowsky, P.R. Birch, J. Dom*Jnguez, S. Suresh, An experimental investigation of fretting fatigue with spherical contact in 7075-T6 aluminium alloy, in: D.W. Hoeppner, V. Chandrasekaran, C.B. Elliot (Eds.), Fretting Fatigue: Current Technology and Practices, ASTM STP 1367, American Society for Testing and Materials, Philadelphia, 1999.
    [49] V. Lamaq, M.C. Dubourg, L. Vincent, Crack path prediction under fretting fatigue-a theoretical and experimentalapproach, J. Tribol. 118 (1996) 711-720.
    [50] C. Cattaneo, Sul contatto di due corpi elastici: distribuzion locale degli sforzi, Reconditi Academia Nazionale dei Lincei 27 (1938) 342-348, 434-436, 474-478.
    [51] R.D. Mindlin, H. Deresiewicz, Elastic spheres in contact under varying oblique forces, J. Appl. Mech. 75 (1953) 327-344.
    [52] G.M. Hamilton, L.E. Goodman, The stress_eld created by a circular sliding contact, J. Appl. Mech. 33 (1966) 371-376.
    [53] Tian H, Saka N. Finite element analysis of an elastic-plastic two-layer half-space: normal contact. Wear,
    [54] 蒋友谅,非线性有限元法,北京工业学院出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700