用户名: 密码: 验证码:
稀土催化剂在离子液体及反向ATRP中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首次在离子液体中进行了稀土配位催化剂Nd(VA)3/Al(i-Bu)_3催化MMA均聚反应,系统地探讨了不同反应条件对MMA聚合的影响。研究发现该催化剂能有效地催化MMA在离子液体中聚合,并且聚合反应速度和PMMA分子量比甲苯和本体中聚合的高。此外,催化剂陈化对离子液体中的聚合不利。MMA在[emim]BF_4中,[MMA]=3.0mol/L,[MMA]/[Nd]=300,60℃下聚合6h,单体转化率为64.9%,PMMA数均分子量为19.7×10~4,分子量分布为2.1。用瓜,GPC,DSC和~1H-NMR对聚合物结构和性能进行了表征。
     在离子液体中进行了Nd(VA)_3/Al(i-Bu)_3/CCl_4催化苯乙烯均聚合,详细地研究了不同反应条件对聚合的影响。结果表明:在没有第三组分的情况下,Nd(VA)_3/Al(i-Bu)_3在甲苯中不能催化苯乙烯聚合,而在相同条件下,在[emim]BF_4中催化苯乙烯聚合的转化率可达37%,当加入第三组分时,离子液体中聚合得到的PSt分子量高。此外,催化剂陈化对甲苯中的聚合比较有利,所得聚PSt分子量较小,催化剂陈化对离子液体中的聚合不利,但所得PSt分子量显著增大。在[emim]BF_4中,[St]=3.8mol/L,[St]/[Nd]=300,Al/Nd=27,CCl_4/Nd=7(molar ratio),60℃下聚合24h,苯乙烯转化率为79.3%,PSt的数均分子量为5.13×10~4,分子量分布为3.52。用IR,~1H-NMR和DSC对PSt结构和性能进行了表征。对Nd(VA)_3/Al(i-Bu)_3/CCl_4催化苯乙烯聚合的动力学研究表明,聚合反应速率对苯乙烯和催化剂浓度都是一级关系,该聚合反应60℃时表观增长速率常数k_p=0.1mol~(-1)min~(-1),聚合反应表观活化能Ea=67.5kJmol~(-1)。
     在离子液体中进行了Nd(VA)_3/Al(i-Bu)_3/CCl_4三元催化剂催化MMA和St共聚合,研究表明,通过不同加料顺序可以得到MA和St无规和嵌段共聚物。探讨了不同的单体投料比,单体/催化剂摩尔比,聚合温度和时间对MMA和St无规共聚的影响。对得到的共聚物用GPC,IR,DSC,~1H-NMR和~(13)C-NMR等手段进行了表征。
     首次合成了离子液体([Hmim]BF_4)支载的稀土催化剂并用于DTC开环均聚合,系统地研究了不同稀土、温度、溶剂、单体浓度、单体/催化剂摩尔比和反应时间对DTC聚合的影响,实验表明,在考察的几种稀土元素当中,La的催化
The applications of rare earth catalysts in ionic liquids and reverse atom transfer radical polymerization (reverse ATRP) were studied in this dissertation.Rare earth catalyst-neodymium versatate (Nd(VA)3)/Al(/-Bu)3 was employed to catalyze the polymerization of methyl methacrylate (MMA) for the first time. Effects of different conditions on the polymerization were studied systemically. Results show that the polymerization of MMA by rare earth catalyst in ionic liquids could be conducted successfully. Furthermore, the rate of polymerization and the molecular weight of the polymer obtained in ionic liquids were much higher than that in toluene or in bulk at the same conditions. It can be concluded that ionic liquids can accelerate the polymerization of MMA. Moreover, it was found that the aging of catalysts disadvantages the polymerization, while benefits to the polymerization in toluene. When [MMA]=3.0mol/L and [MMA]/[Nd]=300, the highest conversion and molecular weight can be achieved in [emim]BF_4 at 60℃. IR, GPC, DSC and ~1H-NMR were used to characterize the structure and property of PMMA obtained in ionic liquid.The polymerization of styrene by ternary catalytic system, Nd(VA)3/Al(/-Bu)3/ CCl_4, were carried out in ionic liquids. Results show that St can't be polymerized in toluene by the ternary catalytic system but no polymerization with no III additive in the system. However, the conversion of monomer was 37% in ionic liquids with no III additive. However, the conversion of monomer was 37% in ionic liquids at the same conditions. The aging of catalysts can increase the molecular weight of PSt obtained in ionic liquids, while didn't increase the conversion of monomer. And the optimum reaction conditions are as follows: [St]=3.8molL~(-1) [St]/[Nd]=300, Al/Nd=27, CCl_4/Nd=7 (molar ratio), 60°C, 24h, in [emim]BF_4. Under these conditions, PSt with M_n of 5.13 ×10~4 and M_w/M_n of 3.52 could be prepared. PSt obtained in ionic liquid was characterized by means of IR, GPC, DSC and ~1H-NMR.The kinetic studies indicated that St polymerization in ionic liquids is first order
    with respect to the monomer concentration and catalyst concentration, Respectively. The apparent propagating constant (kp) is O.lmol^min"1 at 60"C, And the apparent activation energy (Ea) amounts to 67.5kJmol"1.Copolymerization of MMA with St was also conducted in ionic liquids by the same ternary catalytic system. It was found that random and block copolymers can be prepared in ionic liquids by different feed sequences. However, only homopolymer could be obtained when MMA was polymerized first in ionic liquids. Effects of different reaction conditions on the polymerization were studied systemically. IR, GPC, DSC, 2H-NMR and 13C-NMR were used to characterize the structure and property of the copolymers of MMA and St.Ionic liquids-supported rare earth catalysts were synthesized for the first time, and it was used in the ring-opening polymerization of 2,2-dimethyltrimethylene carbonate (DTC). Studies show that La system presented the highest activity among the rare earth elements investigated, and the optimum reaction conditions are as follows: [DTC]=2.5molL"x, [DTC]/[La]=200, 60 °C ,0.5h. PDTC with monomer conversion of 88.6% and Mn of 2.58xlO4 could be prepared under the above conditions. IR, GPC, *H-NMR and DSC were used to characterize PDTC. Through analyzing the end group in PDTC terminated by isopropanol, it can be concluded that the polymerization of DTC by ILs-supported rare earth catalyst was via the breaking of acyl-oxygen bond, which is accord with the polymerization by single component catalyst of rare earth.The copolymerization of CL and DTC by ILs-supported rare earth catalyst was also conducted. Results indicate that both random and block copolymer of CL and DTC can be obtained by different feed sequences. Effects of different rare earths, temperature, solvents, monomer concentration, time and molar ratio of monomer/catalyst were investigated. The characterizations by IR, GPC, DSC, *H-NMR and 13C-NMR testified the formation of PCL-co-PDTC and PCL-b-PDTC copolymers.Ring-opening polymerization of e -caprolactone in ionic liquid was carried out with LnCl;$/epoxide as catalyst. The results show that LnCb/epoxide could catalyze
    the polymerization of CL in ionic liquid effectively. The effects of different rare earth chlorides, epoxides, monomer concentration, the molar ratio of epoxide/LnClj and CI/LnCb, polymerization temperature and time on the polymerization of CL were investigated. When the ratio of PO/ ErCl3 is 30, PCL with a viscosity molecular weight of 2.54 X104 and the conversion of 96.0% can be prepared at 60 °C in 30 min. Moreover, the activities of GdCb and ErCb were higher than other rare earth chlorides investigated. The structure and thermal properties of PCL were characterized by means of ^-NMR and DSC respectively. The analyses of PCL structure showed that the polymerization of CL proceeds according to 'coordination-insertion' mechanism with s with acyl-oxygen bond cleavage of the monomer.Reverse ATRP of methyl methacrylate mediated by AIBN/SmCla/lactic acid system was investigated for the first time. The one electron transfer reaction of SmCl3 to SmCl2 was employed in the living radical polymerization successfully. The kinetics studies indicated that the polymerization is first order to monomer concentration. Moreover, the number average molecular weight increased linearly with the monomer conversion, Mn, gpc are close to the theory molecular weight and Mw/Mn were narrower (less than 1.5). These show that the polymerization of MMA was a living/controlled one in the above system. Effects of different reaction conditions, such as solvents, temperature and molar ratio of [I]o/[SmCl3]o/[bpy]o, on the polymerization have been studied. PMMA with narrower molecular weight distribution have been obtained in DMF at 80 °C. Furthermore, the apparent activation energy was calculated about 17.7kcal/mol for the reverse ATRP of MMA initiated by AIBN/SmCl3/lactic acid system.
引文
1.李汝雄,绿色溶剂—离子液体的合成与应用,北京:化学工业出版社,2004,1-9.
    2.宋宪,绿色化学工艺,北京:化学工业出版社,2001,2-4.
    3.沈玉龙,魏利滨,曹文华,琚行松,绿色化学,北京:中国环境科学出版社,2004,1-8.
    4. Dupont J., Souza R. F., Suarez P. A. Z., Ionic liquid (molten salt) phase organometallic catalysis, Chem. Rev., 2002, 102(10): 3667-3692.
    5. Dzyuba S. V., Bartsh R. A., Recent advances in applications of room temperature ionic liquid/supercritical CO_2 systems, Angew. Chem. Int. Ed., 2003, 42(2): 148-150.
    6. Antonietti. M., Kuang D., Smarsly B., Zhou Y., Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures, Angew. Chem. Int. Ed., 2004, 43(38): 4988-4992.
    7.杨雅立(Yang Y.L.),王晓化(Wang X.H.),寇元(Kou Y),不断壮大的离子液体家族,化学进展(Prog.Chem.),2003,15(6):471-476.
    8. Zhao D. B., Wu M., Kou Y., Min E. Z., Ionic liquids: applications in catalysis, Catal. Today, 2002, 74(1-2): 157-189.
    9. Wasserscheid P., Keim W., Ionic liquids-new "solutions" for transition metal catalysis, Angew. Chem. Int. Ed., 2000, 39(21): 3772-3789.
    10. Holbrey J. D., Turner M. B., Reichert W. M., Rogers R. D., New ionic liquids containing an appended hydroxyl functionality from the atom-efficient, one-pot reaction of 1-methylimidazole and acid with propylene oxide. Green Chem., 2003, 5(6): 731-736.
    11. Hagiwara R., Ito Y., Room temperature ionic liquids of alkylimidazolium cations and fluoroanions, J. Fluo. Chem. 2000, 105(1): 221-227.
    12. Wilkes J. S., A short history of ionic liquids-from molten salts to neoteric solvents, Green Chem., 2002, 4(2): 73-80.
    13. Sheldon R., Catalytic reactions in ionic liquids, Chem. Commun., 2001, (23): 2399-2407.
    14. Booker K., Bowyer M. C., Holdsworth C. I., McCluskey A., Efficient preparation and improved sensitivity of molecularly imprinted polymers using room temperature ionic liquids, Chem. Commun., 2006, (16): 1730-1732.
    15. Davis J. H., Task-specific ionic liquids, Chem. Lett., 2004,33(9): 1072-1077.
    16. Suarez P. A. Z., Selbach V. M., Dullius J. E. L., Einloft S., Piatnicki C. M. S., Enlarged electrochemical window in dialkyl-imidazolium cation based room-temperature air and water-stable molten salts, Electrochem. Acta, 1997, 42(16): 2533-2535.
    17. Kubisa P., Ionic liquids in the synthesis and modification of polymers, J. Polym. Sci. Part A: Polym. Chem., 2005,43(20): 4675-4683.
    18. Tang J., Sun W., Tang H., Radosz M., Shen Y., Enhanced CO_2 Absorption of Poly(ionic liquid)s,Macromolecules, 2005,38(6): 2037-2039.
    19. Hurley F. H., Weir T. P., Electrodeposition of metals from fused quaternary ammonium salts,J. Electrochem. Soc. 1951,98(2): 203-206.
    20. Wikes J. S., Levisky J. A., Wilson R. A., Dialkylimidazolium chloroaluminate melts: a new class of room temperature ionic liquids for electrochemistry, spectroscopy and synthesis, Inorg. Chem., 1982,21(3): 1263-1264.
    21. Wikes J. S., Zaworotko M. J, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids, Chem. Commun., 1992, (13): 965-967.
    22. Demberelnyamba D., Shin B. K., Lee H., Ionic liquids based on N-vinyl- γ -butyrolactam: potential liquid electrolytes and green solvents, Chem. Commun., 2002, (14): 1538-1539.
    23. Matsumomo H., Kageyama H., Miyazaki Y., Room temperature ionic liquids based on small aliphatic ammonium cations and asymmetric amide anions, Chem. Commun., 2002, (16): 1726-1727.
    24. Matsumomo H., Kageyama H., Ito Y, Room temperature molten fluorometallates: 1-ethyl-3-methylimidazolium hexafluoroniobate(V) and hexafluorotantalate(V), J. Fluo. Chem., 2002,115(2): 133-135.
    25. Wasserscheid P., Bosmann A., Bolm C., Synthesis and properties of ionic liquids derived from the 'chiral pool', Chem. Commun., 2002, (3): 200-201.
    26. Bates E. D., Mayton R. D., Ntai L., CO_2 capture by a task-specific ionic liquid, J. Am. Chem. Soc., 2002, 124(6): 926-927.
    27. Deetlefs M., Raubenheimer H. G., Esterhuysen M. W., Stoichiometric and catalytic reactions of gold utilizing ionic liquids, Catal. Today, 2002, 72(1): 29-41.
    28. Hagiwara R., Hirashige T., Tsuda T., Ito Y., A highly conductive room temperature molten fluoride: EMIF-2.3HF, J. Electrochem. Soc., 2002, 149(1): D1-D6.
    29. Hirao M., Sugimoto M., Ohno H., Preparation of novel room-temperature molten salts by neutralization of amines, J. Electrochem. Soc., 2000, 147(11): 4168-4172.
    30. Bonhote P., Dias A., Papageogiou N., Kalyanasundaram K., Gratzel M., Hydrophobic, Highly conductive ambient-temperature molten salts, Inorg. Chem., 1996, 35(5): 1168-1178.
    31. Bhushan M. K., Geeta L. R., Microwave-assisted synthesis of room-temperature ionic liquid precursor in closed vessel, Org. Proc. Res. & Dev., 2002, 6, 826-828.
    32. Welton T., Room-temperature ionic liquids: solvents for synthesis and catalysis, Chem. Rev., 1999, 99(8): 2071-2083.
    33.张所波(Zhang S.B.),丁孟贤(Ding M.X.),高连勋(Gao L.X.),离子液体在有机反应中的应用,有机化学(Chin.Org.Chem.),2002,22(3):159-163.
    34. Joan F. D., Bazureau J. P., Rate accelerations of 1,3-dipolar cycloaddition reactions in ionic liquids, Tetrahedron Lett., 2000, 41(38): 7351-7355.
    35. Earle M. J., McCormac P. B., Seddon K. R., Regioselective alkylation in ionic liquids, Chem. Commun., 1998, (20): 2245-2246.
    36. Guernik S., Wolfson A., Herskowitz M., Greenspoon N., Geresh S., A novel system consisting of Rh-DuPHOS and ionic liquid for asymmetric hydrogenations, Chem. Commun., 2001, (22): 2314-2315.
    37. Xu L., Chen W., Xiao J. Heck reaction in ionic liquids and the in situ identification of N-heterocyclic carbene complexes of palladium, Organometallics, 2000, 19(6): 1123-1127.
    38. Howarth J., Oxidation of aromatic aldehydes in the ionic liquid [bmim]PF_6, Tetrahedron Lett. , 2000, 41(34):837-838.
    39. Adams C. J., Earle M. J., Seddon K. R., Catalytic cracking reactions of polyethylene to light alkanes in ionic liquids, Green Chem., 2000, 2(1): 21-23.
    40.顾彦龙(Gu Y.L.),彭家建(Peng J.J.),乔琨(Qiao K),杨宏洲(Yang H.Z.),石峰(shi F.),邓有全(Deng Y.),室温离子液体及其在催化和有机合成中的应用,化学进展(Prog.Chem.),2003,15(3):222-241.
    41. Jaiger D. A., Tucker C. E., Diels-Alder reactions in ethylammonium nitrate, a low-melting fused salt, Tetrahedron Lett., 1989, 30(14): 1785-1788.
    42. Abbott A. P., Capper G., Davies D. L., Rasheed R. K., Tambyrajah V., Quaternary ammonium zinc- or tin-containing ionic liquids: water insensitive, recyclable catalysts for Diels-Alder reactions, Green Chem., 2002, 4(1): 24-26.
    43. Song C. E., Shim W. H., Rob E. J., Lee S., Choi J. H., Ionic liquids as powerful media in scandium tdflate catalyzed Diels-Alder reactions: significant rate acceleration, selectivity improvement and easy recycling of catalyst, Chem. Commun., 2001, (12): 1122-1123.
    44. Howarth J., Dallas A., Moisture stable ambient temperature ionic liquids: solvents for the new millennium. 1. the Heck reaction, Molecules, 2000, 5: 851-855.
    45. Adams C. J., Earle M. J., Roberts G., Friedel-Crafts reactions in room temperature ionic liquids, Chem. Commun., 1998, (19): 2097-2098.
    46. Mathews C. J., Smith P. J. Welton T., Palladium catalyzed Suzuki cross-coupling reactions in ambient temperature ionic liquids, Chem. Commun., 2000, (14): 1249-1250.
    47. Wasserscheid P., Waffenschmidt H., Machnitzki P., Kottsieper K. W., Stelzer O., Cationic phosphine ligands with phenylguanidinium modified xanthene moieties-a successful concept for highly regioselective, biphasic hydroformylation of octene-1 in hexafluorophosphate ionic liquids, Chem. Commun., 2001, (5): 451-452.
    48. Nara S. J., Harjani J. R., Salunkhe M. M., Lipase-catalyzed transesterification in ionic liquids and organic solvents: a comparative study, Tetrahedron Lett., 2002, 43(16): 2979-2982.
    49. Adams C. J., Earle M. J., Seddon K. R., Catalytic cracking reactions of polyethylene to light alkanes in ionic liquids, Green Chem., 2000, 2(1): 21-25.
    50. Dell'Anna M. M., Gallo V., Mastrorilli E, Nobile C. F., Romanazzi G., Suranna G. P., Metal catalyzed Michael additions in ionic liquids, Chem. Commun., 2002, (5): 434-435.
    51. Song C. E. Roh E. J., Practical method to recycle a chiral (salen) Mn epoxidation catalyst by using an ionic liquid, Chem. Commun., 2000, (10): 837-838.
    52.张所波(Zhang S.B.),丁孟贤(Ding M.X.),高连勋(Gao L X.),离子液体在有机反应中的应用,有机化学(Org.Chem.),2002,22(3):159-163.
    53. Dupont J., Suarez P. A. Z., Umpierre A. P., Pd(Ⅱ) dissolved in ionic liquids: a recyclable catalytic system for the selective biphasic hydrogenation of dienes to monoenes, J. Braz. Chem. Soc., 2000, 11(3): 293-297.
    54. Consorti C. S., Umpierre A. P., Souza R. F., Selective hydrogenation of 1,3-butadiene by transition metal compounds immobilized in 1-butyl-3-methyl imidazolium room temperature ionic liquids, J. Braz. Chem. Soc., 2003, 14(3): 401-405.
    55.阎立峰(Van L.F.),朱清时(Zhu Q.S.),离子液体及其在有机合成中应用,化学通报(Huaxue Tongbao),2001,64(11):673-679.
    56. Shi F., Peng J. J., Deng Y. Q., Highly efficient ionic liquid mediated palladium complex catalyst system for the oxidative carbonylation of amines, J. Catal., 2003, 219(2): 372-375.
    57. Shi F., Hai X., Gu Y. L., Guo S. Deng Y. Q., The first non-acid catalytic synthesis of tert-butyl ether from tert-butyl alcohol using ionic liquid as dehydrator, Chem. Commun., 2003, (9): 1054-1055.
    58.杨雅立(Yang Y L.),王晓化(Wang X.H.),寇元(Kou Y.),离子液体的酸性测定及其催化的异丁烷/丁烯烷基化反应,催化学报(Chin.J.Catal.),2004,25(1):60-64.
    59.张景涛(Zhang J.T.),朴香兰(Piao X.L.),朱慎林(Zhu S.L.),离子液体及其在萃取中的应用研究进展,化工进展(Chem.Indus.Eng.Prog.),2001,20(12):16-19.
    60. Huddleston J. G., Willauer H. D., Swatloski R. P., Room temperature ionic liquids as novel media for "clean" liquid liquid extraction, Chem. Commun., 1998, (16): 1765-1766.
    61. Visser A. E., Swatloski R. P., Reichert W. M., Davis Jr J. H., Rogers R. D., Mayton R., Sheff S. Wierzbicki A., Task-specific ionic liquids for the extraction of metal ions from aqueous solutions, Chem. Commun., 2001, (1): 135-136.
    62. Fadeev A. G., Meagher M. M., Opportunities for ionic liquids in recovery of biofuels, Chem. Commun., 2001, (3): 295-296.
    63. Dai S., Ju Y. H., Barnes C. E., Solvent extraction of strontium nitrate by a crown ether using room temperature ionic liquids, J. Chem. Soc. Dalton. Trans., 1999, (8): 1201-1202.
    64. Dzyuba S. V., Bartsh R. A., Recent advances in applications of room temperature ionic liquid/supercritical CO2 systems, Angew. Chem. Int. Ed., 2003, 42(2): 148-150.
    65. Lanchard L. A., Hancu D., Beckman E. J., Green processing using ionic liquids and CO_2, Nature, 1999, 399: 28-29.
    66. Liu S. J., Zhou F., Zhao L., Xiao X. H., Liu X., Jiang S. X., Immobilized 1, 3-dialkylimidazolium salts as new interface in HPLC separation, Chem. Lett., 2004, 33(5): 496-497.
    67.顾彦龙(Gu Y.L.),石峰(Shi F.),邓友全(Deng Y.Q.),室温离子液体浸取分离牛磺酸与硫酸钠固体混合物,化学学报(Chem.Acta),2004,62(5):532-536.
    68. Fuller J., Carlin R. T., Osteryoung R. A., The room temperature ionic liquid 1-ethyl-3-methyl imidazolium tetrafluoroborate: electrochemical couples and physical properties, J. Electrochem. Soc., 1997, 144(11): 3881-3885.
    69.孙茜(Sun Q.),刘元兰(Liu Y.L.),陆嘉星(Lu J.X.),离子液体在电化学中的应用,化学通报(Huaxue Tongbao),2003,66(2):112-114.
    70.李永舫(Li Y.F.),聚合物发光电化学池的研究,电化学(Electrochemistry),2005,11(1):1-7.
    71. Kim Y. J., Cheong M., Chemical fixation of carbon dioxide to propylene carbonate in ionic liquids, Bull. Korean Chem. Soc., 2002, 23(7): 1027-1028.
    72. Yang H. Z., Gu Y. L., Deng Y. Q., Electrochemical activation of carbon dioxide in ionic liquid: synthesis of cyclic carbonates at mild reaction conditions, Chem. Commun., 2002, (3): 274-275.
    73. Ye C. F., Liu W. M., Chen Y. X., Yu L. G., Room-temperature ionic liquids: a novel versatile lubricant, Chem. Commun., 2001, (21):2244-2245.
    74. Armstrong D. W., Zhang L. K., He L., Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry, Anal. Chem., 2001, 73(15): 3679-3686.
    75. Swatloski R. P., Spear S. K., Holbrey J. D., Rogers R.D., Dissolution of cellulose with ionic liquids, J. Am. Chem. Soc., 2002, 124(15): 4974-4975.
    76. Jared L., Ding A. J, Welton T., Armstrong D. W., Characterizing ionic liquids on the basis of multiple solvation interactions, J. Am. Chem. Soc., 2002, 124(47): 14247-14254.
    77. Welton T, Room-temperature ionic liquid: solvents for synthesis and catalysis, Chem. Rev., 1999, 99(8): 2071-2083.
    78. Antonietti M., Kuang D. B., Smarsly B., Zhou Y., Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures, Angew. Chem. Int. Ed., 2004, 43(38): 4988-4992.
    79. Sheldon R., Catalytic reactions in ionic liquids, Chem. Commun., 2001, (23): 2399-2407.
    80. Seddon K. R., Ionic liquid for clean technology, J. Chem. Tech. Biotechnol., 1997, 68(3): 351-356.
    81. Zhao D. B., Wu M., Kou Y., Min E. Z., Ionic liquids: applications in catalysis, Catal. Today, 2002, 74(1): 157-189.
    82. Przemyslaw K., Application of ionic liquids as solvents for polymerization processes, Prog. Polym. Sci., 2004, 29(1): 3-12.
    83.赵大成(Zhao D.C.),徐海涛(Xu H.T.),徐鹏(Xu P.),刘凤歧(Liu F.Q.),高歌(Gao G.),室温离子液体中的聚合反应,化学进展(Prog.Chem.),2005,17(4):700-705.
    84. Hong K. L., Zhang H. W., Mays J. W., Visser A. E., Brazel C. S., Holbrey J. D., Reichert W. M., Rogers R. D., Conventional free radical polymerization in room temperature ionic liquids: a green approach to commodity polymers with practical advantages, Chem. Commun., 2002, (13): 1368-1369.
    85. Strehmel V., Laschewsky A., Wetzel H., Golrnitz E., Free Radical Polymerization of n-Butyl Methacrylate in Ionic Liquids, Macromolecules, 2006, 39(3): 923-930.
    86. Cheng L., Zhang Y., Zhao T., Wang H., Free radical polymerization of acrylonitrile in green ionic liquids, Macromol. Symp., 2004, 216(1): 9-16.
    87. Zhang H. W., Hong K. L., Mays J. W., Synthesis of block copolymers of styrene and methyl methacrylate by conventional free radical polymerization in room temperature ionic liquids, Macromolecules, 2002, 35(15): 5738-5741.
    88. Zhang H. W., Hong K. L., Mays J. W., Statistical radical copolymerization of styrene and methyl methacrylate in a room temperature ionic liquid, Chem. Commun., 2003, (12): 1356-1357.
    89. Wang J. S., Matyjaszewski K., Controlled/"living" radical polymerization atom transfer radical polymerization in the presence of transition-metal complexes, J. Am. Chem. Soc., 1995, 117(20): 5614-5615.
    90. Carmichael A. J., Haddieton D. M., Seddon K. R., Copper(Ⅰ) mediated living radical polymerisation in an ionic liquid, Chem. Commun., 2000, (14): 1237-1238.
    91. Biedron T., Kubisa P., Ionic liquids as reaction media for polymerization processes: atom transfer radical polymerization (ATRP) of acrylates in ionic liquids, Polym. Int., 2003, 52(10): 1584-1588.
    92. Biedron T., Kubisa P., Atom transfer radical polymerization of acrylates in an ionic liquid: Synthesis of block copolymers, J. Polym. Sci. Part A: Polym. Chem., 2002, 40(16): 2799-2809.
    93. Zhao Y. L., Zhang J. M., Jiang J., Chen C. F., Xi F., Atom transfer radical copolymerization of n-hexylmaleimide and styrene in an ionic liquid, J. Polym. Sci. Part A: PoIym. Chem., 2002, 40(20): 3360-3366.
    94. Zhao Y. L, Chen C. F., Xi F., Living/controlled radical copolymerization of N-substituted maleimides with styrene in 1-butyl-3-methylimidazolium hexafluorophosphate and anisole, J. Polym. Sci. Part A: Polym. Chem., 2003, 41(14): 2156-2165.
    95. Sarbu T., Matyjaszewski K., ATRP of methyl methacrylate in the presence of ionic liquids with ferrous and cuprous anions, Macromol. Chem. Phys., 2001, 202(17): 3379-3391.
    96. Perrier S., Davis T. P., Carmichae A. J., Haddleton D. M., Reversible addition-fragmentation chain transfer polymerization of methacrylate, acrylate and styrene monomers in 1-alkyl-3-methylimidazolium hexfluorophosphate, Eur. Polym. J., 2003, 39(3): 417-422.
    97. Ma H. Y., Wan X. H., Chen X. F., Zhou Q. F., Reverse atom transfer radical polymerization of methyl methacrylate in room-temperature ionic liquids, J. Polym. Sci. Part A: Polym. Chem., 2003, 41(1): 143-151.
    98. Ma H. Y., Wan X. H., Zhou Q. F., Reverse atom transfer radical polymerization of methyl methacrylate in imidazolium ionic liquids, Polymer, 2003, 44(18): 5311-5316.
    99. Percec V., Grigoras C., Catalytic effect of ionic liquids in the Cu2O/2, 2'-bipyridine catalyzed living radical polymerization of methyl methacrylate initiated with arenesulfonyl chlorides, J. Polym. Sci. Part A: Polym. Chem., 2005, 43(22): 5609-5619.
    100. Chauvin Y., Gilbert B., Guibard I., Catalytic dimerization of alkenes by nickel complexes in organochloroaluminate molten salts, Chem. Commun., 1990, (23): 1715-1716.
    101. Chauvin Y., Olivier H., Wyrvalskki C. N., Oligomerization of n-butenes catalyzed by nickel complexes dissolved in organochloroaluminate ionic liquids, J. Catal., 1997, 165(2): 275-278.
    102. Einloft S., Dietrich F. K., Dupont J., Selective two-phase catalytic ethylene dimerization by Ni complexes/AlEtCl2 dissolved in organoaluminate ionic liquids, Polyhedron, 1996, 15(19): 3257-3259.
    103. Carlin R. T., Osteryoung R. A., Wilkes J. S., Rovang J., Studies of titanium(Ⅳ) chloride in a strongly Lewis acidic molten salt: electrochemistry and titanium NMR and electronic spectroscopy, Inorg. Chem., 1990, 29(16): 3003-3009.
    104. Carlin R. T., Wilkes J. S., Complexation of Cp2MCl2 in a chloroaluminate molten salt: relevance to homogeneous Ziegler-Natta catalysis, J. Mol. Catal., 1990, 63(2): 125-129.
    105. Trzeciak A. M., Ziolkowski J. J., Polymerization of phenylacetylene catalyzed by RhTp(cod) and RhBp(cod) in ionic liquids: effect of alcohols and of tetraammonium halides, Appl. Organomet. Chem., 2004, 18(3): 124-129.
    106. Hardacre C., Holbrey J. D., KatdareK. R., Seddon K. R., Alternating copolymerisation of styrene and carbon monoxide in ionic liquids, Green Chem., 2002, 4(2): 143-146.
    107. Vijayaraghavan R., Macfarlane D. R., Living cationic polymerisation of styrene in an ionic liquid, Chem. Commun., 2004, (6): 700-701.
    108. Iwasaki J. I., Tagaya Y. H., Ring-opening polymerization of ethylene carbonate catalyzed with ionic liquids: imidazolium chloroaluminate and chlorostannate melts, Macromol. Rapid Commun., 2002, 23(13): 757-760.
    109. Biedron T., Bednarek M., Kubisa P., Cationic polymerization of 3-ethyl-3-hydroxymethyloxetane in an ionic liquid, Macromol. Rapid Commun., 2004, 25(8): 878-881.
    110. Gao H. X., Jiang T., Han B. X., Wang Y., Du J. M., Liu Z. M., Zhang J. L., Aqueous/ionic liquid interracial polymerization for preparing polyaniline nanoparticles, Polymer, 2004, 45(9): 3017-3019.
    111. Yoshizawa M., Ohno H., Synthesis of molten salt-type polymer brush and effect of brush structure on the ionic conductivity, Electrochim. Acta, 2001, 46(10-11): 1723-1728.
    112. Harrisson S., Mackenzie S. R., Haddleton D. M., Pulsed laser polymerization in an ionic liquid: strong solvent effects on propagation and termination of methyl methacrylate, Macromolecules, 2003, 36(14): 5072-5075.
    113.Harrisson S., Mackenzie S. R., Haddleton D. M., Unprecedented solvent-induced acceleration of free-radical propagation of methyl methacrylate in ionic liquids, Chem. Commun., 2002, (23): 2850-2851.
    114.Csihony S., Fischmeister C., Bruneau C., Horvath I. T., Dixneuf P. H., First ring-opening metathesis polymerization in ionic liquid. Efficient recycling of a catalyst generated from a cationic ruthenium allenylidene complex,New J. Chem., 2002,26(11): 1667-1670.
    115.Shi J. H., Sun X., Yang C. H., Gao Q. Y, Li Y. F., Electrochemical synthesis of polythiophene in an ionic liquid, Chin. Chem. Lett., 2002,13(4): 306-307.
    116.Sekiguchi K., Atobe M, Fuchigami T., Electropolymerization of pyrrole in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate room temperature ionic liquid, Electrochem. Commun., 2002,4(11): 881-885.
    117.Naudin E., Ho H. A., Branchaud S., Livain B., Daniel B., Electrochemical polymerization and characterization of poly(3-(4-fluorophenyl) thiophene) in pure ionic liquids, J. Phys. Chem. B, 2002,106(41): 10585-10593.
    118.Goldenberg L. M., Osteryoung R. A., Benzene polymerization in 1-ethyl-3-methyl chloride-AlC13, Synth. Met, 1994, 64(1): 63-68.
    119.Arnautov S. A., Electrochemical synthesis of polyphenylene in a new ionic liquid, Synth. Met, 1997, 84(1-3): 295-296.
    120.Elabedin S. Z. Borissenko N. Endres F., Electropolymerization of benzene in a room temperature ionic liquid, Electrochem. Commun., 2004,6(4): 422-426.
    121.Valkenberg M. H., Castro de C, Holderich W. F., Immobilisation of ionic liquids on solid supports, Green Chem., 2002,4(2): 88-93.
    122.DeCastro C, Sauvage E., Valkenberg M. H., Holderich W. F. Immobilised ionic liquids as lewis acid catalysts for the alkylation of aromatic compounds with dodecene, J. Catal., 2000,196(1): 86-94.
    123.Hirao M., Ito K., Ohno H., Preparation and polymerization of new organic molten salts: N-alkylimidazolium salt derivatives, Electrochim. Acta, 2000, 45(8-9): 1291-1294.
    124. Yoshizawa M. Ohno H., Synthesis of molten salt-type polymer brash and effect of brush structure on the ionic conductivity, Electrochim. Acta, 2001, 46(10-11): 1723-1728.
    125. Anthony J. L., Maginn E. J., Brennecke J. F., Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-Butyl-3-methylimidazolium hexafluorophosphate, J. Phys. Chem. B., 2002,106, 7315-7320.
    126. Tang J., Tang H., Sun W., Plancher H., Radosz M., Shen Y., Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption, Chem. Commun., 2005, (26): 3325-3327.
    127. Noda A., Watanabe M., Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts, Electrochim. Acta, 2000, 45(8-9): 1265-1270.
    128. Scott M. P., Brazel C. S., Benton M. G., Mays J. W., Holbrey J. D., Rogers R. D., Application of ionic liquids as plasticizcrs for poly(methyl methacrylate), Chem. Commun., 2002, (13): 1370-1371.
    129. Souza R. F., Rech V., Dupont J., Alternative Synthesis of a Dialkylimidazolium Tetrafluoroborate Ionic Liquid Mixture and its Use in Poly(acrylonitrile-butadiene) Hydrogenation, Adv. Synth. Catal., 2002, 344(2): 153-155.
    130. Susan M. A. B. H., Kaneko T., Noda A., Watanabe M., Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes, J. Am. Chem. Soc., 2005, 127(13): 4976-4983.
    131.顾彦龙(Gu Y.L.),杨宏洲(Yang H.Z.),邓友全(Deng Y.Q.),离子液体中聚碳酸酯光盘的降解,化学学报(Acta Chinica Sinica),2002,60(4):753-757.
    132. Marcilla R., Ochoteco E., Cristina P. G., Grande H., Pomposo J. A., Mecerreyes D., New organic dispersions of conducting polymers using polymeric ionic liquids as stabilizers, Macromol. Rapid Commun., 2005, 26(14): 1122-1126.
    133. Szwarc M., Levy M., Milkovich R., Polymerization initiated by electron transfer to monomer. a new method of formation of block polymers, J. Am. Chem. Soc., 1956, 78(11): 2656-2657.
    134.Szwarc, M. "Living" polymerization, Nature, 1956,178:1168-1169.
    135.Webster O. W., Hertler W. R., Sogah D. Y, Group-transfer polymerization. 1 A new concept for addition polymerization with organosilicon initiators, J. Am. Chem. Soc, 1983,105(17): 5706-5708.
    136.Yuan J. Y, Pan C. Y, "Living" free radical ring-opening copolymerization of 4,7-dimethyl-2-methylene-1, 3-dioxepane and conventional vinyl monomers, Eur. Polym. J., 2002,38(10): 2069-2076.
    137.Faust R., Kennedy J. P., Living carbocationic polymerization. III. Demonstration of the living polymerization of isobutylene, Polym. Bull., 1986, 15(4): 317-323.
    138.Fayt R., Forte R., Teyssie P., Jerome R., Ouhadi T., Teyssie P., Varshney S. K., New initiator system for the living anionic polymerization of tert-alkyl acrylates, Macromolecules, 1987, 20(6): 1442-1444.
    139.Doi Y, Velci S., Keii T., "Living" coordination polymerization of propene initiated by the soluble V(acac)3-A1(C2H5)2C1 system, Macromolecules, 1979, 12(5): 814-819.
    140.Schrock R. R., Living ring-opening metathesis polymerization catalyzed by well-characterized transition-metal alkylidene complexes, Acc. Chem. Res., 1990, 23(5): 158-165.
    141.Masuda T., Yoshimura T., Fujimori J., Higashimura T., Living polymerization of substituted acetylenes by MoC15- and MoOC14-based catalysts, J. Chem. Soc, Chem. Commun., 1987, (23): 1805-1806.
    142.Asano S., Aida T., Inoue S., "Immortal" polymerization. Polymerization of epoxide catalyzed by an aluminium porphyrin-alcohol system, J. Chem. Soc, Chem. Commun., 1985, (17): 1148-1149.
    143.Reetz M. T., New method for the anoionic polymerization of a-activated olefins, Angew. Chem. Int. Ed., 1988,27(7): 1026-1029.
    144.Matyaszewski K., Gaynor S., Greszta D., Shigemoto T., "Living" and controlled radical polymerization, J. Phys. Org. Chem., 1995, 8(4): 306-315.
    145. Georges M. K., Veregin R. P. N., Kazmaier P. M., Hamer G. K., Narrow molecular weight resins by a free radical polymerization process, Macromolecules, 1993, 26(11): 2987-2988.
    146. Wang J, S., Matyjaszewski K., Controlled/"living" radical polymerization: atom transfer radical polymerization in the presence of transition metal complexes, J. Am. Chem. Soc., 1995, 117(20): 5614-5615.
    147. Gabaston L. I., Jackson R. A., Armes S. P. Living free-radical dispersion polymerization of styrene, Macromolecules, 1998, 31(9): 2883-2888.
    148. Reghunadhan N. C. P., Clouct G., Block copolymers via thermal polymeric iniferters. Synthesis of silicone-vinyl block copolymers, Macromolecules, 1990, 23(5): 1361-1369.
    149. Otsu T., Matsumoto A., Tazaki T., Radical polymerization of methyl methacrylate with some 1,2-disubstituted tetraphenylethanes as thermal initiators, Polym. Bull., 1987, 17(4): 323-330.
    150. Mardare D., Matyjaszewski K., Coca S., Organoaluminium amides as initiators for polymerization of acrylic monomers, 2 New initiating systems for well-controlled polymerization of methyl methacrylate, Macromol. Rapid Commun., 1994, 15(1): 37-44.
    151. Mardare D, Matyjaszewski K., New initiators for controlled radical polymerization of acrylic monomers, Polym Prep, 1994, 35(2): 555-556.
    152. Wang J. S., Gaymor S. D., Matyjaszewski K., Controlled sequential and random radical copolymerization of styrene and butyl acrylate, Polym Prep, 1995,36(1): 465-466.
    153. Wang J. S., Matyjaszewski K., Controlled/"living" radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(Ⅰ)/Cu(Ⅱ) redox process, Macromolecules, 1995, 28(23): 7901-7910.
    154. Kato M., Kamigaito M., Sawamoto M., Higashimura T., Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris (triphenylphosphine) ruthenium(Ⅱ)/methylaluminum bis(2,6-di-tert-butyl- phenoxide) initiating system: possibility of living radical polymerization, Macromolecules, 1995, 28(5): 1721-1723.
    155. Matyjaszewski K., Jo M. S., Paik H., Shipp D. A., An investigation into the CuX/2,2'-bipyridine (X=Br or Cl) mediated atom transfer radical polymerization of acrylonitrile, Macromolecules, 1999, 32(20): 6431-6438.
    156. Chong Y. K., Ercole F., Moad G., Rizzardo E., Thang S. H., Imidazolidinone nitroxide-mediated polymerization, Macromolecules, 1999, 32(21): 6895-6903.
    157. Chong Y. K., Le T. P. T., Moad G., Rizzardo E., Thang S. H., A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: the RAFT process, Macromolecules, 1999, 32(6): 2071-2074.
    158. Matyjaszewski K., Coca S., Gaynor S. G., Wei M., Woodworth B. E., Controlled radical polymerization in the presence of oxygen, Macromolecules, 1998, 31(17): 5967-5969.
    159. Matyjaszewski K., Xia J. H., Atom transfer radical polymerization, Chem. Rev., 2001, 101(9): 2921-2990.
    160. Gaynor S. G., Matyjaszewski K., Step-growth polymers as macroinitators for "living" radical polymerization: synthesis of ABA block copolymers, Macromolecules, 1997, 30(14): 4241-4243
    161. Mastyjaszewsi K., Lifetimes of polystyrene chains in atom transfer radical polymerization, Macromolecules, 1999, 32(26): 9051-9053.
    162. Luo N., Ying S. K., Characteristics of atom transfer radical polymerization, China Synthetic Rubber Industry, 1996, 19(5): 299-302,
    163. Coca S., Matyjaszewski K., Block copolymers by transformation of "living" carbocationic into "living" radical polymerization, Macromolecules, 1997, 30(9): 2808-2810
    164.张文骅(Zhang W.H.),左亚君(Zuo Y.J.),吴平平(Wu P.P.),韩哲文(Han Z.W.),原子转移自由基聚合合成(甲基)丙烯酸酯类模型聚合物及其动力学,功能高分子学报(J.Func.Polym.),1997,10(1):1-6.
    165.钱军(Qian J.),李欣欣(Lj X.X.),红外光谱法研究苯乙烯原子转移自由基聚合反应动力学,功能高分子学报(J.Func.Polym.),1999,12(1):6-10.
    166. Patten T. E., Matyjaszewski K., Copper(Ⅰ)-catalyzed atom transfer radical polymerization, Acc. Chem. Res., 1999, 32(10): 895-903.
    167. Zhang X., Xia J., Matyjaszewski K. Controlled/"living" radical polymerization of 2-(di-methylamino)ethyl methacrylate, Macromolecules, 1998, 31(15): 5167-5169.
    168. Guo J. H., Han Z. W., Wu P. P., A new complex catalytic system CuX/bpy/Al(OR)3 for atom transfer radical polymerization, J. Mol. Catal. A: Chem., 2000, 159(1): 77-83.
    169. Xia J., Zhang X., Matyjaszewski K., Atom Transfer Radical Polymerization of 4-Vinylpyridine, Macromolecules, 1999, 32(10): 3531-3533.
    170. Huang X., Wirth M. J., Surface initiation of living radical polymerization for growth of tethered chains of low polydispersity, Macromolecules, 1999, 32(5): 1694-1696.
    171. Cheng Z. P., Zhu X. L., Chen M., Chen J. Y., Zhang L. F. Atom transfer radical polymerization of methyl methacrylate with low concentration of initiating system under microwave irradiation, Polymer, 2003, 44(8): 2243-2247.
    172. Ando T., Kato M., Kamigaito M., Living radical polymerization of methyl methacrylate with ruthenium complex: formation of polymers with controlled molecular weights and very narrow distributions, Macromolecules, 1996, 29(3): 1070-1072.
    173. Kotani Y., Kato M., Kamigaito M., Sawamoto M., Living radical polymerization of alkyl methacrylates with ruthenium complex and synthesis of their block copolymers, Macromolecules, 1996, 29(22): 6979-6982.
    174. Nishikawa T., Kamigaito M., Sawamoto M., Living radical polymerization in water and alcohols: suspension polymerization of methyl methacrylate with RuCl2(PPh3)3 complex, Macromolecules, 1999, 32(7): 2204-2209..
    175. Senoo Mo, Kotani Y., Kamigaito M., Sawamoto M., Living radical polymerization of N, N-dimethylacrylamide with RuCl2(PPh3)3-based initiating systems, Macromolecules, 1999, 32(24): 8005-8009.
    176. Matyjaszewski K., Coca S., Gaynor S. G., Zerovalent metals in "living"/ controlled radical polymerization, Macromolecules, 1997, 30(23): 7348-7350.
    177. Clercq B. D., Verpoort F., A new class of ruthenium complexes containing Schiff base ligands as promising catalysts for atom transfer radical polymerization and ring opening metathesis polymerization, J. Mol. Catal. A: Chem., 2002, 180(1): 67-76.
    178. Clercq B. D., Verpoort F., Radical reactions catalyzed by homobimetallic rutherdum (Ⅱ) complexes bearing Schiff base ligands: atom transfer radical addition and controlled polymerization, Tetrahedron Lett., 2002, 43(26): 4687-4690.
    179. Sawamoto M., Kamigaito M., Specialty polymers by transition metal-mediated living radical polymerization, Polym. Prepr., 1998, 39(1): 625.
    180. Matyjaszewski K., Wei M., Xia J., Me Dermott N. E. Controlled/"living" radical polymerization of styrene and methyl methacrylate catalyzed by iron complexes, Macromolecules, 1997, 30(26): 8161-8164.
    181.邓奎林(Deng K.L.),铁(Ⅱ)-邻二氮菲络合物催化的苯乙烯原子转移自由基聚合,河北大学学报,2001,21(2):149-153.
    182. Zhu S., Yan D., Zhang G., Atom transfer radical polymerization of styrene with FeCl2/acetic acid as the catalyst system, Polym. Bull., 2001, 45(6): 457-464.
    183. Matyjaszewski K., Wang J. L, Shipp D. A., Controlled/"living" atom transfer radical polymerization of methyl methacrylate using various initiation systems, Macromolecules, 1998, 31(5): 1527-1534.
    184. Kotani Y., Kamigaito M., Sawamoto M., Living radical polymerization of para-substituted styrenes and synthesis of styrene-based copolymers with rhenium and iron complex catalysts, Macromolecules, 2000, 33(18): 6746-6751.
    185.秦东奇(Qin D.Q.),钦曙辉(Qin S.H.),丘坤元(Qiu K.Y.),镍体系(NiCl2/PPh3)催化的反向原子转移自由基聚合,高分子学报(Acta Polym.Sin.),2002,(1):108-112.
    186. Li P., Qiu K. Y., Nickel-mediated living radical polymerization of styrene in conjunction with tetraethylthiuram disulfide, Polymer, 2002, 43(22): 5873-5877.
    187. Granel C., Dubois P., Jerome R., Controlled radical polymerization of methacrylic monomers in the presence of a bis(ortho-chelated) arylnickle complex and different activate alkyl halides, Macromolecules, 1996, 29(27): 8576-8582.
    188.申有青,稀土催化环酯开环聚合研究,博士论文,浙江大学,1995.
    189.黄葆同(Huang B.T.),沈之荃(Shen Z.Q.),烯烃双烯烃配位聚合进展,1998,北京,科学出版社,227—245.
    190.胡斌(Hu B.),卓仁禧(Zhuo R.X.),范昌烈(Fan C.L.),一种合成环碳酸酯的新方法,化学试剂(Chem.Reag.),1998,20(6):355-356.
    191.杨雅立(Yang Y.L.),王晓化(Wang X.H.),寇元(Kou Y.),离子液体的酸性测定及其催化的异丁烷/丁烯烷基化反应,催化学报(Chin.J.Catal.),2004,25(1):60-64.
    192. Taylor M. D., Carter C. P., Preparation of anhydrous lanthanide halides, especially iodides, J. Inorg. Nucl. Chem., 1962, 24(4): 387-391.
    193.中国科学院长春应用化学研究所,稀土催化合成橡胶文集,1980,北京,科学出版社,381-387.
    194. Hitchcock P. B., Lappert M. F., Singh A. J., Three- and four-co-ordinate, hydrocarbon-soluble-aryloxides of scandium, yttrium, and the lanthanoids;x-ray crystal structure of tris-(2, 6-di-tert-butyl-4-methylphenoxo)scandium, J. Chem., Soc. Chem. Commun., 1983, (24): 1499-1450.
    195. Koleske J. V., Lundberg R. D., Lactone polymers, Ⅱ. Hyhrodynamic properties and unperturbed dimensions of poly-ε-caprolactone, J. Polym. Sci. Part A-2, 1969, 7(5): 897-901.
    196. Keul H., Bacher R., Hocker H., Anionic ring-opening polymerization of 2,2-dimethyltrimethylene carbonate, Makromol. Chem., 1986, 187(11): 2579-2589.
    197.王文,王征,沈之荃,Nd(P_(204))_3-Al(i-Bu)_3-CCl_4催化体系聚合甲基丙烯酸酯,高分子材料科学与工程,1991,(4):11-16.
    198.李允明,高分子物理实验,杭州:浙江大学出版社,1996,319.
    199.张一烽,苏祺,张勤,沈之荃,甲基丙烯酸甲酯、丁酯在钕盐催化体系中聚合动力学和机理研究,高分子学报,1994,(6):653—653.
    200. Jiang L. M., Shen Z. Q., Zhang Y. F., Zhang F. R, Styrene polymerization with rare earth catalysts using a magnesium alkyl cocatalyst, J. Polym. Sci., Part A: Polym. Chem., 1996, 34(17):3519-3525.
    201. Qian W., Jin E., Bao W., ZhangY., Clean and highly selective oxidation of alcohols in an aonic liquid by using an ion-supported hypervalent iodine(Ⅲ) reagent, Angew. Chem. Int. Ed., 2005, 44(6): 952-955.
    202.于翠萍,新型稀土催化剂催化生物降解高分子的合成与表征,博士学位论文,浙江大学,2004.
    203. Akatsuka M., Aida T., Inoue S., Alcohol/methylaluminum diphenolate systems as novel, versatile initiators for synthesis of narrow molecular weight distribution polyester and polycarbonate, Macromolecules, 1995, 28(4): 1320-1322.
    204.申有青(Shen Y.Q.),沈之荃(Shen Z.Q.),沈建良(Shen J.L),张富饶(Zhang F.R.),张一烽(Zhang Y.F.),高等学校化学学报(Chem J Chin Univ),1995,16(5):820
    205. Brandruo J., Immergut E. H., Polymer Handbook, 2nd Edition, New York: wiley, 1975, Ⅲ-33.
    206. Wang J. S., Matyjaszewski K., "Living"/Controlled Radical Polymerization. Transition-Metal-Catalyzed Atom Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator, Macromolecules, 1995, 28(22): 7572-7573
    207. Matyjaszewski K., Davis K., Patten T., Wei M., Observation and analysis of a slow termination process in the atom transfer radical polymerization of styrene Tetrahedron, 1997, 53(45): 15321-15329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700