用户名: 密码: 验证码:
(Salen)MX-季铵(鏻)盐催化CO_2与环氧化合物反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着地球资源日趋匮乏和环境问题日趋严重,如何将CO2变废为宝是当今世界的焦点之一。利用环氧化合物和CO2反应,生成相应的工业原料聚碳酸酯或环碳酸酯是目前化学固定C02研究领域的热点。在众多催化体系中,(salen)MX催化体系对空气和水稳定,催化剂合成较简单,催化效率较高,因而具有良好的工业应用前景,是近十年来C02共聚及环加成反应领域最受瞩目的催化体系之一。季铵(鏻)盐等助催化剂的加入,能大幅度提高该催化体系的催化活性和反应的选择性。虽然经过近十年的研究,该催化体系已有了很大的发展,但是由于其在该领域的应用时间不长,其相关反应机理以及新催化剂的开发都有待进一步的研究。本论文以(salen)MX-季铵(鏻)盐催化体系为主要研究对象,合成了几类新型(salen)MX配合物,并考察了其在催化环氧化合物和CO2反应中的效果,此外,我们还单独对助催化剂季铵(鳞)盐在该类反应中的催化活性进行了较细致的研究。
     目前salen催化剂的二胺骨架主要集中于环已二胺、苯二胺、乙二胺等邻位二胺,而以非邻二胺型salen金属配合物催化二氧化碳和环氧化合物的共聚反应鲜有报道。本论文在第二章中以天然赖氨酸为二胺骨架,首次合成了非邻二胺骨架的赖氨酸型salen金属铬配合物(lys-salen)CrCl,并将其应用于二氧化碳和环氧化合物共聚反应中。实验结果表明,(lys-salen)CrCl结合助催化剂双三苯基膦氯化铵(PPNC1),能有效催化CO2和环氧环已烷(CHO)的交替活性共聚。与传统的(salen)MX催化剂相比,该催化剂的优点在于它是由市售的环保的天然赖氨酸为原料合成的,并且,虽然其催化活性并没有比传统(salen)MX有明显提高,但是(lys-salen)CrCl显示了更好的稳定型:共聚反应的选择性和聚合产物的聚碳酸酯链节含量不易受反应环境影响,始终保持在很高的水平。此外,对(lys-salen)CrCl的ESI-MS表征发现,一分子水紧密结合在配合物金属中心上,这为“金属中心上结合的水引起了产物分子量的双峰分布”提供了直接的证据。
     在第三章中,我们将(lys-salen)CrCl-PPNCl用于催化CO2和另一种单体环氧丙烷(PO)的反应,结果表明,该催化体系也能在较低的催化剂浓度下,使CO2和PO进行环合反应生成相应的环碳酸酯。由于催化CO2和PO共聚反应的多为salen金属钴配合物,我们又合成了(lys-salen)CoOAc,并考察了其在催化CO2和PO反应中的效果,结果表明,(lys-salen)CoOAc-PPNCl催化体系中CO2和PO发生的是环合反应。
     多个研究表明,离子液体支载型化合物在催化领域具有特殊的优越性。如果将季铵(鏻)盐助催化剂直接支载在主催化剂(salen)MX中,这种双功能型催化剂能不能在CO2和环氧化合物的反应中发挥特殊的作用呢?第四章中,我们尝试在salen配体的苯环上进行改造,合成季铵盐支载型salen金属配合物,并最终成功合成了几种咪唑盐支载的salen金属配合物。催化反应结果表明,只有小部分金属配合物能催化PO和CO2的环合反应,大部分配合物没有明显的催化效果。经过对比和分析,我们认为低溶解度和支载链太短可能是催化剂失活的两个重要因素,为以后开展相似的工作提供了参考。
     催化剂(salen)MX的结构可以多变,而助催化剂季铵(鏻)盐的种类也非常繁多。目前,催化剂的优劣大多数是通过实验操作,根据各体系催化反应的结果进行比较得出的。然而,这种挑选催化剂的方法会耗费比较多的人力、物力以及能源。因此,从保护资源的角度看来,如何更简单、更经济地选择催化体系也是一个重要的议题。在第五章中,我们以季铵(鳞)盐和碱金属盐等卤化盐为对象,研究了它们在水辅助催化CO2和PO的反应中,反应活性和电导率之间的关系。结果表明,无论是催化剂改变、水量改变还是助溶剂改变时,反应活性的变化趋势和电导率的变化趋势是基本一致的。这不仅用实验直接证实了在CO2和环氧化合物反应体系中,季铵(鳞)盐等催化剂的活性与其离子的移动能力密切相关;更重要的是,这一现象提示我们,在这类反应,甚至于其他由卤化盐催化的反应中,也许可以通过进行简单的电导率测量来初步筛选催化体系。
     总体来说,本论文主要在环氧化合物化学固定CO2领域,以(salen)MX-季铵(鏻)盐催化体系为研究对象,对(salen)MX的设计与合成和季铵(鏻)盐的催化作用等方面进行了探索和研究,为该催化体系的设计和改进提供了经验。
Carbon dioxide fixation has received worldwide attention in decades, since CO2 is not only one of the greenhouse gases, but also an abundant, economical, and biorenewable resource. One of the most promising reactions in this area is the reaction of CO2 and epoxides to prepare polymeric or cyclic carbonates. Since salen-metal complexes [(salen)MX] are stable to air and water, easy to prepare, and have higher catalytic activity for the copolymerization of CO2 and epoxides, among the numerous metal-based catalyst systems, the salen-metal complex system is of special interest. Using binary catalyst system of (salen)MX as catalyst in conjunction quaternary ammonium/phosphonium salt cocatalyst could markedly enhance the catalytic activity and selectivity. However, it has been only about ten years since salen-metal complex was firstly applied to catalyze the reaction of CO2 and epoxides. Therefore, while some achievements have been made in this area, there are still many areas we need to explore, such as the modification and development of (salen)MX or investigating the reaction mechanism in more detail, In this paper, we focus on the (salen)MX- quaternary ammonium/phosphonium salt catalytic system. Several new salen metal complexes are synthesized and applied to catalyze the reaction of the CO2 and eopxides. In addition, the catalytic activity of the quaternary ammonium/phosphonium salts on such reaction is studied in more detail.
     Up to now, diamines, as the framework for H2salen ligands, focus only on some ortho-diamines, such as 1,2-cyclohexenediamine,1,2-phenylenediamine, and 1,2-ethylenediamine. So far as we know, the copolymerization catalyzed by salen-metal complex from non-ortho-diamine was absent. It prompted us to verify whether the salen-metal complex synthesized from non-ortho-diamine could effectively catalyze the copolymerization of CO2 and epoxides. We prepared a natural lysine-based (salen)CrⅢCl, and investigated the copolymerization of CO2 and cyclohexene oxide(CHO) catalyzed by this catalyst. The results showed that the (lys-salen)CrⅢCl, with PPNC1 (PPN+=bis(triphenylphosphoranylidene)ammonium) as cocatalyst, could effectively catalyze the alternating copolymerization. In contrast to the traditional salen-metal catalysts, the (lys-salen)CrⅢCl catalyst was prepared from lysine, which is commercially available and optically pure. Although the activity of (lys-salen)CrⅢCl catalyst is not better than traditional salen-metal catalysts, it shows some advantages such as high carbonate linkage, narrow molecular weight distribution, and good selectivity. In addition, the ESI-MS measurement of (lys-salen)CrⅢCl indicated that one molecule of water coordinated to the central metal ion, responding to the bimodal GPC curve of copolymers.
     The catalytic activity of (lys-salen)CrⅢCl-PPNCl on the reaction of CO2 and propylene oxide(PO) was also investigated, and it exhibited that this catalytic system could catalyze the coupling reaction of CO2 and PO in low catalytic concentration, producing cyclic carbonate. Since the copolymerization of CO2 and PO is usually catalyzed by salen cobalt complexes, the cobalt complex of lys-salen ligand [(lys-salen)CoOAc] was also prepared and applied to catalyze the reaction of CO2 and PO. It is a pity that it is also a coupling reaction between CO2 and PO.
     Many studies show that the ionic-liquid-supported catalysts are of particular advantage in many reactions. Can we synthesize a quaternary ammonium/phosphonium-supported salen metal complex? Is such a bifunctional salen metal catalyst of particular advantage in the reaction of CO2 and epoxides? We tried to modify the phenyl of salen ligand, in order to prepare quaternary ammonium-supported salen metal complex, and finally several ammonium-supported salen metal complexes were synthesized. However, most of these complexes have almost no catalytic activity. We believe that low solubility in PO and the short distance between the supported ammonium and metal center are main factors for the deactivation of catalysts.
     In most cases, a better catalyst is selected by comparing the reaction results with different catalysts after practical experiment. From the standpoint of resource conservation, how to select catalysts simply and cost-effectively is also an important topic. The relationship of activity and electrical conductivity of catalyst, which contains quaternary ammonium/phosphonium and alkali halides, in water-assisted coupling reaction of CO2 and PO was studied. It exhibited that the PO conversion was closely correlated with the electrical conductivity, when different catalysts, different amounts of water, and different hydroxy solvents were added in the reaction. This phenomenon not only proves that the catalytic activity was closely related to the ionic mobility of catalysts, but also indicates the simple operation of conductivity measurement might be helpful in deciding which catalyst should be chosen, which solvent should be used, how much solvent should be added in these reactions, and even in some other halide salts-aided reaction.
     To sum up, several new salen metal complexes were synthesised, and combined with quaternary ammonium/phosphonium salts, which were applied to catalyze the reaction of CO2 and epoxide. In addition, the activity of quaternary ammonium/phosphonium salt was studied. We except it can be used for the futher development of the (salen)MX-quaternary ammonium/phosphonium salt catalytic system for the chemical fixation of CO2.
引文
[1]李美华,李华儒,张毅安,二氧化碳生产及应用,西北大学出版社,1987,40-44.
    [2]王晓刚,李立清,唐琳,郭三霞,高招,C02资源化利用的现状及前景,化工环保,2006,26,198-203.
    [3]Q. Xu, Y. N. Chang, J. N. He, B. X. Han and Y. K. Liu, Supercritical C02-assisted synthesis of poly(acrylic acid)/nylon6 and polystyrene/nylon6 blends, Polymer,2003,44,5449-5454.
    [4]Z. M. Liu, L. P. Song, X. H. Dai, G. Y. Yang, B. X. Han and J. Xu, Grafting of methyl methylacrylate onto isotactic polypropylene film using supercritical CO2 as a swelling agent, Polymer,2002,43,1183-1188.
    [5]A. Behr, Carbon dioxide as an alternative c1 synthetic unit:Activation by transition-metal complexes, Angewandte Chemie International Edition in English,1988,27,661-678.
    [6]T. Sakakura, J. C. Choi and H. Yasuda, Transformation of carbon dioxide, Chemical Reviews,2007,107,2365-2387.
    [7]泰兴二氧化碳制取降解塑料项目启动,天然气化工:C1化学与化工,2004,29,48.
    [8]孙可华,广州化学有限公司C02合成降解塑料项目通过验收,国内外石油化工快报,2004,34,21.
    [9]G. Coates and D. Moore, Discrete metal-based catalysts for the copolymerization CO2 and epoxides:Discovery, reactivity, optimization, and mechanism, Angewandte Chemie International Edition in English,2004,43, 6618-6639.
    [10]T. Sakakura and K. Kohno, The synthesis of organic carbonates from carbon dioxide, Chemical Communications,2009,1312-1330.
    [11]D. J. Darensbourg and M. W. Holtcamp, Catalysts for the reactions of epoxides and carbon dioxide, Coordination Chemistry Reviews,1996,153, 155-174.
    [12]刘杨伟,杨鸣波,聚碳酸酯合金技术与应用,机械工业出版社,2008,1-14.
    [13]S. Inoue, H. Koinuma and T. Tsuruta, Copolymerization of carbon dioxide and epoxide, Journal of Polymer Science Part B-Polymer Letters,1969,7, 287-292.
    [14]W. Kuran and A. Rokicki, Properties of CO2 copolymers with heterocyclic monomers, Die Angewandte Makromolekulare Chemie,1978,78,217-220.
    [15]C. Koning, J. Wildeson, R. Parton. B. Plum, P. Steeman and D. J. Darensbourg, Synthesis and physical characterization of poly(cyclohexane carbonate), synthesized from CO2 and cyclohexene oxide, Polymer,2001,42,3995-4004.
    [16]D. D. Dixon and M. E. Ford, Polyalkylene carbonates as processing aids for polyvinyl chloride United States Patent 4137280 1979.
    [17]张南燕,陈立班,杨淑英,余爱芳,何树杰,高聚物负载双金属催化剂催化二氧化碳-氧化环已烯的共聚反应,高分子学报,2000,741-745.
    [18]S. Inoue, H. Koinuma and T. Tsuruta, Copolymerization of carbon dioxide and epoxide with organometallic compounds, Die Makromolekulare Chemie,1969, 130,210-220.
    [19]M. Kobayashi, T. Tsuruta and S. Inoue, Copolymerization of carbon dioxide and epoxide using dialkylzinc/dihydric phenol system as catalyst, Die Makromolekulare Chemie,1973,169,69-81.
    [20]S. Inoue, M. Kobayashi and T. Tsuruta, Diethylzinc-dihydric phenol system as catalyst for the copolymerization of carbon dioxide with propylene oxide, Macromolecules,1971,4,658-659.
    [21]S. Inoue, M. Kobayashi and T. Tsuruta, Copolymerization of carbon dioxide and epoxide by the dialkylzinc-carboxylic acid system, Journal of Polymer Science:Polymer Chemistry Edition,1973,11,2383-2385.
    [22]M. Kobayashi, S. Inoue, H. Koinuma and Teiji Tsuruta, Reactivities of some organozinc initiators for copolymerization of carbon dioxide and propylene oxide, Die Makromolekulare Chemie,1972,155,61-73.
    "[23] W. Kuran, S. Pasynkiewicz, J. Skupiska and A. Rokicki, Alternating copolymerization of carbon dioxide and propylene oxide in the presence of organometallic catalysts, Die Makromolekulare Chemie,1976,177,11-20.
    [24]P. Goarecki and W. Kuran Diethylzinc-trihydric phenol catalysts for copolymerization of carbon dioxide and propylene oxide:Activity in copolymerization and copolymer destruction processes, Journal of Polymer Science:Polymer Letters Edition,1985,23,299-304.
    [25]W. Kuran and T. Listos, Degradation of poly(propylene carbonate) by coordination catalysts containing phenolatozinc and alcoholatozinc species, Macromolecular Chemistry and Physics,1994,195,1011-1015.
    [26]W. Kuran and T. Listo, Initiation and propagation reactions in the copolymerization of epoxide with carbon-dioxide by catalysts based on diethylzinc and polyhydric phenol, Macromolecular Chemistry and Physics, 1994,195,997-984.
    [27]Y. Hino, Y. Yoshida and S. Inoue, Initiation mechanism of the copolymerization of carbon-dioxide and propylene-oxide with zinc carboxylate catalyst systems, Polymer Journal,1984,16,159-163.
    [28]W. Kuran, Active-sites, nature and mechanism of carbon-dioxide propylene-oxide copolymerization and cyclization reactions employing organozinc oxygen catalysts, Applied Organometallic Chemistry,1991,5, 191-194.
    [29]W. Kuran and T. Listos, Coordination polymerization of epoxides.2. Mechanism of copolymerization, Polish Journal of chemistry,1994,68, 1071-1083.
    [30]陈立班,黄斌,脂肪族聚碳酸酯多醇的制备,CN 1060299 1992.
    [31]K. Soga, E. Imai and I. Hattori, Alternating copolymerization of CO2 and propylene oxide with the catalysts prepared from Zn(OH)2 and various dicarboxylic acids, Polymer Journal,1981,13,407-410.
    [32]M. Ree, J. Y. Bae, J.H. Jung and T.J. Shin, Anew copolymerization process leading to poly(propylene carbonate) with a highly enhanced yield from carbon dioxide and propylene oxide, Journal of Polymer Science Part a-Polymer Chemistry,1999,37,1863-1876.
    [33]M. Ree, J. Y. Bae, J.H. Jung, T. J. Shin, Y. T. Hwang and T. Chang, Copolymerization of carbon dioxide and propylene oxide using various zinc glutarate derivatives as catalysts, Polymer Engineering and Science,2000,40, 1542-1552.
    [34]M. Super, E. Berluche, C. Costello and E. Beckman, Copolymerization of 1,2-epoxycyclohexane and carbon dioxide using carbon dioxide as both reactant and solvent, Macromolecules,1997,30,368-372.
    [35]D. J. Darensbourg, J. R. Wildeson and J. C. Yarbrough, Solid-state structures of zinc(ii) benzoate complexes. Catalyst precursors for the coupling of carbon dioxide and epoxides, Inorganic Chemistry,2002,41,973-980.
    [36]W. J. Kruper and D. J. Swart, Carbon dioxide oxirane copolymers prepared using double metal cyanide complexes US Patant 4500704,1983.
    [37]D. J. Darensbourg, M. J. Adams and J. C. Yarbrough, Toward the design of double metal cyanides for the copolymerization of CO2 and epoxides, Inorganic Chemistry,2001,40,6543-6544.
    [38]D. J. Darensbourg, M. J. Adams, J. C. Yarbrough and A. L. Phelps, Synthesis and structural characterization of double metal cyanides of iron and zinc: Catalyst precursors for the copolymerization of carbon dioxide and epoxides, Inorganic Chemistry,2003,42,7809-7818.
    [39]S. Chen, Z. J. Hua, Z. Fang and G. R. Qi, Copolymerization of carbon dioxide and propylene oxide with highly effective zinc hexacyanocobaltate(III)-based coordination catalyst, Polymer,2004,45,6519-6524.
    [40]Z. J. Hua, G. R. Qi and S. Chen, Ring-opening copolymerization of maleic anhydride with propylene oxide by double-metal cyanide, Journal of Applied Polymer Science,2004,93,1788-1792.
    [41]X. H. Zhang, Z. J. Hua, S. Chen, F. Liu, X. K. Sun and G. R. Qi, Role of zinc chloride and complexing agents in highly active double metal cyanide catalysts for ring-opening polymerization of propylene oxide, Applied Catalysis a-General,2007,325,91-98.
    [42]X. H. Zhang, F. Liu, X. K. Sun, S. Chen, B. Y. Du, G. R. Qi and K. M. Wan, Atom-exchange coordination polymerization of carbon disulfide and propylene oxide by a highly effective double-metal cyanide complex, Macromolecules,2008,41,1587-1590.
    [43]X. K. Sun, X. H. Zhang, F. Liu, S. Chen, B. Y. Du, Q. Wang, Z. Q. Fan and G. R. Qi, Alternating copolymerization of carbon dioxide and cyclohexene oxide catalyzed by silicon dioxide/Zn-CoⅢ double metal cyanide complex hybrid catalysts with a nanolamellar structure, Journal of Polymer Science Part a-Polymer Chemistry,2008,46,3128-3139.
    [44]D. J. Darensbourg and M. W. Holtcamp, Catalytic activity of zinc(II) phenoxides which possess readily accessible coordination sites copolymerization and terpolymerization of epoxides and carbon-dioxide, Macromolecules,1995,28,7577-7579.
    [45]D. J. Darensbourg, M. W. Holtcamp, G. E. Struck, M. S. Zimmer, S. A. Niezgoda, P. Rainey, J. B. Robertson, J. D. Draper and J. H. Reibenspies, Catalytic activity of a series of zn(II) phenoxides for the copolymerization of epoxides and carbon dioxide,Journal of the American Chemical Society,1999, 121,107-116.
    [46]D. J. Darensbourg, J. R. Wildeson, J. C. Yarbrough and J. H. Reibenspies, Bis 2,6-difluorophenoxide dimeric complexes of zinc and cadmium and their phosphine adducts:Lessons learned relative to carbon dioxide/cyclohexene oxide alternating copolymerization processes catalyzed by zinc phenoxides, Journal of the American Chemical Society,2000,122,12487-12496.
    [47]M. Cheng, E. Lobkovsky and G. Coates, Catalytic reactions involving c-1 feedstocks:New high-activity Zn(II)-based catalysts for the alternating copolymerization of carbon dioxide and epoxides, Journal of the American Chemical Society,1998,120,11018-11019.
    [48]M. Cheng, D. Moore, J. Reczek, B. Chamberlain, E. Lobkovsky and G. Coates, Single-site beta-diiminate zinc catalysts for the alternating copolymerization of CO2 and epoxides:Catalyst synthesis and unprecedented polymerization activity, Journal of the American Chemical Society,2001,123,8738-8749.
    [49]L. Rieth, D. Moore, E. Lobkovsky and G. Coates, Single-site beta-diiminate zinc catalysts for the ring-opening polymerization of beta-butyrolactone and beta-valerolactone to poly(3-hydroxyalkanoates), Journal of the American Chemical Society,2002,124,15239-15248.
    [50]D. Moore, M. Cheng, E. Lobkovsky and G. Coates, Electronic and steric effects on catalysts for CO2/epoxide polymerization:Subtle modifications resulting in superior activities, Angewandte Chemie-International Edition, 2002,41,2599-2602.
    [51]M. R. Kember, P. D. Knight, P. T. R. Reung and C. K. Williams, Highly active dizinc catalyst for the copolymerization of carbon dioxide and cyclohexene oxide at one atmosphere pressure, Angewandte Chemie-International Edition, 2009,48,931-933.
    [52]M. R. Kember, A. J. P. White and C. K. Williams, Highly active di- and trimetallic cobalt catalysts for the copolymerization of cho and CO2 at atmospheric pressure, Macromolecules,43,2291-2298.
    [53]M. R. Kember, A. J. P. White and C. K. Williams, Di-and tri-zinc catalysts for the low-pressure copolymerization of CO2 and cyclohexene oxide, Inorganic Chemistry,2009,48,9535-9542.
    [54]沈之荃,《烯烃双烯烃配位聚合进展》,科学出版社,1998.
    [55]沈之荃,张一烽,用稀土络合物催化剂制备高分子量聚环氧烷烃的方法,CN 85104956,1988.
    [56]X. H. Chen, Z. Q. Shen and Y. F. Zhang, New catalytic-systems for the fixation of carbon-dioxide.1. Copolymerization of CO2 and propylene-oxide with new rare-earth catalysts-Re(P204)3-Al(i-Ru)3-R(OH)n, Macromolecules, 1991, 24,5305-5308.
    [57]张一烽,陈仙海,沈之荃,新型Y(P(204))3体系催化共聚二氧化碳与环氧丙烷科学通报,1992,37,1054-1054.
    [58]Z. Q. Shen, X. H. Chen and Y. F. Zhang, New catalytic-systems for the fixation of carbon-dioxide.2. Synthesis of high-molecular-weight epichlorohydrin carbon-dioxide copolymer with rare-earth phosphonates triisobutyl-aluminum systems, Macromolecular Chemistry and Physics,1994, 195,2003-2011.
    [59]C. S. Tan and T. J. Hsu, Alternating copolymerization of carbon dioxide and propylene oxide with a rare-earth-metal coordination catalyst, Macromolecules,1997,30,3147-3150.
    [60]B. Y. Liu, X. J. Zhao, X. H. Wang and F. S. Wang, Copolymerization of carbon dioxide and propylene oxide with neodymium trichloroacetate-based coordination catalyst, Polymer,2003,44,1803-1808.
    [61]B. Y. Liu, X. J. Zhao, X. H. Wang and F. S. Wang, Copolymerization of carbon dioxide and propylene oxide with In(CCl3COO)3-based catalyst:The role of rare-earth compound in the catalytic system, Journal of Polymer Science Part a-Polymer Chemistry,2001,39,2751-2754.
    [62]Z. L. Quan, X. H. Wang, X. J. Zhao and F. S. Wang, Copolymerization of CO2 and propylene oxide under rare earth ternary catalyst:Design of ligand in yttrium complex, Polymer,2003,44,5605-5610.
    [63]Y. H. Tao, X. H. Wang, X. S. Chen, X. J. Zhao and F. S. Wang, Regio-regular structure high molecular weight poly(propylene carbonate) by rare earth ternary catalyst and lewis base cocatalyst, Journal of Polymer Science Part a-Polymer Chemistry,2008,46,4451-4458.
    [64]D. M. Cui, M. Nishiura and Z. M. Hou, Alternating copolymerization of cyclohexene oxide and carbon dioxide catalyzed by organo rare earth metal complexes, Macromolecules,2005,38,4089-4095.
    [65]D. M. Cui, M. Nishiura, O. Tardif and Z. M. Hou, Rare-earth-metal mixed hydride/aryloxide complexes bearing mono(cyclopentadienyl) ligands. Synthesis, CO2 fixation, and catalysis on copolymerization of CO2 with cyclohexene oxide, Organometallics,2008,27,2428-2435.
    [66]高建平,向辉,二氧化碳和环氧化合物合成生物降解塑料,天然气化工: C1 化学与化工,2004,29,55-57.
    [67]N. Takeda and S. Inoue, Polymerization of 1,2-epoxypropane an co-polymerization with carbon-dioxide catalyzed by metalloporphyrins, Makromolekulare Chemie-Macromolecular Chemistry and Physics,1978,179, 1377-1381.
    [68]T. Aida and S. Inoue, Living polymerization of epoxides with metalloporphyrin and synthesis of block copolymers with controlled chain lengths, Macromolecules,1981,14,1162-1166.
    [69]T. Aida and S. Inoue, Living polymerization of epoxide catalyzed by the porphyrin-Et2AlCl system-structure of the living end, Macromolecules,1981, 14,1166-1169.
    [70]T. Aida and S. Inoue, Synthesis of polyether polycarbonate block co-polymer from carbon-dioxide and epoxide using a metalloporphyrin catalyst system, Macromolecules,1982,15,682-684.
    [71]T. Aida and S. Inoue, Activation of carbon-dioxide with aluminum porphyrin and reaction with epoxide-studies on (tetraphenylporphinato)aluminum alkoxide having a long oxyalkylene chain as the alkoxide group, Journal of the American Chemical Society,1983,105,1304-1309.
    [72]T. Aida and S. Inoue, Catalytic reaction on both sides of a metalloporphyrin plane-alternating copolymerization of phthalic-anhydride and epoxypropane with an aluminum porphyrin quaternary salt system, Journal of the American Chemical Society,1985,107,1358-1364.
    [73]T. Aida, M. Ishikawa and S. Inoue, Alternating copolymerization of carbon-dioxide and epoxide catalyzed by the aluminum porphyrin-quaternary organic salt or triphenylphosphine system-synthesis of polycarbonate with well-controlled molecular-weight, Macromolecules,1986,19,8-13.
    [74]K. Shimasaki, T. Aida and S. Inoue, Living polymerization of delta-valerolactone with aluminum porphyrin-trimolecular mechanism by the participation of 2 aluminum porphyrin molecules, Macromolecules,1987,20, 3076-3080.
    [75]Y. Watanabe, T. Yasuda, T. Aida and S. Inoue, Stereochemistry of ring-opening reactions of epoxide with aluminum and zinc porphyrins relation to the mechanism of ring-opening polymerization, Macromolecules, 1992,25,1396-1400.
    [76]S. Mang, A. I. Cooper, M. E. Colclough, N. Chauhan and A. B. Holmes, Copolymerization of CO2 and 1,2-cyclohexene oxide using a CO2-soluble chromium porphyrin catalyst, Macromolecules,2000,33,303-308.
    [77]H. Sugimoto, H. Ohshima and S. Inoue, Alternating copolymerization of carbon dioxide and epoxide by manganese porphyrin:The first example of polycarbonate synthesis from 1-atm carbon dioxide, Journal of Polymer Science Part a-Polymer Chemistry,2003,41,3549-3555.
    [78]R. L. Paddock, Y. Hiyama, J. M. McKay and S. T. Nguyen, Co(Ⅲ) porphyrin/dmap:An efficient catalyst system for the synthesis of cyclic carbonates from CO2 and epoxides, Tetrahedron Letters,2004,45.2023-2026.
    [79]L. L. Jin, H. W. Jing, T. Chang, X. L. Bu, L. Wang and Z. L. Liu, Metal porphyrin/phenyltrimethylammonium tribromide:High efficient catalysts for coupling reaction of CO2 and epoxides, Journal of Molecular Catalysis a-Chemical,2007,261,262-266.
    [80]H. Sugimoto and K. Kuroda, The cobalt porphyrin-lewis base system:A highly selective catalyst for alternating copolymerization of CO2 and epoxide under mild conditions, Macromolecules,2008,41,312-317.
    [81]C. Baleizao and H. Garcia, Chiral salen complexes:An overview to recoverable and reusable homogeneous and heterogeneous catalysts, Chemical Reviews,2006,106,3987-4043.
    [82]W. Zhang, J. L. Loebach, S. R. Wilson and E. N. Jacobsen, Enantioselective epoxidation of unfunctionalized olefins catalyzed by (salen)manganese complexes, Journal of the American Chemical Society,1990,112,2801-2803.
    [83]K. B. Hansen, J. L. Leighton and E. N. Jacobsen, On the mechanism of asymmetric nucleophilic ring-opening of epoxides catalyzed by (salen)CrⅢ complexes, Journal of the American Chemical Society,1996,118, 10924-10925.
    [84]P. J. Pospisil, D. H. Carsten and E. N. Jacobsen, X-ray structural studies of highly enantioselective mn(salen) epoxidation catalysts, Chemistry-a European Journal,1996,2,974-980.
    [85]R. L. Paddock and S. T. Nguyen, Chemical CO2 fixation:Cr(III)salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides, Journal of the American Chemical Society,2001,123,11498-11499.
    [86]D. J. Darensbourg and J. C. Yarbrough, Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, using a chiral salen chromium chloride catalyst, Journal of the American Chemical Society,2002, 124,6335-6342.
    [87]Z. Qin, C. Thomas, S. Lee and G. Coates, Cobalt-based complexes for the copolymerization of propylene oxide and CO2:Active and selective catalysts for polycarbonate synthesis, Angewandte Chemie-International Edition,2003, 42,5484-5487.
    [88]D. J. Darensbourg and D. R. Billodeaux, Aluminum salen complexes and tetrabutylammonium salts:A binary catalytic system for production of polycarbonates from CO2 and cyclohexene oxide, Inorganic Chemistry,2005, 44,1433-1442.
    [89]D. J. Darensbourg, R. M. Mackiewicz, J. L. Rodgers, C. C. Fang, D. R. Billodeaux and J. H. Reibenspies, Cyclohexene oxide/CO2 copolymerization catalyzed by chromium(III)salen complexes and n-methylimidazole:Effects of varying salen ligand substituents and relative cocatalyst loading, Inorganic Chemistry,2004,43,6024-6034.
    [90]C. T. Cohen, T. Chu and G. W. Coates, Cobalt catalysts for the alternating copolymerization of propylene oxide and carbon dioxide:Combining high activity and selectivity, Journal of the American Chemical Society,2005,127, 10869-10878.
    [91]X. B. Lu and Y. Wang, Highly active, binary catalyst systems for the alternating copolymerization of CO2 and epoxides under mild conditions, Angewandte Chemie-International Edition,2004,43,3574-3577.
    [92]X. B. Lu, L. Shi, Y. M. Wang, R. Zhang, Y. J. Zhang, X. J. Peng, Z. C. Zhang and B. Li, Design of highly active binary catalyst systems for CO2/epoxide copolymerization:Polymer selectivity, enantioselectivity, and stereochemistry control, Journal of the American Chemical Society,2006,128,1664-1674.
    [93]R. L. Paddock and S. T. Nguyen, Alternating copolymerization of CO2 and propylene oxide catalyzed by CoⅢ(salen)/lewis base, Macromolecules,2005, 38,6251-6253.
    [94]D. J. Darensbourg and A. L. Phelps, Effective, selective coupling of propylene oxide and carbon dioxide to poly(propylene carbonate) using (salen)CrN3 catalysts, Inorganic Chemistry,2005,44,4622-4629.
    [95]C. Cohen and G. Coates, Alternating copolymerization of propylene oxide and carbon dioxide with highlv efficient and selective (salen)Co(III) catalysts: Effect of ligand and cocatalyst variation, Journal of Polymer Science Part a-Polymer Chemistry,2006,44,5182-5191.
    [96]B. Li, R. Zhang and X. B. Lu, Stereochemistry control of the alternating copolymerization of CO2 and propylene oxide catalyzed by salencrx complexes, Macromolecules,2007,40,2303-2307.
    [97]K. Nakano, T. Kamada and K. Nozaki, Selective formation of polycarbonate over cyclic carbonate:Copolymerization of epoxides with carbon dioxide catalyzed by a cobalt(III) complex with a piperidinium end-capping arm, Angewandte Chemie-International Edition,2006,45,7274-7277.
    [98]E. K. Noh, S. J. Na, S. Sujith, S. W. Kim and B. Y. Lee, Two components in a molecule:Highly efficient and thermally robust catalytic system for CO2/epoxide copolymerization, Journal of the American Chemical Society, 2007,129,8082-8083.
    [99]S. Sujith, J. K. Min, J. E. Seong, S. J. Na and B. Y. Lee, A highly active and recyclable catalytic system for CO2/propylene oxide copolymerization, Angewandte Chemie-International Edition,2008,47,7306-7309.
    [100]W. M. Ren, Z. W. Liu, Y. Q. Wen, R. Zhang and X. B. Lu, Mechanistic aspects of the copolymerization of CO2 with epoxides using a thermally stable single-site cobalt(Ⅲ) catalyst, Journal of the American Chemical Society, 2009,131,11509-11518.
    [101]B. Li, G. P. Wu, W. M. Ren, Y. M. Wang, D. Y. Rao and X. B. Lu, Asymmetric, regio- and stereo-selective alternating copolymerization of CO2 and propylene oxide catalyzed by chiral chromium salan complexes, Journal of Polymer Science Part a-Polymer Chemistry,2008,46,6102-6113.
    [102]D. J. Darensbourg, R. M. Mackiewicz, J. L. Rodgers and A. L. Phelps, (salen)CrⅢ X catalysts for the copolymerization of carbon dioxide and epoxides:Role of the initiator and cocatalyst, Inorganic Chemistry,2004,43, 1831-1833.
    [103]V. Calo, A. Nacci, A. Monopoli and A. Fanizzi, Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts, Organic Letters,2002,4,2561-2563.
    [104]J. W. Huang and M. Shi, Chemical fixation of carbon dioxide by nai/pph3/phoh, Journal of Organic Chemistry,2003,68,6705-6709.
    [105]A. L. Zhu, T. Jiang, B. X. Han, J. C. Zhang, Y. Xie and X. M. Ma, Supported choline chloride/urea as a heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates, Green Chemistry,2007,9,169-172.
    [106]Y. X. Zhou, S. Q. Hu, X. M. Ma, S. G. Liang, T. Jiang and B. X. Han, Synthesis of cyclic carbonates from carbon dioxide and epoxides over betaine-based catalysts, Journal of Molecular Catalysis a-Chemical,2008, 284,52-57.
    [107]J. Sun, S. J. Zhang, W. G. Cheng and J. Y. Ren, Hydroxyl-functionalized ionic liquid:A novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate, Tetrahedron Letters,2008,49,3588-3591.
    [108]J. L. Song, Z. F. Zhang, B. X. Han, S. Q. Hu, W. J. Li and Y. Xie, Synthesis of cyclic carbonates from epoxides and CO2 catalyzed by potassium halide in the presence of beta-cyclodextrin, Green Chemistry,2008,10,1337-1341.
    [109]J. Sun, J. Y. Ren, S. J. Zhang and W. G. Cheng, Water as an efficient medium for the synthesis of cyclic carbonate, Tetrahedron Letters,2009,50,423-426.
    [110]B. M. Cole, K. D. Shimizu, C. A. Krueger, J. P. A. Harrity, M. L. Snapper and A. H. Hoveyda, Discovery of chiral catalysts through ligand diversity: Ti-catalyzed enantioselective addition of TMSCN to meso epoxides, Angewandte Chemie-International Edition in English,1996,35,1668-1671.
    [111]X. B. Lu, X. J. Feng and R. He, Catalytic formation of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture with tetradentate schiff-base complexes as catalyst, Applied Catalysis a-General,2002,234, 25-33.
    [112]Y. M. Shen, W. L. Duan and M. Shi, Chemical fixation of carbon dioxide catalyzed by binaphthyldiamino Zn, Cu, and Co salen-type complexes, Journal of Organic Chemistry,2003,68,1559-1562.
    [113]X. B. Lu, Y. J. Zhang, K. Jin, L. M. Luo and H. Wang, Highly active electrophile-nucleophile catalyst system for the cycloaddition of CO2 to epoxides at ambient temperature, Journal of Catalysis,2004,227,537-541.
    [114]X. B. Lu, Y. J. Zhang, B. Liang, X. Li and H. Wang, Chemical fixation of carbon dioxide to cyclic carbonates under extremely mild conditions with highly active bifunctional catalysts, Journal of Molecular Catalysis a-Chemical,2004,210,31-34.
    [115]T. Chang, H. W. Jing, L. Jin and W. Y. Qiu, Quaternary onium tribromide catalyzed cyclic carbonate synthesis from carbon dioxide and epoxides, Journal of Molecular Catalysis a-Chemical,2007,264,241-247.
    [116]H. W. Jing, T. Chang, L. Jin, M. Wu and W. Y. Qiu, Ruthenium salen/phenyltrimethylammonium tribromide catalyzed coupling reaction of carbon dioxide and epoxides, Catalysis Communications,2007,8,1630-1634.
    [117]J. Melendez, M. North and R. Pasquale, Synthesis of cyclic carbonates from atmospheric pressure carbon dioxide using exceptionally active aluminium(salen) complexes as catalysts, European Journal of Inorganic Chemistry,2007,3323-3326.
    [118]F. Jutz, J. D. Grunwaldt and A. Baiker, Mn(III)(salen)-catalyzed synthesis of cyclic organic carbonates from propylene and styrene oxide in "Supercritical" CO2, Journal of Molecular Catalysis a-Chemical,2008,279,94-103.
    [119]X. Zhang, Y. B. Jia, X. B. Lu, B. Li, H. Wang and L. C. Sun, Intramolecularly two-centered cooperation catalysis for the synthesis of cyclic carbonates from CO2 and epoxides, Tetrahedron Letters,2008,49,6589-6592.
    [120]C. X. Miao, J. Q. Wang, Y Wu, Y. Du and L. N. He, Bifunctional metal-salen complexes as efficient catalysts for the fixation of CO2 with epoxides under solvent-free conditions, Chemsuschem,2008,1,236-241.
    [121]A. Baba, T. Nozaki and H. Matsuda, Carbonate formation from oxiranes and carbon-dioxide catalyzed by organotin halide-tetraalkylphosphonium halide-complexes, Bulletin of the Chemical Society of Japan,1987,60, 1552-1554.
    [122]F. W. Li, C. G. Xia, L. W. Xu, W. Sun and G. X. Chen, A novel and effective ni complex catalyst system for the coupling reactions of carbon dioxide and epoxides, Chemical Communications,2003,2042-2043.
    [123]K. Kossev, N. Koseva and K. Troev, Calcium chloride as co-catalyst of onium halides in the cycloaddition of carbon dioxide to oxiranes, Journal of Molecular Catalysis a-Chemical,2003,194,29-37.
    [124]J. M. Sun, S. I. Fujita, F. Y. Zhao and M. Arai, A highly efficient catalyst system of ZnBr2/n-Bu4NI for the synthesis of styrene carbonate from styrene oxide and supercritical carbon dioxide, Applied Catalysis a-General,2005, 287,221-226.
    [125]H. Yasuda, L. N. He, T. Sakakura and C. W. Hu, Efficient synthesis of cyclic carbonate from carbon dioxide catalyzed by polyoxometalate:The remarkable effects of metal substitution, Journal of Catalysis,2005,233,119-122.
    [126]Z. W. Bu, G. Qin and S. K. Cao, A ruthenium complex exhibiting high catalytic efficiency for the formation of propylene carbonate from carbon dioxide, Journal of Molecular Catalysis a-Chemical,2007,277,35-39.
    [127]J. G. Wang, J. C. Wu and N. Tang, Synthesis, characterization of a new bicobalt complex [Co2L2(C2H5OH)2Cl2] and application in cyclic carbonate synthesis, Inorganic Chemistry Communications,2007,10,1493-1495.
    [128]J. J. Peng and Y. Q. Deng, Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids, New Journal of Chemistry,2001,25,639-641.
    [129]H. Kawanami, A. Sasaki, K. Matsui and Y. Ikushima, A rapid and effective synthesis of propylene carbonate using a supercritical CO2-ionic liquid system, Chemical Communications,2003,896-897.
    [130]D. F. Ji, X. B. Lu and R. He, Syntheses of cyclic carbonates from carbon dioxide and epoxides with metal phthalocyanines as catalyst, Applied Catalysis a-General,2000,203,329-333.
    [131]H. S. Kim, J. J. Kim, H. Kim and H. G. Jang, Imidazolium zinc tetrahalide-catalyzed coupling reaction of CO2 and ethylene oxide or propylene oxide, Journal of Catalysis,2003,220,44-46.
    [132]F. W. Li, L. F. Xiao, C. G Xia and B. Hu, Chemical fixation of CO2 with highly efficient ZnCl2/[bmim]Br catalyst system, Tetrahedron Letters,2004, 45,8307-8310.
    [133]J. M. Sun, S. Fujita, F. Y. Zhao and M. Arai, Synthesis of styrene carbonate from styrene oxide and carbon dioxide in the presence of zinc bromide and ionic liquid under mild conditions, Green Chemistry,2004,6,613-616.
    [134]J. Palgunadi, O. S. Kwon, H. Lee, J. Y. Bae, B. S. Ahn, N. Y Min and H. S. Kim, Ionic liquid-derived zinc tetrahalide complexes:Structure and application to the coupling reactions of alkylene oxides and CO2, Catalysis Today,2004,98,511-514.
    [135]Y. J. Kim and R. S. Varma, Tetrahaloindate(Ⅲ)-based ionic liquids in the coupling reaction of carbon dioxide and epoxides to generate cyclic carbonates:H-bonding and mechanistic studies, Journal of Organic Chemistry, 2005,70,7882-7891.
    [136]C. S. Ra, J. Hwang, H. B. Lee and J. J. Shim, Solvent-free carboxylation of styrene oxide:Enhanced reactivity of quaternary onium salts in ionic liquid-CO2 system, Bulletin of the Korean Chemical Society,2007,28,1060-1062.
    [137]E. H. Lee, J. Y. Ahn, M. M. Dharman, D. W. Park, S. W. Park and I. Kim, Synthesis of cyclic carbonate from vinyl cyclohexene oxide and CO2 using ionic liquids as catalysts, Catalysis Today,2008,131,130-134.
    [138]. T. Nishikubo, A. Kameyama, J. Yamashita, T. Fukumitsu, C. Maejima and M. Tomoi, Soluble polymer-supported catalysts containing pendant quaternary onium salts for the addition-reaction of oxiranes with carbon-dioxide, Journal of Polymer Science Part a-Polymer Chemistry,1995,33,1011-1017.
    [139]M. Alvaro, C. Baleizao, D. Das, E. Carbonell and H. Garcia, CO2 fixation using recoverable chromium salen catalysts:Use of ionic liquids as cosolvent or high-surface-area silicates as supports, Journal of Catalysis,2004,228, 254-258.
    [140]M. Alvaro, C. Baleizao, E. Carbonell, M. El Ghoul, H. Garcia and B. Gigante, Polymer-bound aluminium salen complex as reusable catalysts for CO2 insertion into epoxides, Tetrahedron,2005,61,12131-12139.
    [141]T. Takahashi, T. Watahiki, S. Kitazume, H. Yasuda and T. Sakakura, Synergistic hybrid catalyst for cyclic carbonate synthesis:Remarkable acceleration caused by immobilization of homogeneous catalyst on silica, Chemical Communications,2006,1664-1666.
    [142]J. S. Tian, C. X. Miao, J. Q. Wang, F. Cai, Y. Du, Y. Zhao and L. N. He, Efficient synthesis of dimethyl carbonate from methanol, propylene oxide and CO2 catalyzed by recyclable inorganic base/phosphonium halide-functionalized polyethylene glycol, Green Chemistry,2007,9, 566-571.
    [143]T. Yano, H. Matsui, T. Koike, H. Ishiguro, H. Fujihara, M. Yoshihara and T. Maeshima, Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry, Chemical Communications,1997, 1129-1130.
    [144]K. Yamaguchi, K. Ebitani, T. Yoshida, H. Yoshida and K. Kaneda, Mg-al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides, Journal of the American Chemical Society,1999,121, 4526-4527.
    [145]M. Tu and R. J. Davis, Cycloaddition of CO2 to epoxides over solid base catalysts, Journal of Catalysis,2001,199,85-91.
    [146]S. Fujita, B. M. Bhanage, Y. Ikushima, M. Shirai, K. Torii and M. Arai, Chemical fixation of carbon dioxide to propylene carbonate using smectite catalysts with high activity and selectivity, Catalysis Letters,2002,79,95-98.
    [147]H. Yasuda, L. N. He and T. Sakakura, Cyclic carbonate synthesis from supercritical carbon dioxide and epoxide over lanthanide oxychloride, Journal. of Catalysis,2002,209,547-550.
    [148]M. Sankar, N. H. Tarte and P. Manikandan, Effective catalytic system of zinc-substituted polyoxometalate for cycloaddition of CO2 to epoxides, Applied Catalysis a-General,2004,276,217-222.
    [149]K. Mori, Y. Mitani, T. Hara, T. Mizugaki, K. Ebitani and K. Kaneda, A single-site hydroxyapatite-bound zinc catalyst for highly efficient chemical fixation of carbon dioxide with epoxides, Chemical Communications,2005, 3331-3333.
    [150]M. Ramin, N. van Vegten, J. D. Grunwaldt and A. Baiker, Simple preparation routes towards novel zn-based catalysts for the solventless synthesis of propylene carbonate using dense carbon dioxide, Journal of Molecular Catalysis a-Chemical,2006,258,165-171.
    [151]H. Yasuda, L. N. He, T. Takahashi and T. Sakakura, Non-halogen catalysts for propylene carbonate synthesis from CO2 under supercritical conditions, Applied Catalysis a-General,2006,298,177-180.
    [152]R. Srivastava, D. Srinivas and P. Ratnasamy, Syntheses of polycarbonate and polyurethane precursors utilizing CO2 over highly efficient, solid as-synthesized mcm-41 catalyst, Tetrahedron Letters,2006,47,4213-4217.
    [153]K. Nakano, N. Kosaka, T. Hiyama and K. Nozaki, Metal-catalyzed synthesis of stereoregular polyketones, polyesters, and polycarbonates, Dalton Transactions,2003,4039-4050.
    [154]J. F. Larrow, E. N. Jacobsen, Y. Gao, Y. P. Hong, X. Y. Nie and C. M. Zepp, A practical method for the large-scale preparation of [n,n'-bis(3,5-di-tert-butylsalicylidene) 1,2-cyclohexanediaminato(2-)]man ganese(Ⅲ) chloride, a highly enantioselective epoxidation catalyst, Journal of Organic Chemistry,1994,59,1939-1942.
    [155]L. E. Martinez, J. L. Leighton, D. H. Carsten and E. N. Jacobsen, Highly enantioselective ring-opening of epoxides catalyzed by (salen)Gr(Ⅲ) complexes, Journal of the American Chemical Society,1995,117,5897-5898.
    [156]D. J. Darensbourg, Making plastics from carbon dioxide:Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2, Chemical Reviews,2007,107,2388-2410.
    [157]R. Eberhardt, M. Allmendinger and B. Rieger, DMAP/Cr(Ⅲ) catalyst ratio: The decisive factor for poly(propylene carbonate) formation in the coupling of CO2 and propylene oxide, Macromolecular Rapid Communications,2003,24, 194-196.
    [158]C. Hongfa, J. H. Tian, J. Andreatta, D. J. Darensbourg and D. E. Bergbreiter, A phase separable polycarbonate polymerization catalyst, Chemical Communications,2008,975-977.
    [159]M. J. Oconnor, R. E. Ernst, Schoenbo.Je and R. H. Holm, Diastereoisomeric 4-coordinate complexes.4. Zinc (2) complexes with 3 asymmetric centers and ligand racemization in bis[n-(alkoxycarbonylalkyl)-salicylaldimino]metal (2) complexes, Journal of the American Chemical Society,1968,90,1744-1752.
    [160]Weinstei.Gn, M. J. Oconnor and R. H. Holm, Preparation, properties, and racemization kinetics of copper(II)-schiff base-amino acid complexes related to vitamin-b6 catalysis, Inorganic Chemistry,1970,9,2104-&.
    [161]M. R. Wagner and F. A. Walker, Spectroscopic study of 1-1 copper(II) complexes with schiff-base ligands derived from salicylaldehyde and 1-histidine and its analogs, Inorganic Chemistry,1983,22,3021-3028.
    [162]M. Tada, T. Taniike, L. M. Kantam and Y. Iwasawa, Chiral self-dimerization of vanadium complexes on a sio2 surface:The first heterogeneous catalyst for asymmetric 2-naphthol coupling, Chemical Communications,2004, 2542-2543.
    [163]T. T. Charvat, D. J. Lee, W. E. Robinson and A. R. Chamberlin, Design, synthesis, and biological evaluation of chicoric acid analogs as inhibitors of hiv-1 integrase, Bioorganic & Medicinal Chemistry,2006,14,4552-4567.
    [164]W. Imhof, A. Gobel, L. Schweda and H. Gorls, Synthesis and characterization of chiral iron carbonyl complexes from imine ligands with carbohydrates and amino acids as substituents, Polyhedron,2005,24,3082-3090.
    [165]D. J. Darensbourg, J. C. Yarbrough, C. Ortiz and C. C. Fang, Comparative kinetic studies of the copolymerization of cyclohexene oxide and propylene oxide with carbon dioxide in the presence of chromium salen derivatives. In situ ftir measurements of copolymer vs cyclic carbonate production, Journal of the American Chemical Society,2003,125,7586-7591.
    [166]H. Sugimoto, H. Ohtsuka and S. Inoue, Alternating copolymerization of carbon dioxide and epoxide catalyzed by an aluminum schiff base-ammonium salt system, Journal of Polymer Science Part a-Polymer Chemistry,2005,43, 4172-4186.
    [167]D. J. Darensbourg and S. B. Fitch, (tetramethyltetraazaannulene)chromium chloride:A highly active catalyst for the alternating copolymerization of epoxides and carbon dioxide, Inorganic Chemistry,2007,46,5474-5476.
    [168]C. T. Cohen, C. M. Thomas, K. L. Peretti, E. B. Lobkovsky and G. W. Coates, Copolymerization of cyclohexene oxide and carbon dioxide using (salen)Co(Ⅲ) complexes:Synthesis and characterization of syndiotactic poly(cyclohexene carbonate), Dalton Transactions,2006,237-249.
    [169]K. Nozaki, K. Nakano and T. Hiyama, Optically active polycarbonates: Asymmetric alternating copolymerization of cyclohexene oxide and carbon dioxide, Journal of the American Chemical Society,1999,121,11008-11009.
    [170]M. Cheng, N. Darling, E. Lobkovsky and G. Coates, Enantiomerically-enriched organic reagents via polymer synthesis: Enantioselective copolymerization of cycloalkene oxides and CO2 using homogeneous, zinc-based catalysts, Chemical Communications,2000, 2007-2008.
    [171]K. Nozaki, N. Kosaka, V. M. Graubner and T. Hiyama, Methylenation of an optically active gamma-polyketone:Synthesis of a new class of hydrocarbon polymers with main-chain chirality, Macromolecules,2001,34,6167-6168.
    [172]B. Rhodes, S. Rowling, P. Tidswell, S. Woodward and S. M. Brown, Aerobic epoxidation via alkyl-2-oxocyclopentanecarboxylate co-oxidation with cobalt or manganese jacobsen-type catalysts, Journal of Molecular Catalysis a-Chemical,1997,116,375-384.
    [173]M. Tokunaga, J. F. Larrow, F. Kakiuchi and E. N. Jacobsen, Asymmetric catalysis with water:Efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis, Science,1997,277,936-938.
    [174]E. F. Murphy, L. Schmid, T. Burgi, M. Maciejewski, A. Baiker, D. Gunther and M. Schneider, Nondestructive sol-gel immobilization of metal(salen) catalysts in silica aerogels and xerogels, Chemistry of Materials,2001,13, 1296-1304.
    [175]W. S. Miao and T. H. Chan, Ionic-liquid-supported synthesis:A novel liquid-phase strategy for organic synthesis, Accounts of Chemical Research, 2006,39,897-908.
    [176]A. Dalla Cort, L. Mandolini, C. Pasquini and L. Schiaffino, A novel ditopic zinc-salophen macrocycle:A potential two-stationed wheel for [2]-pseudorotaxanes, Organic & Biomolecular Chemistry,2006,4, 4543-4546.
    [177]李汝雄,绿色溶剂-离子液体的合成与应用,化学工业出版社,2004.
    [178]H. Kawanami and Y. Ikushima, Chemical fixation of carbon dioxide to styrene carbonate under supercritical conditions with dmf in the absence of any additional catalysts, Chemical Communications,2000,2089-2090.
    [179]H. Z. Yang, Y. L. Gu, Y. Q. Deng and F. Shi, Electrochemical activation of carbon dioxide in ionic liquid:Synthesis of cyclic carbonates at mild reaction conditions, Chemical Communications,2002,274-275.
    [180]L. F. Xiao, F. W. Li and C. G. Xia, An easily recoverable and efficient natural biopolymer-supported zinc chloride catalyst system for the chemical fixation of carbon dioxide to cyclic carbonate, Applied Catalysis a-General,2005,279, 125-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700