用户名: 密码: 验证码:
聚乳酸/茶多酚复合纳米纤维膜的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当聚合物纤维直径达到纳米级时,便会出现一系列优异的特性,这些特性使得聚合物纳米纤维及其制品在众多领域具有极高的研究价值及潜在应用价值。静电纺丝技术是目前制备纳米纤维最经济有效的方法之一,其制备的纳米纤维连续且均匀,性能良好,成为人们研究聚合物纳米纤维及其制品的首选方法。然而研究目的的不同,对聚合物种类的性质及功能的要求也不尽相同。为了赋予研究材料功能的最大化以及弥补某种单一材料性能上的不足,可以把研究对象从一种聚合物拓展为两种或两种以上的聚合物、也可以在一种聚合物中添加功能性材料。本文采用生物相容性好的高分子材料聚乳酸(Polylactide,PLA)作为基材,与具有多种功效及各种药理药效的茶多酚(TeaPolyphenol,TP)混合,采用静电纺丝的方法制备出PLA/TP复合纳米纤维膜,对其纺丝工艺及各种性能进行研究,主要内容及相关结论如下:
     (1)PLA/TP复合纳米纤维膜纺丝方案的确定。通过扫描电子显微镜(SEM)图,分析对比纤维形貌,优化各实验方案条件下的试验参数。首先研究纺丝溶质浓度及纺丝溶剂对纳米纤维成型及形貌的影响。SEM图显示,当溶质质量分数小于或大于10%时,不是珠节状和纺锤体状纤维甚多,就是纤维直径偏大,因此确定溶质质量分数为10%。其次对于纺丝溶剂的选择,为了改善纤维形貌,并考虑到后续添加物TP的溶解问题,加入N,N-二甲基甲酰胺(DMF)与二氯甲烷(DCM)组成二元混合溶剂。通过SEM图,发现DMF的确是一种理想良溶剂,并确定出DCM/DMF体积比为7/3,所纺纤维均匀性最好。确定纺丝过程参数分别为纺丝电压18kV、纺丝距离17.5cm及纺丝速度0.8mL/h。纺丝方案确定后,对不同PLA/TP质量比对复合纳米纤维膜相貌的影响进行分析。研究了TP对混合纺丝溶液性质及直径的的影响。当两者质量比在100/0-50/50范围内变化时,PLA/TP复合纳米纤维平均直径从854nm下降到380nm,再继续改变两者质量比,则出现纤维断裂甚至不成纤的情况。
     (2)PLA/TP复合纳米纤维膜结构和性能研究。在PLA/TP不同质量比条件下制备的复合纳米纤维膜,傅里叶红外光谱(FTIR)分析结果显示:50/50时,复合薄膜在3550-3200cm-1处出现宽羟基缔合特征伸缩振动吸收峰,并出现取代苯的特征吸收峰,证实PLA/TP复合纳米纤维膜中两者之间通过价键的作用结合在一起;差示扫描量热仪(DSC)测试结果表明随着复合纳米纤维膜中两者成分的变化,结晶结构、玻璃化转变温度(Tg)及熔融温度(Tm)均会发生变化:50/50较纯PLA薄膜,Tg略有下降5℃,90/10时,Tm由150℃上升至163℃,同时复合薄膜中结晶区减少,无定形区增加。润湿性能测试结果表明TP含量的增加,接触角从138.49°减小为127.49°,粘附功及表面能也相应增加,但仍属疏水材料范畴,润湿性能稍有改善。力学性能测试结果显示PLA的减少,导致拉伸强度下降,TP的增加使断裂伸长率先增加后减小,应力-应变曲线告诉我们复合薄膜的类型因PLA/TP质量比的不同而不同。孔径分析结果显示PLA/TP不同质量比条件下的复合纳米纤维膜较纯PLA薄膜,小孔径所占比重增大,孔径分布更密集。
     (3)PLA/TP复合纳米纤维膜抗菌性能的测试及机理的研究。通过对PLA/TP不同质量比复合纳米纤维膜进行振荡烧瓶法和抑菌圈法抗菌性能测试,结果表明添加TP的复合纳米纤维膜抗菌性能较纯PLA纳米纤维膜明显提高,且随着TP含量的增加,抗菌性能提高。对金黄色葡萄球菌(S. aureus)及大肠杆菌(E. coli)的抑菌率与抑菌圈宽度分别增加了76.4%、76.3%与1.96cm、1.5cm。鉴于抗菌测试结果,提出了基于分子理论上的PLA/TP复合纳米纤维膜的抗菌模型,通过多酚羟基与脂质双分子层的吸附及蛋白质分子的络合,破坏细胞膜的完整性及通透性。流式细胞仪(FACS)分析结果显示S.aureus和经PLA/TP(50/50)复合薄膜处理后,碘化丙啶(PI)的染色率分别增加至9.26%和6.47%,鉴于PI染料能够进入不完整细胞膜的性质,得出结论:PLA/TP复合纳米膜的作用靶点是菌体细胞膜,通过破坏其完整性,导致最后死亡。透射电子显微镜(TEM)实验结果也从菌体的微观结构上做出了验证。直观的显示了复合薄膜对两种菌体膜结构的破坏作用,并且对S. aureus的破坏作用要强于E. coli。FACS+TEM的联合论证有力的支持了抗菌模型的理论。
     (4)PLA/TP复合纳米纤维膜TP缓释性能及薄膜降解性能研究。提出了PLA/TP复合纳米纤维膜TP的释放模型。通过在TP最大波长处测定各不同浓度的吸光度值,利用分析软件得到关于TP的标准曲线方程。根据该方程及测定的不同时间点各溶液的吸光度值,得到PLA/TP不同质量比复合纳米纤维膜在72h内的累积释药曲线,结果表明该复合薄膜具备药物缓释性能,且在释药第一阶段,速度较快,之后变缓,逐渐趋于平稳。同时通过SEM图的观察及pH值的测定,证明PLA是一种良好的可生物降解载体,降解8周时间后,50/50复合薄膜pH值仍维持在7.1左右。证实PLA的降解对药物的释放具有一定的促进作用。
When the polymer fiber diameter decreased from micron to nanometer level, there willbe a series of excellent characteristics, which make the polymer nanometer fiber and itsproducts have high research and potential application value in many fields. Theelectrospinning technology is one of the most economic methods to prepare nano-fiber.,which is continuous, uniform and have good performance. So this technology has become thefirst choice to prepare nano-fiber and its products. However, different research objectivesrequire the polymer with different types, performances and functions. In order to maximizethe function of the research material and make up for the lack of performance of a singlematerial, the research object is expanded from one kind of polymer to two or more kinds. Thepolylactic acid (PLA) polymer with good biocompatibility was used as a substrate, andmixtured with Tea Polyphenol, which has many functions and various pharmacological effects. The PLA/TP composite nanofiber membrane was prepared by electrospinning process. Thespinning process and the performance were studied, and the main research contents andconclusions have the following several parts:
     (1) Determine the best parameters of electrospinning the PLA/TP composite nanofibermembranes. Firstly, through the scanning electron microscopy (SEM) to observe and analysisthe morphology of the fibers, the optimal experimental parameters of each experimentalcondition were determined. The results showed that: the quality score of PLA and TP hasgreat influence on the spinning process. The SEM images show when the mass fraction ofPLA is less than or greater than10%, the spinnability and the diameters of the fibers can’t bethe best, so to determine the solute mass fraction is10%. Secondly, the aim is to determinethe spinning solvent. Through the SEM images and considering the experimental efficiencyand effect, the electrospinning solvent was the mixed solution of dichloromethane (DCM) andN, N-two dimethyl formamide (DMF), and the volume ratio (V/V) was7/3. Throughstudying the influences of different spinning conditions on the morphologies of PLA/TPcomposite nanofibers, and using the SEM images and distributions of the fibers’ diameters,the spinning voltage, spinning distance and spinning speed were determined as18kV,17.5cmand0.8mL/h. Finally, to research different quality blending ratios of PLA and TP have theinfluence on the compound nanofibers. Through analysising the influence of different qualitymixed ratio on the electrospinning solution’s properties, including solution viscosity,conductivity, surface tension. And through comparing the SEM images and distributions ofthe fibers’ diameters, we can draw the conclusion: the fiber diameter will be smaller with theincrease content of TP.
     (2) Research on the structure and performance of the PLA/TP composite nanofibrous me-mbranes. The PLA/TP composite nanofibrous membranes were prepared in the condition ofdifferent mixing ratio of PLA/TP. The structures of the membranes were characterized byFourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC),and the wetting properties, mechanical properties and pore size distribution were tested andanalyzed. The results showed: the two components of PLA and TP existed in the composite membranes, and bonded together by valence bond. The DSC test results showed that: with thechange of the two composites in the nanofibrous membrane, the crystalline structure, glasstransition temperature (Tg) and melting temperature (Tm) would also change. The contactangle test results showed that: with the decrease of PLA and the increase of TP in thecomposite nanofibrous membranes, the wettability of the membranes was improved. Themechanical testing results also showed that: the tensile strength and elongation of thecomposite nanofibrous membranes had a downward trend with the decrease of PLA and theincrease of TP in the membranes. The pore size analysis results make us understand that: withdifferent quality of mixing ratio of the composites, the pore size and distribution conditionsare different in nanofibrous membranes.
     (3) Test the antibacterial property and study on the mechanism of the PLA/TP compositenanofibrous membrane. Through testing the composite nanofibrous membranes with differentquality ratios of PLA and TP by oscillation flask method and inhibition zone test, the resultshowed that: the antibacterial property of the composite nanofibrous membrane wasimproved with adding TP, and the effect was more obvious with the increase of TP content.The antibacterial rate and bacteriostatic ring width of the Staphylococcus aureus (S. aureus)and Escherichia coli (E. coli) membranes were increased by76.4%,76.3%and1.96cm,1.5cm. The antimicrobial modle of PLA/TP composite nanofibrous membranes was proposedbased on the molecular theory. The lipid bilayer was adsorbed and protein molecule wascomplexed by phenolic hydroxyl group, then the integrity and permeability of cell membranewas damaged. The test results of flow cytometry (FACS) and transmission electronmicroscopy (TEM) showed that: one of the antibacterial mechanisms is to destroy theintegrality of cell membrane, which result in the death of bacteria.
     (4) Study on the sustained-release properties of PLA/TP composite nanofibrous membrane.The release modle of TP in PLA/TP composite nanofibrous mambranes was proposed. Theabsorbances at different concentration of TP at the maximum wavelength were measured, andthe TP standard curve equation was obtained by analysis software. According to the equationand the absorbance of each solutions, the sustained-release curve of the PLA/TP compositenanofibrous membranes within72hours was drawn, which showed the composite film hadsustained-release property. After degradationof8weeks, the pH value of50/50compositefilms was maintained at about7.1. At the same time, the SEM images and the pH valueshowed that PLA was a good biodegradable carrier and had a certain role in promoting thesustained-release property.
引文
[1]陈翌庆.纳米材料学基础[M].长沙:中南大学出版社,2008.36-40.
    [2]T. Ondarcuhu,C Joachim. Drawing a single nanofibre over hundreds of microns[J]. EurophysicsLetters,1998,42(2):215-220.
    [3]Charles R. Martin. Membrane-Based Synthesis of Nanomaterials[J]. Chem Mater,1996(8):1739-1746.
    [4]迟蕾,姚永毅,李瑞霞,等.静电纺丝方法制备纳米纤维的最新进展[J].纺织科技进展,2004(5):1-6.
    [5]Pingtang Zhao, Jintu Fan. Electrospun nylon6fibrous membrane coated with rice-like TiO2nanoparticles by an ultrasonic-assistance method[J]. Journal of Membrane Science,2010(355):91-97.
    [6]S.J. Liu,Y.C. Kau,C.Y. Chou,et al. Electrospun PLGA/collagen nanofibrous membrane as early-stagewound dressing[J]. Journal of Membrane Science,2010(355):53-59.
    [7]Wenguo Cui,Xiaohong Li,Chengying Xie,et al. Hydroxyapatite nucleation and growth mechanism onelectrospun fibers functionalized with different chemical groups and their combinations[J]. Biomaterials,2010(31):4620-4629.
    [8]Shengju Wu,Fengting Li,Ran Xu,et al. Preparation of poly(vinyl alcohol)/silica composite nanofibersmembrane functionalized with mercapto groups by electrospinning[J]. Materials Letters,2010(64):1295-1298.
    [9]Formhals A. Process and apparatus for preparing artificial threads[P]. US,1975504.1934-10-02.
    [10]Simons HL. Process and apparatus for producing patterned non-woven fabrics[P]. US,3280229.1966-10-18.
    [11]Jin-Ah Park,Jaehyun Moon,Su-Jae Lee,et al. Structural,electrical and gas sensing properties ofeletrospun TiO2nanofibers[J]. Thin Solid Films,2010(518):6642–6645.
    [12]Mujdat Caglar,Saliha Ilican,Yasemin Caglar,et al. Electrical conductivity and optical properties ofZnO nanostructured thin film[J]. Applied Surface Science,2009(255):4491–4496.
    [13]Z.M. Huang,Y.Z. Zhang,M. Kotaki,et al. A review on polymer nanofibers by electrospinning andtheir applications in nanocomposites[J]. Composites Science and Technology,2003(63):2223-2253.
    [14]D. H. Reneker,Alexander L. Yarin. Electrospinning jets and polymer nanofibers[J]. Polymer,2008(49):2387-2425.
    [15]Avinash Baji,Y.W. Mai,S.C. Wong,et al. Electrospinning of polymer nanofibers: Effects on orientedmorphology, structures and tensile properties[J]. Composites Science and Technology,2010(70):703-718.
    [16]Jayesh Doshi,Darrell H. Reneker. Electrospinning Process and Applications of Electrospun Fibers[J].Journal of Electrostics,1995(35):151-160.
    [17]H. Fong,I. Chun,D.H. Reneker. Beaded nanofibers formed during electrspinning[J]. Polymer,1999(40):4585-4592.
    [18]Shahrzad Zarkoob,R.K. Eby,Darrell H. Reneker,et al. Structure and morphology of electrospun silknanofibers[J]. Polymer,2004(45):3973-3977.
    [19]Kyle D. Anderson,David Lu,Darrell H. Reneker,et al. Hydrogel microstructures combined withelectrospun fibers and photopatterning for shape and modulus contral[J]. Polymer,2008(49):5284-5293.
    [20]Spivak A.F.,Dzenis Y.A.,Reneker D.H. A model of steady state jet in the electrospinning process [J].Mechanics Research Communications,2000,27(1):37-42.
    [21]Frank K. Ko,Vladimir Kuznetsov,E. Flahaut,et al. Formation of nonofibers and nonotubesproduction[J]. Nanoengineered Nanofibrous Materials,2004(169):1-129.
    [22]Y.C. Ahn,S.K. Park,G.T. Kim,et al. Development of high efciency nanoflters made of nanofbers[J].Current Applied Physics,2006(6):1030-1035.
    [23]赵胜利,宣英男,黄勇.乙基氰乙基纤维素溶液的高压静电场纺丝[J].高分子材料科学与工程,2004,20(2):151-154.
    [24]姚海霞,赵庆章,邓新华.静电纺丝法制备超吸水纤维的研究[J].纺织科学研究,2003(4):1-5.
    [25]李琪,魏取福,汪莹莹,等.锦纶6/有机蒙脱土复合纳米纤维的制备与表征[J].纺织学报,2007,28(11):1-4.
    [26]王新威,胡祖明,潘婉莲,等.电纺丝制备高聚物纳米纤维[J].东华大学学报,2005,31(1):115-119.
    [27]徐安长,赵静娜,潘志娟,等.静电纺聚乳酸纤维毡的微观结构及力学行为[J].纺织学报,2007,28(7):4-8.
    [28]季君晖,史维明.抗菌材料[M].北京:化学工业出版社,2003.15-23.
    [29]董加胜,陈四红,吕曼祺,等.抗菌材料的发展和现状[J].材料导报,2004,18(3):41-46.
    [30]李梅,王庆瑞.抗菌材料的发展及其应用[J].化工新型材料,1998(5):8-11.
    [31]Fang Tian,Bo Li,Baoping Ji,et al. Antioxidant and antimicrobial activites of consecutive extractsfrom Galla chinensis: The polarity affects the bioactivities[J]. Food Chemistry,2009(113):173-179.
    [32]Halijah Ibrahim,Ahmad Nazif Aziz,Devi Rosmy Syamsir,et al. Essential oils of Alpinia conchigeraGriff. And their antimicrobial activities[J]. Food Chemistry,2009(113):575-577.
    [33]J.C. Matasyoh,Z.C. Maiyo,R.M. Ngure,et al. Chemical composition and antimicrobial activity of theessential oil of Coriandrum sativum[J]. Food Chemistry,2009(113):526-529.
    [34]S. Kilani,M.B. Sghaier,I. Limem,et al. In vitro evaluation of antibacterial, antioxidant, cytotoxic andapoptotic activities of the tubers infusion and extracts of Cyperus rotundus[J]. Bioresource Technology,2008(99):9004-9008.
    [35]N. Kovolaskaya,R.W. Hammond. Expression and functional characterization of the plant antimicrobialsnaking-1and defensin recombinant proteins[J]. Protein Expression and Purification,2009(63):12-17.
    [36]黎霞,魏杰,李玉宝.二氧化钛/磷灰石纳米抗菌复合材料的研究[J].功能材料,2004,35(1):119-121.
    [37]王志义,邓先功,史献峰. TiO2纳米复合抗菌剂粉体的制备及耐热性[J].硅酸盐学报,2007,35(2):206-211.
    [38]郁慧,倪晰望,郑文捷,等.纳米复合抗菌剂在粉末涂料中的应用[J].涂料工业,2006,36(8):55-57.
    [39]丁浩,童忠良,杜高翔.纳米抗菌技术[M].北京:化学工业出版社.2007.9-10.
    [40]代小英,许欣,陈绍斌,等.纳米抗菌剂的概况[J].现代预防医学,2008,35(13):2513-2515.
    [41]王大全.无机抗菌新材料与技术[M].北京:化学工业出版社.2006.49.
    [42]沈海军,史友进.纳米抗菌材料的分类、制备、抗菌机理及其应用[J].中国粉体工业,2006(2):18-20.
    [43]孔彬彬,郝鲁江,于同立.纳米抗菌材料抗菌作用及机理的研究进展[J].中国酿造,2008,8(185):1-3.
    [44]王开利.纳米抗菌纤维的发展及产业化[J].纳米科技与产业,2002(109):65-66.
    [45]吴京平.新型植物源天然食品防腐剂及其抑菌性能[J].中国食品添加剂,2009(3):61-64.
    [46]赵云雨.食品防腐剂山梨酸的合成及工艺分析[J].牡丹江大学学报,2010(7):95-97.
    [47]张群林,刘毅,李俊,等.食品和药品中对羟基苯甲酸酯类防腐剂色谱分析法的研究进展[J].安徽医药,2006(4):241-244.
    [48]梁盛年,段志芳,付莉,等.几种肉桂酸衍生物与肉桂酸的抑菌作用比较研究[J].食品科技,2005(9):71-73.
    [49]姚兆斌,吴东兵.甘草有效成分的防腐性能研究[J].广州食品工业科技,1995,15(1):39-40.
    [50]王维华,王南舟,钟立人.以连翘为原料的食品天然防腐剂的研制[J].天然产物研究与开发,2009,8(1):87-91.
    [51]罗傲霜,淳泽,罗傲雪,等.食品防腐剂的概况与发展[J].中国食品添加剂,2005(4):55-58.
    [52]张卫红.几种中草药混合制剂抑菌作用的实验观察[J].洛阳医专学报,2000,18(4):297-300.
    [53]Nobuo Sakairi, Mitsuo Hayashida, Hiroyoshi Kuzuhara. Synthesis of a new antimicrobialaminoglycoside employing maltose as a key starting material[J]. Tetrahedron Letters,1987,28(25):2871-2874.
    [54]Hirosato Kondo,Fumio Sakamoto,Kiyotaka Kawakami,et al. Studies on Prodrugs.7. Synthesis andAntimicrobial Activity of3-Formy lquinolone Derivatives[J]. Journal of Medicinal Chemistry,1988,31(1):221-225.
    [55]Yoshiki Uchida,Mitsuno Shindo. Synthesis and Antimicrobial Activity of Bactenecin and itsAnalogs[J]. Bullentin of the Chemical Societyof Japan,1992,65(2):615-617.
    [56]Yago K,Kawada K,Uchibori T,et al. Synthesis and antimicrobial properties of3-O-alkyland3-O-haloalkyl-D-glucoses[J]. Journal of The Pharmaceutical Society of Japan,1992,112(10):723-728.
    [57]Tamamura H,Ikoma R,Niwa M,et al. Antimicrobial activity and conformation of tachyplesin-1andits analogs[J]. Chemical&Pharmaceutical Bulletin,1993,41(5):978-980.
    [58]K.H. Cho,J.E. Park,T. Osaka,et al. The study of antimicrobial activity and preservative effects ofnanosilver ingredient[J]. Electrochimica Acta,2005,51(5):956-960.
    [59]Tsuchida T,Sawa R,Iinuma H,et al. Tetrodecamycin, a new antimicrobial antibiotic fromStreptomyces[J].Journal of Antibiotics,1994,47(3):386-388.
    [60]Sawa R,Mori Y,Iinuma H,et al. Harzianic acid, a new antimicrobial antibiotic from a fungus[J].Journal of Antibiotics,1994,47(6):731-732.
    [61]Inoue Y,Kondo H,Taguchi M,et al. Synthesis and antibacterial activity of thiazolopy razine-incorporated tetracyclic quinolone antibacterials[J]. Journal of Medicinal Chemistry,1994,37(5):585-592.
    [62]柳清菊,隆泉,张瑾,等.载银氧化物抗菌材料的制备及性能[J].功能材料,2004,35(2):134-137.
    [63]迟广俊,范君,姚素薇.抗菌功能性铝基材料的制备及表征[J].稀有金属材料与工程,2006,35(4):659-661.
    [64]叶瑛,周玉航,夏枚生,等.新型无机抗菌材料:载铜蒙脱石及其抗菌机理探讨[J].无机材料学报,2003,18(3):569-573.
    [65]田威,范晓东.药物控制释放用高分子载体的研究进展[J].高分子材料科学与工程,2006,22(4):19-23.
    [66]何京涛.生物降解药物控制体系中分子扩散行为及药物释放动力学研究[D].北京:北京化工大学出版社.2005.47.
    [67]陈祥,高林.生物降解高分子材料在医药领域中的应用[J].化学推进剂与高分子材料,2005,3(1):31-34.
    [68]李方,郑宽,李辉章,等.高分子材料生物降解性能的分析研究进展[J].化学研究与应用,2010,22(1):1-7.
    [69]刘伯业,陈复生,何乐,等.可生物降解材料及其应用研究进展[J].塑料科技,2010,38(11):87-90.
    [70]陈诗江,王清文.生物降解高分子材料研究及应用[J].化学工程与装备,2011(7):142-145.
    [71]曾敬,赵桂贞,段纪东.药物控制释放的研究进展[J].化学通报,2006,69:1-5.
    [72]Mingxing Liu,Jing Dong,Yajiang Yang,et al. Characterization and release of triptolide-loadedpoly(D,L-lactic acid) nanoparticles[J]. European Polymer Journal,2005(41):375-382.
    [73]赵瑞玲,丁红,谢茵.阿霉素聚乳酸微球的制备及体外释药特性研究[J].中国医院药学杂志,2004,24(2):74-75.
    [74]杨帆,谭载友,林茵,等.红霉素聚乳酸微球制备工艺的研究[J].中国现代应用药学,2002,19(4):290-292.
    [75]Halliday,Janet A,R.S. Oral. Transmucosal Delivery. US6488953.2002.
    [76]Lee D.H., Kim J.W.,Suh K.D. Amphiphilic urethane acrylate hydrogels: pH sensitivity anddrug-releasing behaviors[J]. Journal of Applied Polymer Science,1999,72(10):1305-1311.
    [77]马丽微. pH/温度敏感的水凝胶粒子/微球的制备、表征及其在药物缓释中的应用[D]:[博士学位论文].兰州:兰州大学高分子化学与物理学院,2010.
    [78]王萃萃,杨伟平,许戈文.水凝胶的应用于研究进展[J].聚氨酯,2010(98):60-63.
    [79]张静.仿细胞膜结构聚合物交联纳米胶束的构建及其应用研究[D]:[硕士学位论文].西安:西北大学高分子化学与物理学院,2010.
    [80]曹劲慈,金贞姬,刁继红.环孢素A纳米脂质体的制备[J].山东医药,2006,46(23):44-45.
    [81]王绍宁,邓意辉,郑少辉,等.盐酸环丙沙星脂质体的制备及小鼠体内分布[J].中国药学杂志,2003,38(4):274-276.
    [82]杨健.可降解高分子纳米纤维药物控释系统的研究进展[J].化工时刊,2010,24(3):33-37.
    [83]M. V. Natu,H.C. de Sousa,M.H. Gil. Effects of drug solubility, state and loading on controlled releasein bicomponent electrospun fibers[J]. International Journal of Pharmaceutics,2010(397):50–58.
    [84]Audrey Frenot,Ioannis S. Chronakis. Polymer nanofibers assembled by electrospinning[J]. CurrentOpinion in Colloid and Interface Science,2003(8):64-75.
    [85]Yumei Xiao,Dongxiao Li,Hongsong Fan,et al. Preparation of nano-HA/PLA composite bymodified-PLA for controlling the growth of HA crystals[J]. Materials Letters,2007(61):59-62.
    [86]Katarzyna M. Sawicka,Perena Gouma. Electrospun composite nanofibers for functional applications[J].Journal of Nanoparticle Research,2006(8):769-781.
    [87]Naiqiu Zhao,Shuxian Shi,Gang Lu,et al. Polylactide(PLA)/layered double hydroxides compositefibers by electrospinning method[J]. Journal of Physics and Chemistry of Solids,2008(69):1564-1568.
    [88]Jia Xu,Jinhui Zhang,Weiquan Gao,et al. Preparation of chitosan/PLA blend micro/nanofibers byelectrospinning[J]. Materials Letters,2009(63):658-660.
    [89]El-Refaie Kenawy,Gary L. Bowlin,Kevin Mansfield,et al. Release of tetracycline hydrochloride fromelectrospun poly(ethylene-co-vinylacetate),poly(lactic acid), and a blend[J]. Journal of ControlledRelease,2002(81):57–64.
    [90]Travis J Sill,Horst A von Recum. Electrospinning: Applications in drug delivery and tissueengineering[J]. Biomaterials,2008(29):1989-2006.
    [91]肖斌,李从举.静电纺丝聚乳酸/磷酸钙复合纳米纤维的力学性能[J].化工新型材料,2008,36(9):53-55.
    [92]石桂欣,王身国,贝建中.聚乳酸与聚乳酸-羟基乙酸多孔细胞支架的制备及空隙的表征[J].功能高分子学报,2001,14(1):7-11.
    [93]顾书英,邹存洋,张春燕,等.聚乳酸复合纳米纤维创面敷料的制备及性能[J].高分子材料科学与工程,2008,24(11):187-189.
    [94]龚华俊,杨小平,陈国强,等.电纺丝法制备聚乳酸/多壁碳纳米管/羟基磷灰石杂化纳米纤维的研究[J].高分子学报,2005(2):297-299.
    [95]龚华俊,杨小平,隋刚,等. PLA/MWNTs/HA复合材料的制备和性能研究[J].功能高分子学报,2005,18(1):99-104.
    [96]Jasmine George,Nidhi Nigam,Yogeshwer Shukla. Tea: age-old beverage as an effective cancerchemopreventive agent[J]. Oncol Rev,2008(1):243-252.
    [97]C. Muia,E. Mazzon,R.D. Paola,et al. Green tea polyphenol extract attenuates ischemia/reperfusioninjury of the gut[J]. Naunyn-Schmiedeberg’s Arch Pharmacol,2005(371):364-374.
    [98]Y.H. Park,D.W. Han,H. Suh,et al. Protective effects of green tea polyphenol against reactive oxygenspecies induced oxidative stress in cultured rat calvarial osteoblast[J]. Cel Bioloby and Toxicology,2003(19):325-337.
    [99]David Vergote,Cecile Cren-Olive,Valerie Chopin,et al. Epigallocatechin (EGC) of green tea inducesapoptosis of human breast cancer cells but not of their normal counterparts[J]. Breast Cancer Research andTreatment,2002(76):195-201.
    [100]S. Mandel,O. Weinreb,L. Reznichenko,et al. Green tea catechins as brain-permeable, non toxic ironchelators to“iron out iron”from the brain[J]. J Neural Transm,2006(71):249-257.
    [101]B.J. An,J.H. Kwak,J.H. Son,et al. Biological and anti-microbial activity of irradiated green teapolyphenols[J]. Food Chemistry,2004(88):549-555.
    [102]Christiane J. D.,E.R. Farnworth. A review of latest research findings on the health promotionproperties of tea[J]. Journal of Nutritional Biochemistry,2001(12):404-421.
    [103]K. Vijaya,S. Ananthan,R. Nalini. Antibacterial effect of theaflavin, polyphenon60(Camelliasinensis) and Euphorbia hirta on Shigella spp.-a cell culture study[J]. Journal of Ethnopharmacology,1995(49):115-118.
    [104]Senji Sakanaka,Lekh Raj Juneja,Makoto Taniguchi. Antimicrobial effects of green tea polyphenolson thermophilic spore-forming bacteria[J]. Journal of Bioscience and Bioengineering,2000,90(1):81-85.
    [105]Yukiaki Kuroda,Yukihiko Hara. Antimutagenic and anticarcinogenic activity of tea polyphenols[J].Mutation Research,1999(436):69-97.
    [106]Tsutomu Hatano,Mayumi Tsugawa,Miwako Kusuda,et al. Enhancement of antibacterial effects ofepigallocatechin gallate, using ascorbic acid[J]. Phytochemistry,2008(69):3111-3116.
    [107]P.D. Stapleton,J. Gettert,P.W. Taylor. Epicatechin gallate, a component of green tea, reduceshalotolerance in Staphylococcus aureus[J]. International Journal of Food Microbiology,2006(111):276-279.
    [108]Green tea inhibits Helicobacter growth in vivo and vitro[J]. International Journal of AntimicrobialAgents,2009(33):473-478.
    [109]梁文红,刘建国,王凯等.茶多酚对粘性放线菌的体外抗菌活性[J]. Journal of Oral ScienceResearch,2004,20(4):364-365.
    [110]梁文红,刘建国,吴家媛,等.茶多酚对变形链球菌的体外抗菌活性研究[J].遵义医学院学报,2004,27(3):230-231.
    [111]彭慧琴,蔡卫明,项哨.茶多酚体外抗流感病毒A3的作用[J].茶叶科学,2003,23(1):79-81.
    [112]隋丽华,郭珉.茶多酚皮肤药理学的研究进展[J].医学导报,2003,22(11):795-797.
    [113]常艳艳,蒋秋燕.茶多酚的药用价值[J].食品与科学,2007,9(8):72-74.
    [114]朱步瑶,赵振国.界面化学基础[M].北京:化学工业出版社.1996.208.
    [115]俞金,林晏雄.纤维内部孔隙形态的表征[J].天津纺织科技,2009(2):22-24.
    [116]李小兵,刘莹.材料表面润湿性的控制与制备技术[J].材料工程,2008(4):74-80.
    [117]Bain C.D.,Whitesides G.M. Molecular-level control over surface order in self-assembled monolayerfilms of thiols on gold[J]. Science,1988(240):62-63.
    [118]田威,范晓东.药物控制释放用高分子载体的研究进展[J].高分子材料科学与工程,2006,22(4):19-23.
    [119]M.J. Jaroszeski,G. Radcliff. Fundamentals of flow cytometry[J]. Molecular Biotechnology,1999,11(1):37-53.
    [120]Teresa Lopes da Silva,Jose Carlos Roseiro,Alberto Reis. Applications and perspectives ofmulti-parameter flow cytometry to microbial biofuels production processes[J]. Trends in Biotechnology,2012,30(4):225-232.
    [121]J.P. Nolan,S. Lauer,E.R. Prossnitz,et al. Flow cytometry: A versatile tool for all phases of drugdiscovery[J]. Drug Discovery Today,1999,4(4):173-180.
    [122]N.S. Palupi,P. Franck,C. Guimont,et al. Bovine β-lactoglobulin receptors on transformedmammalian cells (hybridomas MARK-3): characterization by flow cytometry[J]. Journal ofBiotechnology,2000(78):171-184.
    [123]李靖,李成斌,顿文涛,等.流式细胞术(FCM)在生物学研究中的应用[J].中国农学通报,2008,24(6):107-111.
    [124]刘涛,张巍,王凤阳,等.流式细胞仪在免疫学研究中的应用[J].动物医学进展,2008,29(3):102-105.
    [125]陈雪,吕文彬,李建,等.流式细胞仪在输血医学中的应用[J].重庆医学,2007,36(21):2162-2164.
    [126]胡凡.流式细胞仪在医学检验中的应用[J].中国保健营养,2012(5):1138-1139.
    [127]Raluca Ostage, Radivoje Prodanovic, Ulrich Commandeur, et al. Flow cytometry-basedultra-high-thoughput screening assay for cellulose activity[J]. Analytical Biochemistry,2013(435):93-98.
    [128]Elisa Einwallner,Almira Subasic,Andrea Strasser,et al. Lysis matters: Red cell lysis with FACSLyse affects the flow cytometric enumeration of circulating leukemic blasts[J]. Journal of ImmunologicalMethods,2013(390):127-132.
    [129]邵圣文,陈群,李国明.流式细胞仪检测环丙沙星对淋球菌杀菌作用的研究[J].中国公共卫生,2001,17(5):391-393.
    [130]王关林,唐金花,蒋丹,等.苦参对鸡大肠杆菌的抑菌作用及其机理研究[J].中国农业科学,2006,39(5):1018-1024.
    [131]袁文静.利用流式细胞仪检测过氧化氢对大肠杆菌的杀灭作用[J].医学信息,2012,25(1):446.
    [132]吴建勇,赵德璋.流式细胞仪检测细胞凋亡的几种方法的比较[J].重庆医科大学学报,2010,35(9):1386-1389.
    [133]金丽霞.药物缓释载体材料在医药领域中的研究及应用[J].中国组织工程研究与临床康复,2010,15(25):4699-4702.
    [134]劳丽春.药物缓释载体材料类型及其临床应用[J].中国组织工程研究与临床康复,2010,14(47):8865-8868.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700