用户名: 密码: 验证码:
江香薷多糖和两种阿拉伯胶的结构解析及功能特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
江香薷主要分布于江西省,是江西的特产资源,属于唇形科,在民间是一种药食两用的植物。目前已有部分关于其挥发油、黄酮类化合物的报道,但有关江香薷多糖的结构和活性目前国内外还处于空白。本文系统地研究了江香薷中多糖的提取、分离纯化、理化性质、一级结构、抗氧化、免疫调节作用等生物活性。研究结果可为江香薷的药理作用研究提供理论基础,并为江香薷的开发和利用提供实验数据和理论依据。
     论文第二部分主要研究了阿拉伯胶(Acaica senegal)和赛伊尔相思树胶(Acacia seyal)经过7小时部分水解产物的一级结构(单糖组成、糖残基连接方式及顺序),并通过美拉德反应改善其乳化性,从而提高它们的商业价值,拓展其应用空间。本文主要研究内容与结论如下:
     1.在单因素实验基础上,采用响应曲面法(RSM)对影响江香薷粗多糖提取率的三个主要因素:提取温度、提取时间和液固比进行优化。结果表明:提取温度86.9℃、提取时间4.10h、液固比17.7:1(mL/g),江香薷粗多糖提取率的预测值为3.38%,与实测值3.41%基本相符。粗多糖经过Sevag法脱除蛋白,得到江香薷精制多糖(MP)。MP先后经过DEAE-52纤维素色谱柱和SephacrylTMS-400HR凝胶层析柱分离得到一个中性纯多糖MP-1。当MP使用Q SepharoseTMFast Flow阴离子交换色谱进行分离,用1M NaCl进行洗脱,将其中得率较高的一个组分采用乙醇分级沉淀法进行分离,当乙醇浓度为40%(v/v)时,得到一种酸性纯多糖MP-A40。
     2.江香薷粗多糖CMP,精制多糖MP,中性纯多糖MP-1和酸性纯多糖MP-A40的中性糖含量分别为37.84±0.04%,33.96±0.31%,71.86±0.22%,10.30±0.04%;糖醛酸含量分别为5.18±0.16%,11.00±0.24%,0%,68.63±0.06%;蛋白质含量分别为6.14±0.01%,9.05±0.04%,1.96±0.08%,0.17±0.00%。气相色谱法分析CMP的单糖组成分别为鼠李糖,核糖,岩藻糖,阿拉伯糖,木糖,甘露糖,葡萄糖和半乳糖,摩尔比为3.72:2.45:0.92:6.00:2.76:5.09:13.53:9.58;MP的单糖组成分别为鼠李糖,阿拉伯糖,木糖,甘露糖,葡萄糖,半乳糖,摩尔比分别为5.364:12.260:3.448:12.260:32.567:30.651;MP-1单糖组成为葡萄糖、半乳糖、阿拉伯糖、甘露糖、鼠李糖,摩尔比为16.02:10.01:4.92:4.62:2.23,以及痕量岩藻糖。MP-A40的单糖组成使用离子色谱法检测,其中性糖包括阿拉伯糖(4.94%),半乳糖(3.07%),鼠李糖(2.13%),甘露糖(1.62%)及葡萄糖(1.29%),以及68.63%的半乳糖醛酸。MP包含四个组分,分子量分别为4522723Da,254918Da,127350Da和18664Da,而MP-1和MP-A40的分子量分别为587530Da和32600Da。经过HPSEC法鉴定,MP-1和MP-A40均为均一纯多糖。
     3. MP-1经过甲基化分析确定其糖残基间的连接方式包括→4-Glcp1→(31.76%),→2-Rhap1→(17.11%),t-Galp1→(11.02%),→2,4-Rhap1→(6.47%),→3,4-Galp1→(5.05%),t-Rhap1→(4.31%),t-Glcp1→(4.04%),t-Araf1→(4.01%),→4-Manp1→(3.61%),→5-Araf1→(3.10%),→3-Galp1→(3.05%),→2,4-Manp1→(2.55%),t-Fucp1→(2.39%)和→4,6-Glcp1→(1.53%)。根据糖残基比例判断其主链由→4-Glcp1→,→2-Rhap1→,→2,4-Rhap1→构成,末端主要为t-Galp1→。
     4.通过甲基化和1D/2D NMR分析,MP-A40的一级结构重复单元为→4)-[α-GalpA6Me-(1→]m-[4-α-GalpA-(1→]n。红外光谱法分析MP-A40酯化度约为32%。
     5.本章研究了中性纯多糖MP-1和酸性纯多糖MP-A40的体外抗氧化作用。通过DPPH自由基清除实验,铁离子还原能力,还原力实验和胡萝卜素-亚油酸体系四个抗氧化体系,证明江香薷多糖具有一定的抗氧化性,而且MP-A40的抗氧化性优于MP-1。
     6.使用化疗药物环磷酰胺(CY)诱导构建小鼠免疫抑制模型,以江香薷精制多糖灌胃小鼠,考察小鼠肝脏、心脏和肾脏中各种抗氧化酶活性的恢复情况。小鼠肝脏、心脏和肾脏分别用0.1g/mL的冰生理盐水研磨成匀浆,以3000rpm的速度,4℃下离心10min,取上清液分别检测总抗氧化(T-AOC),丙二醛(MAD),过氧化氢酶(CAT),超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-PX)等参数。结果证明MP不仅提高了脾脏指数和胸腺指数,而且显著提高了T-AOC,CAT,SOD和GSH-PX的酶活,降低了MDA的水平。因此,精制多糖(MP)可以降低环磷酰胺引起的的小鼠免疫抑制作用,在免疫系统防止抗氧化损伤过程中扮演重要的角色。
     7.粗多糖CMP刺激原代巨噬细胞吞噬中性红的实验结果表明,随着多糖浓度的增加,巨噬细胞对中性红的吞噬作用也增强。CMP刺激原代小鼠腹腔巨噬细胞产生NO,也随多糖浓度的增加而增加,并呈剂量依赖关系。脾淋巴细胞增殖实验表明MP-1可以显著促进T淋巴细胞和B淋巴细胞的增殖,而且对T淋巴细胞增殖更有效。当MP-A40浓度为500μg/mL时,K562的抑制率为31.32%。MP-A40浓度为10μg/mL时,NO的产量是阴性组的15倍。当多糖浓度从200μg/mL增至500μg/mL,NO产量从32.58μM显著增加至35.02μM。结果证明MP-A40对促进RAW264.7产生NO具有显著作用。
     8.将2g阿拉伯胶Acacia seyal和Acacia senegal分别溶于200mL0.1MTFA,于100℃水解7h,比较两种阿拉伯胶部分酸水解产物的一级结构信息。通过甲基化分析,得出seyal-7中各糖基的连接方式及比例分别为t-Galp(13.76%),→3-Galp1→(9.70%),→4-GalpA1→(13.70%),→6-Galp1→(30.98%),→4,6-Galp1→(1.63%),→3,6-Galp1→(27.54%),→3,4,6-Galp1→(1.40%),→2,3,6-Galp1→(1.27%);senegal-7中各糖基的连接方式及比例分别为t-Galp(11.65%),→3-Galp1→(12.41%),→6-Galp1→(33.85%),→3,4-Galp1→(1.34%)→4,6-Galp1→(1.75%),→3,6-Galp1→(34.61%),→2,6-Galp1→(1.14%),→2,3,6-Galp1→(3.24%)。再经过1D/2D NMR(1H,13C,COSY,TOCSY,HSQC,HMBC,NOESY)对seyal-7糖残基的连接顺序进行分析,得出重复单元的结构信息,最终判断其主链结构为→1,6-Galp1→,并且在O-2,O-3,O-4三个位置有连接位点。
     9.将两种阿拉伯胶Acacia seyal和Acacia senegal置于60℃,湿度为75%(饱和盐水提供)的密闭环境中,样品发生美拉德反应。结果表明,反应时间为7天时,乳化液的(10%菜籽油,v/v)粒径最小,稳定性最好。
Mosla chinensis Maxim. cv. jiangxiangru is mainly distributed in Jiangxiprovince. Also as the unique resource in Jiangxi, it belongs to the member of Labiataefamily, and is usually used for both food and medicine. There were already manyreports about its essential oil and flavonoids compounds, however, the studies aboutthe structure and bioactivities of polysaccharides were still in blank both in domesticand abroad. Polysaccharides were isolated and purified from this plant, and theirprimary structures, antioxidant activities and immunomodulatory effects wereinvestigated systematically in this study. The results could provide theoretical basis ofpharmacologic action of Mosla chinensis Maxim. cv. jiangxiangru, and theexperimental data could also help promote the development and utilization of thisplant.
     The second part of this research was about the primary structure information(monosaccharide composition, the linkage patterns and sequence of sugar residues) ofhydrolysates from Acacia seyal and Acacia senegal after7hours hydrolysis by0.1MTFA at100℃. Their emulsifying properties of these two Arbic gums were bothimproved by Maillard reaction. This research helped improve the commercial valueand expand its application space.
     The main research contents and conclusions were summarized as follows,
     1. On the basis of single factor experiments, response surface methodology(RSM) was used to optimize the extraction conditions of crude polysaccharides fromMosla chinensis Maxim. cv. jiangxiangru (CMP). Three independent variables,extraction temperature, extraction time and water to solid ratio were investigated.Based on the RSM analysis, the optimal extraction conditions were determined asextraction temperature of86.9℃, extraction time of4.1h and water to solid ratio of17.7:1(mL/g). The predictive value of optimal extraction yield was3.38%, which wasconsistent with the real value of3.41%. Protein of CMP was removed by Sevagmethod, fine polysaccharide (MP) was obtained. A neutral polysaccharide MP-1wasisolated and purified by DEAE-52cellulose chromatography column and SephacrylTMS-400HR column. If MP was purified by loading on a Q SepharoseTMFast Flow ionexchange column eluted with1M NaCl and gradient precipitation with ethanol, awater-soluble pectic polysaccharide MP-A40was obtained.
     2. The neutral sugar contents of crude polysaccharide (CMP), finepolysaccharide (MP), neutral polysaccharide (MP-1) and acidic polysacchairde(MP-A40) from Mosla chinensis Maxim. cv. jiangxiangru were37.84±0.04%,33.96±0.31%,71.86±0.22%and10.30±0.04%, respectively. Uronic acid content of themwere5.18±0.16%,11.00±0.24%,0%,68.63±0.06%. Potein contents were6.14±0.01%,9.05±0.04%,1.96±0.08%,0.17±0.00%. Monosaccahride compositions ofCMP determined by gas chromatograph were Rha, Rib, Fuc, Ara, Xyl, Man, Glc andGal with a molar ratio of3.72:2.45:0.92:6.00:2.76:5.09:13.53:9.58.Monosaccahride compositions of MP were Rha, Ara, Xyl, Man, Glc and Gal with amolar ratio of5.364:12.260:3.448:12.260:32.567:30.651. Monosaccahridecompositions of MP-1were Glc, Gal, Ara, Man and Rha with a molar ratio of16.02:10.01:4.92:4.62:2.23, and trace amounts of Fuc. MP-A40was composed with4.94%Ara,3.07%Gal,2.13%Rha,1.62%Man and1.29%Glc and68.63%galacturnic acid. The results from HPLC indicated that MP was consisted with at leastfour fractions, and their average molecular weights were4522723Da,254918Da,127350Da and18664Da, repectively. The average molecular weights of MP-1andMP-A40determined by HPSEC were587530Da and32600Da. MP-1and MP-A40were uniform pure polysaccharides determniend by HPSEC method.
     3. The linkage patterns of MP-1determined by methylation analysis included→4-Glcp1→(31.76%),→2-Rhap1→(17.11%), t-Galp1→(11.02%),→2,4-Rhap1→(6.47%),→3,4-Galp1→(5.05%), t-Rhap1→(4.31%),t-Glcp1→(4.04%), t-Araf1→(4.01%),→4-Manp1→(3.61%),→5-Araf1→(3.10%),→3-Galp1→(3.05%),→2,4-Manp1→(2.55%), t-Fucp1→(2.39%) and→4,6-Glcp1→(1.53%). The backbone was made of→4-Glcp1→,→2-Rhap1→,→2,4-Rhap1→, and the main terminal residue was t-Galp1→.
     4. The primary structure of repeat unit of MP-A40was→4)-[α-GalpA6Me-(1→]m-[4-α-GalpA-(1→]n, and the degree of esterification (DE)of MP-A40was32%determined by FTIR method.
     5. The antioxidant activities in vitro of neutral polysaccharide MP-1and acidicpolysaccharide MP-A40were investited, including DPPH free radical scavengingactivity, ferric ion reducing antixodant power, reducing power and β-carotene-linoleicacid system. The result indicated that MP-1and MP-A40possessed certainantioxidant activities. What's more, MP-A40had better antoxidant activities.
     6. The immunosuppressive mice model was built by injecting cyclophosphamide (CY), a common used chemotherapy drug. The restorations of various kinds of relatedenzymes were investigated after feeding the mice by gavag method for a period. Thetissue homogenate was made by granding liver, heart or kidney with0.1g/mL icenormal saline, respectively. And then the homogenate was centrifuged under3000rpm at4°C for10min. The supernatant was used to detect total antioxidant (T-AOC),malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD) andglutathione peroxidase (GSH-PX), and other biochemical indicators. The resultsindicated that the spleen and thymus indices and the levels of T-AOC, CAT, SOD, andGSH-PX were raised by MP significantly. However, the MDA level was decreasedunder the same condition. The results proved that MP was able to overcome theimmunosuppression incuced by cyclophosphamide. It indicated that MP might play avery important role during the anti-oxidative damage process in the immun system.
     7. The capability of the original generation of macrophage’s phagocytosis wasdetected by using neutral red method. As the concentrations of crude polysaccharideCMP increased, the phagocytosis of macrophage was also enhanced. CMP couldstimulate the original generation of peritoneal macrophages to produce NO. As theconcentrations increased, the NO production was increased in a dose-dependentmanner. Spleen lymphocyte proliferation assay indicated that MP-1promoted theproliferation of both T lymphcytes and B lymphcytes. What’s more, MP-1was morelikely to promote T lymphcytes proliferation. The inhibition rate was31.32%whenthe concentration of MP-A40was500μg/mL. The NO production was15times ofthat of the negative control, when MP-A40was of10μg/mL. The NO was from32.58μM to35.02μM when MP-A40was of200μg/mL to500μg/mL. The result indicatedthat MP-A40could increase NO production from RAW264.7.
     8.2g Acacia seyal or Acacia senegal was dissolved and hydrolyzed in200mL0.1M TFA for7h at100°C. The primary structure informations of hydrolysates wereinvestigated. Methylation analysis indicated that the linkage patterns and their ratiosof Acacia seyal were t-Galp (13.76%),3-Galp (9.70%),4-GalpA (13.70%),6-Galp(30.98%),4,6-Galp (1.63%),3,6-Galp (27.54%),3,4,6-Galp (1.40%) and2,3,6-Galp9(1.27%), and for Acacia Senegal, they were t-Galp (11.65%),→3-Galp1→(12.41%),→6-Galp1→(33.85%),→3,4-Galp1→(1.34%),→4,6-Galp1→(1.75%),→3,6-Galp1→(34.61%),→2,6-Galp1→(1.14%),→2,3,6-Galp1→(3.24%). Based on1D/2D NMR (1H,13C, COSY, TOCSY, HSQC, HMBC, NOESY) analysis, thesequence of sugar residues and the structure information of repeating unit were obtained. The backbone was determined to be1,6-Galp with branch linked at O-2,O-3and O-4positions.
     9. The emulsifying properties of Acacia seyal and Acacia senegal were improvedby Maillard reaction. The reaction was occurred in a closed environment withtemperature of60°C and humidity of75%providing by saturated salt water. Theresult indicated that when the reaction time was7days, the particle size of theemulsion (10%canola oil, v/v) was minimal, and the stability of emulsion was thebest.
引文
[1]中科院植物研究所.中国高等植物科属检索表.北京,科学出版社,1994.
    [2] BeMiller J N, Whistler R L. Industrial gums: polysaccharides and their derivatives., AcademicPress,1993.
    [3] Caius J F, Radha K S. The gum arabic of the bazaars and shops of Bombay [J].,1942,(41):261~271.
    [4]王卫平.阿拉伯胶的种类及性质与功能的研究[J].中国食品添加剂,2002,(2):22~28.
    [5] Bentham G. VII. Revision of the Suborder Mimose.[J]. Transactions of the Linnean Societyof London,1875,30(3):335~664.
    [6]郑尚珍,孙丽萍,沈序维.石香需中化学成分的研究[J].植物学报,1996,38(2):156~160.
    [7]杨彩霞,康淑荷,荆黎田,等.石香薷中的黄酮体化合物[J].西北民族学院学报:自然科学版,2003,24(1):31~33.
    [8]张忠华,殷建忠.唇形科香薷属植物化学成分药理作用及开发应用研究进展[J].云南中医中药杂志,2008,29(8):48~50.
    [9]编委会国家中医药管理局中华本草.中华本草(下册),1998:1620~1625.
    [10]郑尚珍,戴荣.超临界流体CO2萃取法研究石香薷精油化学成分[J].西北师范大学学报:自然科学版,2001,37(2):49~52.
    [11]谢亚雄,姜永嘉.木香薷挥发油化学成分的研究[J].质谱学报,1998,19(2):70~74.
    [12]郑尚珍,吕金顺.木香薷挥发油主要化学成分的研究[J].西北师范大学学报:自然科学版,1999,35(3):60~64.
    [13]郑尚珍,戴荣.超临界流体CO2萃取法研究木香薷精油化学成分[J].西北师范大学学报:自然科学版,2001,37(3):37~40.
    [14]孙丽萍,王进欣.萼果香薷精油的化学成分[J].西北师范大学学报:自然科学版,2000,36(2):48~49.
    [15]郑尚珍,杨红澎,许先芳,等. GC/MS法测定超临界流体CO2萃取萼果香薷精油的化学成分[J].药物分析杂志,2004,24(1):20~23.
    [16]丁晨旭,周凌云,纪兰菊,等.藏药细穗香薷的化学成分[J].西北植物学报,2004,6(24):1039~1095.
    [17]曾虹燕,周朴华,唐艳林.石香薷挥发油提取的比较研究[J].天然产物研究与开发,2003,15(2):135~137.
    [18]吕金顺,张景琼,郑尚珍,等.香薷属植物药用成分研究进展[J].中国医学生物技术应用,2002,4:15~19.
    [19]丁晨旭,陈昌祥,纪兰菊,等.藏药细穗香薷挥发性化学成分的研究[J].西北植物学报,2004,10(24):1929~1931.
    [20]郑尚珍,沈序维,吕润海.香薷中的化学成分[J].植物学报,1990,3(32):215~217.
    [21]郑尚珍,孙丽萍,沈序维,等.石香薷中两个新黄酮甙的研究[J].高等学校化学学报,1995,16(5):753~755.
    [22]郑尚珍,康淑荷.木香薷化学成分的研究[J].西北师范大学学报:自然科学版,2000,36(1):51~57.
    [23]梅文泉,和承尧,董宝生,等.香薷籽油脂肪酸组成分析[J].中国油脂,2004,29(6):68~69.
    [24]王绣燕.矿泉水及其分析与评价[J].岩矿测试,1987,2(6):154~160.
    [25]石晋丽,朱甘培.中国香薷属植物的药用及开发前景[J].中药材,1994,17(12):10~13.
    [26] Randall R C, Phillips G O, Williams P A. Fractionation and characterization of gum fromAcacia senegal [J]. Food Hydrocolloids,1989,3(1):65~75.
    [27] Renard D, Garnier C, Lapp A, et al. Structure of arabinogalactan-protein from Acacia gum:From porous ellipsoids to supramolecular architectures [J]. Carbohydrate Polymers,2012,90(1):322~332.
    [28]廖青青.酶法降解阿拉伯胶制备L-阿拉伯糖[D].,浙江工业大学,2010.
    [29] Yadav M P, Manuel Igartuburu J, Yan Y, et al. Chemical investigation of the structural basisof the emulsifying activity of gum arabic [J]. Food Hydrocolloids,2007,21(2):297~308.
    [30] Aoki H, Al-Assaf S, Katayama T, et al. Characterization and properties of Acacia senegal (L.)Willd. var. senegal with enhanced properties (Acacia (sen) SUPER GUM): Part2-Mechanism of the maturation process [J]. Food Hydrocolloids,2007,21(3):329~337.
    [31] Mahendran T, Williams P A, Phillips G O, et al. New Insights into the StructuralCharacteristics of the Arabinogalactan-Protein (AGP) Fraction of Gum Arabic [J]. Journal OfAgricultural And Food Chemistry,2008,56(19):9269~9276.
    [32] Pickles N A, Aoki H, Al-Assaf S, et al. Characterisation and properties of Acacia senegal (L.)Willd. var,senegal with enhanced properties (Acacia (sen) SUPER GUM): Part3Immunological characterisation of Acacia (sen) SUPER GUM [J]. Food Hydrocolloids,2007,21(3):338~346.
    [33] Ye A, Edwards P J, Gilliland J, et al. Temperature-dependent complexation between sodiumcaseinate and gum arabic[J]. Food Hydrocolloids,2012,26(1):82~88.
    [34] Nie S P, Wang C, Cui S W, et al. A further amendment to the classical core structure of gumarabic (Acacia senegal)[J]. Food Hydrocolloids,2013,31(1):42~48.
    [35] Swenson H A, Kaustinen H M, Kaustinen O A, et al. Structure of gum arabic and itsconfiguration in solution [J]. Journal of Polymer Science Part A‐2: Polymer Physics,1968,6(9):1593~1606.
    [36] Vandevelde M, Fenyo J. Macromolecular distribution of Acacia senegal gum (gum arabic) bysize-exclusion chromatography [J]. Carbohydrate Polymers,1985,5(4):251~273.
    [37] Duvallet S, Fenyo J C, Vandevelde M C. Meaning of molecular weight measurements of gumarabic [J]. Polymer Bulletin,1989,21(5):517~521.
    [38] Chihara G, Maeda Y, Hamuro J, et al. Inhibition of mouse Sarcoma180by Polysaccharidesfrom Lentinus edodes (Berk.) Sing.[J]. Nature,1969,222(5194):687~688.
    [39]张树政.糖生物学与糖生物工程(第一版).北京,清华大学出版社有限公司,2002:8~74.
    [40] Sevage M G. Mechanism of the respiration of Pneumococci II[J]. Biochemistry Journal,1934,273:419~429.
    [41]徐任生.天然产物化学(第一版),科学出版社,1993:469~475.
    [42] Wang H X, Ng T B, Ooi V E C. Studies on purification of a lectin from fruiting bodies of theedible shiitake mushroom Lentinus edodes [J]. The International Journal of Biochemistry&Cell Biology,1999,31(5):595~599.
    [43] Reid S, Sims I M, Melton L D, et al. Characterisation of extracellular polysaccharides fromsuspension cultures of apple (Malus domestica)[J]. Carbohydrate Polymers,1999,39(4):369~376.
    [44]甘景镐,甘纯玑,胡炳环.天然高分子化学(第一版),高等教育出版社,1993:7~17.
    [45] Englyst H N, Quigley M E, Hudson G J. Determination of dietary fibre as non-starchpolysaccharides with gas–liquid chromatographic, high-performance liquidchromatographic or spectrophotometric measurement of constituent sugars [J]. Analyst,1994,119(7):1497~1509.
    [46] Lu R, Yoshida T. Structure and molecular weight of Asian lacquer polysaccharides [J].Carbohydrate Polymers,2003,54(4):419~424.
    [47] Cardoso S M, Silva A, Coimbra M A. Structural characterisation of the olive pomace pecticpolysaccharide arabinan side chains [J]. Carbohydrate Research,2002,337(10):917~924.
    [48] Tian X, Li A, Farrugia I V, et al. Isolation and identification of poly-α-(1→4)-linked3-O-methyl-D-mannopyranose from a hot-water extract of Mycobacterium vaccae [J].Carbohydrate Research,2000,324(1):38~44.
    [49] Chaubey M, Kapoor V P. Structure of a galactomannan from the seeds of Cassia angustifoliaVahl [J]. Carbohydrate Research,2001,332(4):439~444.
    [50] Merrifield E H, Stephen A M. Structural studies on the capsular polysaccharide fromklebsiella serotype k64[J]. Carbohydrate Research,1979,74(1):241~257.
    [51] Kang J, Cui S W, Chen J, et al. New studies on gum ghatti (Anogeissus latifolia) part I.Fractionation, chemical and physical characterization of the gum [J]. Food Hydrocolloids,2011,25(8):1984~1990.
    [52] Taylor R L, Conrad H E. Stoichiometric depolymerization of polyuronides andglycosaminoglycuronans to monosaccharides following reduction of theircarbodiimide-activated carboxyl group [J]. Biochemistry,1972,11(8):1383~1388.
    [53] Ciucanu I, Kerek F. A simple and rapid method for the permethylation of carbohydrates [J].Carbohydrate Research,1984,131(2):209~217.
    [54] Nie S P, Cui S W, Phillips A O, et al. Elucidation of the structure of a bioactive hydrophilicpolysaccharide from Cordyceps sinensis by methylation analysis and NMR spectroscopy [J].Carbohydrate Polymers,2011,84(3):894~899.
    [55] Deery M J, Stimson E, Chappell C G. Size exclusion chromatography/mass spectrometryapplied to the analysis of polysaccharides [J]. Rapid Communications In Mass Spectrometry,2001,15(23):2273~2283.
    [56] Garozzo D, Spina E, Cozzolino R, et al. Studies on the primary structure of shortpolysaccharides using SEC MALDI mass spectroscopy [J]. Carbohydrate Research,1999,323(1):139~146.
    [57] Ogawa K. Progress in structure analyses on carbohydrates and polysaccharides [J].Carbohydrate Research,1997,300(1):17.
    [58]王顺春,方积年. X—射线纤维衍射在多糖构型分析中应用的研究进展[J].天然产物研究与开发,2000,12(2):75~80.
    [59] Bluhm T L, Sarko A. The triple helical structure of lentinan, a linear β-(1→3)-D-glucan [J].Canadian journal of Chemistry,1977,55(2):293~299.
    [60] Brant D A. Novel approaches to the analysis of polysaccharide structures [J]. CurrentOpinion In Structural Biology,1999,9(5):556~562.
    [61]中国科学院.2004科学发展报告(第一版).北京,科学出版社,2004:83~84.
    [62]王展,方积年.高场核磁共振波谱在多糖结构研究中的应用[J].分析化学,2000,28(2):240~247.
    [63] Jann B, Shashkov A S, Kochanowski H, et al. NMR reinvestigation of the capsular K27polysaccharide (K27antigen) from Escherichia coli O8: K27: H [J]. Carbohydrate Research,1995,277(2):353~358.
    [64] Tylianakis M, Spyros A, Dais P, et al. NMR study of the rotational dynamics of linearhomopolysaccharides in dilute solutions as a function of linkage position andstereochemistry [J]. Carbohydrate Research,1999,315(1):16~34.
    [65] Wilkinson K J, Balnois E, Leppard G G, et al. Characteristic features of the majorcomponents of freshwater colloidal organic matter revealed by transmission electron andatomic force microscopy [J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,1999,155(2):287~310.
    [66]鲍幸峰,方积年.原子力显微镜在生物大分子结构研究中的应用进展[J].分析化学,2000,28(10):1300~1307.
    [67] Thompson J B, Hansma H G, Hansma P K, et al. The backbone conformational entropy ofprotein folding: experimental measures from atomic force microscopy [J]. Journal OfMolecular Biology,2002,322(3):645~652.
    [68] Sha R, Liu F, Millar D P, et al. Atomic force microscopy of parallel DNA branched junctionarrays [J]. Chemistry&Biology,2000,7(9):743~751.
    [69]张俐娜,薛奇,莫志深,等.高分子物理近代研究方法[M].武汉,武汉大学出版社,2006.
    [70] Murphy R M. Static and dynamic light scattering of biological macromolecules: what can welearn?[J]. Current Opinion In Biotechnology,1997,8(1):25~30.
    [71]程镕时,薄淑琴.用多分散高聚物标样作凝胶色谱的分子量分离和扩展效应同时校准[J].高分子学报,1985,1(2):93~99.
    [72] Saake B, Kruse T, Puls J. Investigation on molar mass, solubility and enzymaticfragmentation of xylans by multi-detected SEC chromatography [J]. Bioresource Technology,2001,80(3):195~204.
    [73] Beer M U, Wood P J, Weisz J. A simple and rapid method for evaluation ofMark–Houwink–Sakurada constants of linear random coil polysaccharides using molecularweight and intrinsic viscosity determined by high performance size exclusionchromatography: application to guar galactomannan [J]. Carbohydrate Polymers,1999,39(4):377~380.
    [74] Kashiwagi Y, Norisuye T, Fujita H. Triple helix of Schizophyllum commune polysaccharidein dilute solution.4. Light scattering and viscosity in dilute aqueous sodium hydroxide [J].Macromolecules,1981,14(5):1220~1225.
    [75] Young S, Jacobs R R. Sodium hydroxide-induced conformational change in schizophyllandetected by the fluorescence dye, aniline blue [J]. Carbohydrate Research,1998,310(1):91~99.
    [76] Paradossi G, Cavalieri F, Chiessi E. A conformational study on the algal polysaccharideulvan [J]. Macromolecules,2002,35(16):6404~6411.
    [77] Hsu C, Lai V M, Yeh A, et al. Effects of temperature and glycerol on the de-organisation ofhsian-tsao (Mesona procumbens Hemsl) polysaccharide solution by electron spin resonancespectroscopy [J]. Food Hydrocolloids,2004,18(2):349~355.
    [78]王希尧.多糖的药理作用研究[J].本溪冶金高等专科学校学报,2003,5(2):6~8.
    [79]王健,龚兴国.多糖的抗肿瘤及免疫调节研究进展[J].中国生化药物杂志,2001,22(1):52~54.
    [80]张志洁.多糖的免疫调节作用及研究进展[J].山西食品工业,2003,(2):10~12.
    [81]何朝勇,王立为.多糖的免疫调节作用综述[J].安徽中医学院学报,2002,21(4):62~64.
    [82]卢杏通,戴镜红,廖明.多糖类免疫调节剂研究概况[J].动物医学进展,2003,24(1):10~12.
    [83]白日霞.多糖免疫药物研究进展[J].大连民族学院学报,2003,5(1):38~40.
    [84]罗祖友,吴季勤,吴谋成.植物多糖的抗氧化与抗病毒活性[J].湖北民族学院学报:自然科学版,2007,25(1):77~81.
    [85] Cui W, Mazza G, Oomah B D, et al. Optimization of an aqueous extraction process forflaxseed gum by response surface methodology [J]. LWT-Food Science and Technology,1994,27(4):363~369.
    [86] Box G E, Behnken D W. Some new three level designs for the study of quantitative variables[J]. Technometrics,1960,2(4):455~475.
    [87] Santelli R E, Bezerra M D A, de SantAna O D, et al. Multivariate technique for optimizationof digestion procedure by focussed microwave system for determination of Mn, Zn and Fe infood samples using FAAS [J]. Talanta,2006,68(4):1083~1088.
    [88]李光,李学兰,孙慧峰,等.响应曲面法优化铁皮石斛多糖提取条件[J].中国现代中药,2011,13(9):29~33.
    [89]崔凤杰,许泓瑜,舒畅,等.响应曲面法优化灰树花水溶性多糖提取工艺的研究[J].食品科学,2006,27(4):142~147.
    [90] Liyana-Pathirana C, Shahidi F. Optimization of extraction of phenolic compounds fromwheat using response surface methodology [J]. Food Chemistry,2005,93(1):47~56.
    [91]李孝栋,陈景山,陈峰,等.黄芪多糖含量测定的方法学研究[J].世界科学技术:中医药现代化,2006,8(2):35~37.
    [92]王文平,郭祀远,李琳,等.野木瓜中多糖提取工艺研究[J].食品科技,2007,32(1):99~101.
    [93]刘秀河,吴艳,艾连中.山药水溶性多糖提取工艺的研究[J].食品与机械,2006,22(2):21~23.
    [94]崔凤杰,许泓瑜,舒畅,等.响应曲面法优化灰树花水溶性多糖提取工艺的研究[J].食品科学,2006,27(4):142~147.
    [95] Lee W C, Yusof S, Hamid N S A, et al. Optimizing conditions for enzymatic clarification ofbanana juice using response surface methodology (RSM)[J]. Journal Of Food Engineering,2006,73(1):55~63.
    [96] Haaland P D. Experimental design in biotechnology[M]. CRC press,1989
    [97] Triveni R, Shamala T R, Rastogi N K. Optimised production and utilisation ofexopolysaccharide from Agrobacterium radiobacter [J]. Process Biochemistry,2001,36(8):787~795.
    [98]林树钱,王赛贞,林志彬,等.草栽与段木栽培的灵芝活性成分的分离与鉴定Ⅰ.多糖肽成分的提取,纯化及性质[J].中草药,2004,34(10):872~874.
    [99]谢好贵,陈美珍,张玉强.多糖抗肿瘤构效关系及其机制研究进展[J].食品科学,2011,32(11):329~333.
    [100]周鹏,谢明勇.多糖的结构研究[J].南昌大学学报:理科版,2001,25(2):197~204.
    [101] Sevag M G, Lackman D B, Smolens J. The isolation of the components of streptococcalnucleoproteins in serologically active form [J]. Journal Of Biological Chemistry,1938,124(2):425~436.
    [102] Navarini L, Gilli R, Gombac V, et al. Polysaccharides from hot water extracts of roastedCoffea arabica beans: isolation and characterization [J]. Carbohydrate Polymers,1999,40(1):71~81.
    [103]盛家荣,曾令辉,翟春,等.多糖的提取,分离及结构分析[J].广西师院学报(自然科学版),1999,16(4):49~54.
    [104]叶振南,邵家坪.粗多糖的提取,分离及结构研究[J].中国药事,2000,14(5):329~332.
    [105]史宝军,张家骊,杨平平,等.灰树花胞外多糖的分离纯化及其性质研究[J].药物生物技术,2004,10(5):312~316.
    [106]杨焱,周昌艳,白韵琴,等.猴头菌子实体和菌丝体多糖的分离纯化与理化特征的比较[J].菌物系统,2001,20(3):397~402.
    [107] Yu R, Wang L, Zhang H, et al. Isolation, purification and identification of polysaccharidesfrom cultured Cordyceps militaris [J]. Fitoterapia,2004,75(7-8):662~666.
    [108] Kim G, Park H, Nam B, et al. Purification and characterization of acidicproteo-heteroglycan from the fruiting body of Phellinus linteus (Berk.&M.A. Curtis) Teng[J]. Bioresource Technology,2003,89(1):81~87.
    [109] Qian K Y, Cui S W, Wu Y, et al. Flaxseed gum from flaxseed hulls: Extraction,fractionation, and characterization [J]. Food Hydrocolloids,2012,28(2):275~283.
    [110] Kang J, Cui S W, Chen J, et al. New studies on gum ghatti (Anogeissus latifolia) part I.Fractionation, chemical and physical characterization of the gum [J]. Food Hydrocolloids,2011,25(8):1984~1990.
    [111] White C A, Kennedy J F, Chaplin M F, et al. Carbohydrate analysis: a practicalapproach[M].,1986
    [112]张惟杰.糖复合物生化研究技术(第2版)[M].,浙江大学出版社,1999.
    [113]陈鸿英,朱永智,吴乃居,等.朝鲜淫羊藿多糖的含量测定[J].中草药,2003,34(9):810~811.
    [114] Bitter T, Muir H M. A modified uronic acid carbazole reaction [J]. Analytical Biochemistry,1962,4(4):330~334.
    [115] Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronicacids [J]. Analytical Biochemistry,1973,54(2):484~489.
    [116] Meseguer I, Aguilar V, González M J, et al. Extraction and colorimetric quantification ofuronic acids of the pectic fraction in fruit and vegetables [J]. Journal of Food Compositionand Analysis,1998,11(4):285~291.
    [117] Huang L, Lin Y, Tian G, et al. Isolation, purification and physico-chemical properties ofimmunoactive constituents from the fruit of Lycium barbarum L.[J]. Yao xue xue bao=Acta pharmaceutica Sinica,1998,33(7):512~516.
    [118] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry,1976,72(1):248~254.
    [119]贾之慎,邬建敏.洋栖菜中褐藻多糖硫酸酯的分离和组分分析[J].浙江农业大学学报,1998,24(6):670~673.
    [120] Yin J Y, Nie S P, Zhou C, et al. Chemical characteristics and antioxidant activities ofpolysaccharide purified from the seeds of Plantago asiatica L.[J]. Journal Of The ScienceOf Food And Agriculture,2010,90(2):210~217.
    [121] Mopper K, Schultz C A, Chevolot L, et al. Determination of sugars in unconcentratedseawater and other natural waters by liquid chromatography and pulsed amperometricdetection.[J]. Environmental Science&Technology,1992,26(1):133~138.
    [122] Cui W, Wood P J, Blackwell B, et al. Physicochemical properties and structuralcharacterization by two-dimensional NMR spectroscopy of wheat β-D-glucan-comparisonwith other cereal β-D-glucans [J]. Carbohydrate Polymers,2000,41(3):249~258.
    [123] Chen Y, Xie M, Nie S, et al. Purification, composition analysis and antioxidant activity of apolysaccharide from the fruiting bodies of Ganoderma atrum [J]. Food Chemistry,2008,107(1):231~241.
    [124]虞志光.高聚物分子量及其分布的测定[M].上海,上海科学技术出版社,1984.
    [125]刘国良,李一通,周龙英,等.超滤及其实践[J].中国医药工业杂志,1982,23(8):23~29.
    [126] Varki A, Cummings R, Esko J, et al. Essentials of glycobiology[M].New York. Cold SpringHarbor Laboratory Press,1999
    [127]魏远安,方积年.用HPLC测定多糖的纯度及分子量的研究[J].药学学报,1989,24(7):532~536.
    [128] Alsop R M, Vlachogiannis G J. Determination of the molecular weight of clinical dextranby gel permeation chromatography on TSK PW type columns [J]. Journal OfChromatography A,1982,246(2):227~240.
    [129]张志花,杨晓彤,方积年.云芝糖肽在高效液相凝胶柱上色谱行为的研究[J].色谱,1997,15(2):150~152.
    [130]Singleton V L, Rossi J A. Colorimetry of total phenolics withphosphomolybdic-phosphotungstic acid reagents [J]. American Journal Of Enology AndViticulture,1965,16(3):144~158.
    [131] Oliveira I, Sousa A, Ferreira I C F R, et al. Total phenols, antioxidant potential andantimicrobial activity of walnut (Juglans regia L.) green husks [J]. Food And ChemicalToxicology,2008,46(7):2326~2331.
    [132] Singthong J, Cui S W, Ningsanond S, et al. Structural characterization, degree ofesterification and some gelling properties of Krueo Ma Noy (Cissampelos pareira) pectin[J]. Carbohydrate Polymers,2004,58(4):391~400.
    [133]孔元琳,申瑞玲,汤坚,等.当归多糖ASP3的甲基化分析[J].高等学校化学学报,2008,29(7):1367~1370.
    [134] York W S, Darvill A G, McNeil M, et al. Isolation and characterization of plant cell wallsand cell wall components [J]. Methods In Enzymology,1986,118:3~40.
    [135] Ciucanu I, Kerek F. A simple and rapid method for the permethylation of carbohydrates [J].Carbohydrate Research,1984,131(2):209~217.
    [136] Cui W, Eskin M N A, Biliaderis C G, et al. NMR characterization of a4-O-methyl-β-d-glucuronic acid-containing rhamnogalacturonan from yellow mustard(Sinapis alba L.) mucilage [J]. Carbohydrate Research,1996,292:173~183.
    [137]沈竞,王元凤,魏新林.两种多糖甲基化方法的比较[J].上海师范大学学报:自然科学版,2012,41(2):160~164.
    [138] Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugarsand related substances [J]. Analytical Chemistry,1956,28(3):350~356.
    [139]López-Barajas M, López-Tamames E, Buxaderas S. Improved size-exclusionhigh-performance liquid chromatographic method for the simple analysis of grape juice andwine polysaccharides [J]. Journal Of Chromatography A,1998,823(1-2):339~347.
    [140] Sassaki G L, Gorin P A, Souza L M, et al. Rapid synthesis of partially O-methylated alditolacetate standards for GC-MS: Some relative activities of hydroxyl groups of methylglycopyranosides on Purdie methylation [J]. Carbohydrate Research,2005,340(4):731~739.
    [141] Wang Z, He Y, Huang L. An alternative method for the rapid synthesis of partiallyO-methylated alditol acetate standards for GC–MS analysis of carbohydrates [J].Carbohydrate Research,2007,342(14):2149~2151.
    [142] Chandra K, Ghosh K, Ojha A K, et al. Chemical analysis of a polysaccharide of unripe(green) tomato (Lycopersicon esculentum)[J]. Carbohydrate Research,2009,344(16):2188~2194.
    [143] Sarkar R, Nandan C K, Mandal S, et al. Structural characterization of aheteropolysaccharide isolated from hot water extract of the stems of Amaranthus tricolorLinn.(Amaranthus gangeticus L.)[J]. Carbohydrate Research,2009,344(17):2412~2416.
    [144] Ovodova R G, Golovchenko V V, Popov S V, et al. Chemical composition andanti-inflammatory activity of pectic polysaccharide isolated from celery stalks [J]. FoodChemistry,2009,114(2):610~615.
    [145] Ghosh K, Chandra K, Ojha A K, et al. Structural identification and cytotoxic activity of apolysaccharide from the fruits of Lagenaria siceraria(Lau)[J]. Carbohydrate Research,2009,344(5):693~698.
    [146] Mondal S, Das D, Maiti D, et al. Structural investigation of a heteropolysaccharide isolatedfrom the green fruits of Capsicum annuum [J]. Carbohydrate research,2009,344(9):1130~1135.
    [147] Qi H, Zhang Q, Zhao T, et al. Antioxidant activity of different sulfate content derivatives ofpolysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro [J]. International JournalOf Biological Macromolecules,2005,37(4):195~199.
    [148] Salvemini D, Wang Z, Zweier J L, et al. A nonpeptidyl mimic of superoxide dismutase withtherapeutic activity in rats [J]. Science,1999,286(5438):304~306.
    [149] Melov S, Ravenscroft J, Malik S, et al. Extension of life-span with superoxidedismutase/catalase mimetics [J]. Science,2000,289(5484):1567~1569.
    [150] Zhao L, Zhao G, Du M, et al. Effect of selenium on increasing free radical scavengingactivities of polysaccharide extracts from a Se-enriched mushroom species of the genusGanoderma [J]. European Food Research And Technology,2008,226(3):499~505.
    [151] Liu F, Ooi V E C, Chang S T. Free radical scavenging activities of mushroompolysaccharide extracts [J]. Life Sciences,1997,60(10):763~771.
    [152] Zhang Q B, Li N, Zhou G F, et al. In vivo antioxidant activity of polysaccharide fractionfrom Porphyra haitanesis (Rhodephyta) in aging mice [J]. Pharmacological Research,2003,48(2):151~155.
    [153] Tzianabos A O. Polysaccharide immunomodulators as therapeutic agents: structural aspectsand biologic function [J]. Clinical Microbiology Reviews,2000,13(4):523~533.
    [154] Smestad P B. Plant polysaccharides with immunostimulatory activities [J]. Current OrganicChemistry,2001,5(9):939~950.
    [155] Wasser S. Medicinal mushrooms as a source of antitumor and immunomodulatingpolysaccharides [J]. Applied Microbiology And Biotechnology,2002,60(3):258~274.
    [156] Li S P, Zhao K J, Ji Z N, et al. A polysaccharide isolated from Cordyceps sinensis, atraditional Chinese medicine, protects PC12cells against hydrogen peroxide-induced injury[J]. Life Sciences,2003,73(19):2503~2513.
    [157] Omarsdottir S, Olafsdottir E S, Freysdottir J. Immunomodulating effects of lichen-derivedpolysaccharides on monocyte-derived dendritic cells [J]. InternationalImmunopharmacology,2006,6(11):1642~1650.
    [158] Qin C, Huang K, Xu H. Protective effect of polysaccharide from the loach on the in vitroand in vivo peroxidative damage of hepatocyte [J]. The Journal of nutritional biochemistry,2002,13(10):592~597.
    [159] Pang Z, Chen Y, Zhou M. Polysaccharide krestin enhances manganese superoxidedismutase activity and mRNA expression in mouse peritoneal macrophages [J]. TheAmerican journal of Chinese medicine,2000,28(3-4):331~341.
    [160] Hu T, Zheng R. Promotion of Sophora subprosrate polysaccharide on nitric oxide andinterleukin-2production in murine T lymphocytes: implicated Ca2+and protein kinase C[J]. International Immunopharmacology,2004,4(1):109~118.
    [161] Shimada K, Fujikawa K, Yahara K, et al. Antioxidative properties of xanthan on theautoxidation of soybean oil in cyclodextrin emulsion [J]. Journal Of Agricultural And FoodChemistry,1992,40(6):945~948.
    [162] Vasco C, Ruales J, Kamal-Eldin A. Total phenolic compounds and antioxidant capacities ofmajor fruits from Ecuador [J]. Food Chemistry,2008,111(4):816~823.
    [163] Duan X, Zhang W, Li X, et al. Evaluation of antioxidant property of extract and fractionsobtained from a red alga, Polysiphonia urceolata [J]. Food Chemistry,2006,95(1):37~43.
    [164] Top u G, Ay M, Bilici A, et al. A new flavone from antioxidant extracts of Pistaciaterebinthus [J]. Food Chemistry,2007,103(3):816~822.
    [165] Moret o M P, Buchi D F, Gorin P A, et al. Effect of an acidic heteropolysaccharide(ARAGAL) from the gum of Anadenanthera colubrina (Angico branco) on peritonealmacrophage functions [J]. Immunology Letters,2003,89(2):175~185.
    [166] Cheng A, Wan F, Wang J, et al. Macrophage immunomodulatory activity ofpolysaccharides isolated from Glycyrrhiza uralensis fish [J]. InternationalImmunopharmacology,2008,8(1):43~50.
    [167] Green L C, Wagner D A, Glogowski J, et al. Analysis of nitrate, nitrite, and [15N] nitrate inbiological fluids [J]. Analytical Biochemistry,1982,126(1):131~138.
    [168] Zhu X, Chen A, Lin Z. Ganoderma lucidum polysaccharides enhance the function ofimmunological effector cells in immunosuppressed mice [J]. Journal OfEthnopharmacology,2007,111(2):219~226.
    [169] Da Silva C A, Chalouni C, Williams A, et al. Chitin is a size-dependent regulator ofmacrophage TNF and IL-10production [J]. The Journal of Immunology,2009,182(6):3573~3582.
    [170] Ye L B, Zhang J S, Zhou K, et al. Purification, NMR study and immunostimulating propertyof a fucogalactan from the fruiting bodies of Ganoderma lucidum [J]. Planta Medica,2008,74(14):1730~1734.
    [171] Li F, Wang F, Yu F, et al. In vitro antioxidant and anticancer activities of ethanolic extractof selenium-enriched green tea [J]. Food Chemistry,2008,111(1):165~170.
    [172] Zhou C, Tang Q, Yang Y, et al. Antitumor effect of ganoderic acid from Ganodermalucidum [J]. Mycosystema,2003,23(2):275~279.
    [173] Morrison D C, Jacobs D M. Inhibition of lipopolysaccharide-initiated activation of serumcomplement by polymyxin B.[J]. Infection And Immunity,1976,13(1):298~301.
    [174] Amarowicz R, Pegg R B, Rahimi-Moghaddam P, et al. Free-radical scavenging capacity andantioxidant activity of selected plant species from the Canadian prairies [J]. Food Chemistry,2004,84(4):551~562.
    [175] Marinova E M, Yanishlieva N V. Antioxidative activity of extracts from selected species ofthe family Lamiaceae in sunflower oil [J]. Food Chemistry,1997,58(3):245~248.
    [176] Geckil H, Ates B, Durmaz G, et al. Antioxidant, free radical scavenging and metal chelatingcharacteristics of propolis [J]. American Journal of Biochemistry and Biotechnology,2005,1(1):27~31.
    [177] Duh P, Du P, Yen G. Action of methanolic extract of mung bean hulls as inhibitors of lipidperoxidation and non-lipid oxidative damage [J]. Food And Chemical Toxicology,1999,37(11):1055~1061.
    [178] Kamath V, Rajini P S. The efficacy of cashew nut (Anacardium occidentale L.) skin extractas a free radical scavenger [J]. Food Chemistry,2007,103(2):428~433.
    [179] Peláez B, Campillo J A, López-Asenjo J A, et al. Cyclophosphamide induces thedevelopment of early myeloid cells suppressing tumor cell growth by a nitricoxide-dependent mechanism [J]. The Journal of Immunology,2001,166(11):6608~6615.
    [180] Quakyi E K, Carter P H, Tsai C, et al. Immunization with meningococcal membrane-boundlipooligosaccharide accelerates granulocyte recovery and enhances lymphocyte proliferationin myelosuppressed mice [J]. Pathobiology,1997,65(1):26~38.
    [181] Uchiyama M, Mihara M. Determination of malonaldehyde precursor in tissues bythiobarbituric acid test [J]. Analytical Biochemistry,1978,86(1):271~278.
    [182] Shuai X, Hu T, Liu H, et al. Immunomodulatory effect of a Sophora subprosratepolysaccharide in mice [J]. International Journal Of Biological Macromolecules,2010,46(1):79~84.
    [183] Fang Y Z, Zheng R L. Theory and application of free radical biology[M].Beijing. BIOSScientific Publishers Limited,2002
    [184] Li X, Jiao L, Zhang X, et al. Anti-tumor and immunomodulating activities of proteoglycansfrom mycelium of Phellinus nigricans and culture medium [J]. InternationalImmunopharmacology,2008,8(6):909~915.
    [185] Quinn M, Ammons M C, DeLeo F. The expanding role of NADPH oxidases in health anddisease: no longer just agents of death and destruction [J]. Clinical Science,2006,111:1~20.
    [186] MacMicking J, Xie Q, Nathan C. Nitric oxide and macrophage function [J]. Annual ReviewOf Immunology,1997,15(1):323~350.
    [187] Cui F J, Tao W Y, Xu Z H, et al. Structural analysis of anti-tumor heteropolysaccharideGFPS1b from the cultured mycelia of Grifola frondosa GF9801[J]. BioresourceTechnology,2007,98(2):395~401.
    [188] Cardoso L S, Araujo M I, Góes A M, et al. Polymyxin B as inhibitor of LPS contaminationof Schistosoma mansoni recombinant proteins in human cytokine analysis [J]. Microbialcell factories,2007,6(1):1.
    [189] Laemmli U K. Cleavage of structural proteins during the assembly of the head ofbacteriophage T4[J]. Nature,1970,227(5259):680~685.
    [190] Osman M E, Williams P A, Menzies A R, et al. Characterization of commercial samples ofgum arabic [J]. Journal Of Agricultural And Food Chemistry,1993,41(1):71~77.
    [191] Anderson D M W, Howlett J F, McNab C G A. The amino acid composition of theproteinaceous component of gum arabic (Acacia Senegal (L.) Willd.)[J]. Food Additives&Contaminants,1985,2(3):159~164.
    [192] Flindt C, Al-Assaf S, Phillips G O, et al. Studies on acacia exudate gums. Part V. Structuralfeatures of Acacia seyal [J]. Food Hydrocolloids,2005,19(4):687~701.
    [193] Biswas S, Biswas B, Phillips G O. Classification of natural gums. Part VIII. Chemometricassignment of commercial gum exudates from Africa using cluster analysis on the proteinamino acid compositions [J]. Food Hydrocolloids,1995,9(3):151~163.
    [194] Anderson D M W, Dea I C M, Hirst E. Studies on uronic acid materials: Part XXXII. Somestructural features of the gum exudate from acacia seyal del.[J]. Carbohydrate Research,1968,8(4):460~476.
    [195] Nie S P, Wang C, Cui S W, et al. The core carbohydrate structure of Acacia seyal var.seyal(Gum arabic)[J]. Food Hydrocolloids,2013,32(2):221~227.
    [196] Kilcoyne M, Perepelov A V, Tomshich S V, et al. Structure of the O-polysaccharide ofIdiomarina zobellii KMM231Tcontaining two unusual amino sugars with the free aminogroup,4-amino-4,6-dideoxy-d-glucose and2-amino-2-deoxy-l-guluronic acid [J].Carbohydrate Research,2004,339(3):477~482.
    [197] Li J, Cui S W, Nie S, et al. Structure and biological activities of a pectic polysaccharidefrom Mosla chinensis Maxim. cv. Jiangxiangru [J]. Carbohydrate Polymers,2014,105:276~284.
    [198] Capek P, Matulová M, Navarini L, et al. Structural features of an arabinogalactan-proteinisolated from instant coffee powder of Coffea arabica beans [J]. Carbohydrate Polymers,2010,80(1):180~185.
    [199] Heiss C, Stacey Klutts J, Wang Z, et al. The structure of Cryptococcus neoformansgalactoxylomannan contains β-D-glucuronic acid [J]. Carbohydrate Research,2009,344(7):915~920.
    [200] Roy S K, Das D, Mondal S, et al. Structural studies of an immunoenhancing water-solubleglucan isolated from hot water extract of an edible mushroom, Pleurotus florida, cultivarAssam Florida [J]. Carbohydrate Research,2009,344(18):2596~2601.
    [201] Waller G R, Feather M S. The Maillard reaction in foods and nutrition.,1983.
    [202] Shepherd R, Robertson A, Ofman D. Dairy glycoconjugate emulsifiers:casein–maltodextrins [J]. Food Hydrocolloids,2000,14(4):281~286.
    [203] Dickinson E, Galazka V B. Emulsion stabilization by ionic and covalent complexes ofβ-lactoglobulin with polysaccharides[J]. Food Hydrocolloids,1991,5(3):281~296.
    [204]庄海宁,冯涛.美拉德反应合成蛋白质-多糖复合物及其应用[J].粮食与油脂,2008,(12):4~7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700