用户名: 密码: 验证码:
两亲星形聚合物的合成、表征及其在药物传输系统中的初步应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文综合应用可控开环聚合、ATRP、"Click"反应等技术系统地合成了一系列以杯芳烃和环糊精为核的两亲嵌段、杂臂星形聚合物和药物键合两亲星形聚合物,并初步研究了这些聚合物在水溶液中的自组装行为以及药物键合两亲星形聚合物的载药性能。
     设计了两种含八个醇羟基的间苯二酚杯芳烃衍生物引发剂,并以芳氧基钇配合物[Y(DBMP)3]为催化剂,通过可控开环聚合首次在温和条件下合成了一系列分子量不同的八臂星形聚已内酯。通过1HNMR和SEC-MALLS等测试证明了其为结构明确的八臂星形聚合物,溶解性较好的杯芳烃引发剂所合成的星形聚合物更接近设计结构。随后以这些八臂星形聚已内酯为基础,通过ATRP、"Click"反应和选择性水解反应首次合成了结构新颖的两亲八臂三嵌段ABA型星形共聚物(SPCL-PAA-PCL),其每条臂都由PCL-b-PAA-b-PCL线型三嵌段两亲共聚物组成。同时,应用DLS和TEM对这些两亲星形聚合物在水溶液中通过自组装形成的聚集体形貌进行了表征。
     考虑到引发剂溶解性对合成结构明确星形聚合物的影响,利用选择性取代反应合成了十四个低活性仲羟基被酯化而七个高活性伯羟基被保留的具备良好溶解性的p-环糊精衍生物(per-2,3-acetyl-p-CD),并以其为引发剂,辛酸亚锡为催化剂通过可控开环聚合合成了结构明确,分子量分布小于1.15的以环糊精为核的七臂星形聚已内酯,该类星形聚合物的“核”与“臂”皆具可生物降解性。随后以这些七臂星形聚已内酯为原料,设计了两种类型的两亲七臂星形嵌段共聚物:一类为通过七臂星形聚已内酯和羧基修饰的聚乙二醇之间的酯化偶联反应合成的两亲七臂两嵌段星形共聚物(CDSPCL-b-PEG),该共聚物在水溶液中能自组装形成10-40 nm的球形胶束;另一类为通过ATRP和"Click"反应合成的两亲七臂三嵌段ABC型星形聚合物(CDSPCL-PtBA-PEG),其每条臂包括疏水段PCL-b-PtBA嵌段共聚物和亲水段PEG,符合一定组成比例的该星形三嵌段共聚物在水溶液中能自组装形成奇特的“核-壳-冠”胶束和“多壁”囊泡,通过DLS, TEM和AFM等方法对这些胶束和囊泡进行了表征,并提出了疏水链PCL和PtBA之间的结晶差异性可能为这些奇特聚集体的形成提供了附加驱动力。通过三氟乙酸选择性水解CDSPCL-PtBA-PEG得到了具有PAA和PEG两种类型亲水链段的七臂三嵌段星形聚合物CDSPCL-PAA-PEG,该聚合物在水溶液中自组装形成的聚集体具有pH响应性,改变pH值可调控这些聚集体的形貌和尺寸。
     以大环化合物为核且结构明确的杂臂星形聚合物并不多见,本论文利用对叔丁基杯[4]
     芳烃和p-环糊精在特定条件下的选择性取代反应分别设计了基于对叔丁基杯[4]芳烃和p-环糊精的A2B2和A14B7杂官能团引发剂,并通过可控开环聚合,ATRP或‘'Click"反应分别合成了以对叔丁基杯[4]芳烃为核的两亲A2B2杂臂星形聚合物[C4S(PCL)2-(PEG)2]和以环糊精为核的两亲A14B7杂臂星形聚合物[CDS(PCL-PAA)]。通过1HNMR, SEC-MALLS,FT-IR等方法证明了这些杂臂星形聚合物结构明确,分子量可控,分子量分布较窄。DLS, TEM和AFM等方法研究这些杂臂星形聚合物在水溶液中自组装行为表明亲水链的重量百分数是影响自组装聚集体形貌的重要因素之一:亲水链重量百分数较小的杂臂星形聚合物趋向于形成较大的聚集体,如蠕虫,囊泡等;亲水链重量百分数较大的杂臂星形聚合物趋向于形成较小的聚集体,如球形胶束等。
     以二澳新戊二醇和β-环糊精衍生物[per-6-(tert-butyldimethylsilyl)-β-CD)]为起始原料,通过可控开环聚合和‘'Click"反应合成了疏水链PCL末端药物键合的两亲A2B2杂臂星形聚合物[(PCL)2-(PEG)2-D]和A14B7杂臂星形聚合物[CDS(PCL)14-(PEG)7-D]。通过1HNMR, SEC-MALLS, FT-IR等方法证明了这些药物键合杂臂星形聚合物结构明确,分子量可控。应用DLS和TEM等方法研究这些药物键合杂臂星形聚合物在水溶液中的自组装行为表明,通过改变亲水链段的重量百分数能调控聚集体的形貌,获得诸如球形,蠕虫状,片状等多种形貌的药物键合聚集体。此外,首次发现药物键合杂臂星形聚合物对疏水药物的载药效率明显高于相对应的非药物键合杂臂星形聚合物。
     合成了药物键合量可调控且结构明确的主链药物键合两亲七臂星形聚合物[CDS-P(CL-co-DTC)-D-b-PEG]。其合成过程如下:首先设计了一种新型的含溴六元环环碳酸酯单体(DBTC),通过其和CL单体在环糊精衍生物(per-2,3-acetyl-p-CD)引发下的可控开环共聚合合成了主链含溴的七臂星形聚合物[CDS-P(CL-co-DBTC)]。然后,通过CDS-P(CL-co-DBTC)和羧基封端PEG之间的酯化偶联反应合成了两亲七臂星形聚合物CDS-P(CL-co-DBTC)-b-PEG。随后将CDS-P(CL-co-DBTC)-b-PEG疏水链上的溴基团在NaN3的处理下等当量地转化为叠氮基团。最后,通过"Click"反应将炔基修饰的布洛芬接枝到了聚合物疏水主链上获得了目标产物CDS-P(CL-co-DTC)-D-b-PEG。通过1HNMR, SEC, FT-IR等方法证明了CDS-P(CL-co-DTC)-D-b-PEG具有和设计相吻合的明确结构。此外,CDS-P(CL-co-DTC)-D-b-PEG根据组成的不同在水溶液中能自组装形成球形胶束、蠕虫和直径达数百个纳米的囊泡等聚集体。
In this dissertation, a series of amphiphilic star block, miktoarm star copolymers and drug-conjugated amphiphilic star copolymers based on resorcinarene, calixarene and cyclodextrin cores have been synthesized by combination of CROP, ATRP and "Click" reaction. Primary studies on the self-assembly behaviors of these copolymers and drug-loading capacities of the drug-conjugated amphiphilic star copolymers have been performed.
     Two kinds of novel multifunctional resorcinarene precursors with eight alcoholic hydroxyls were synthesized and used as initiators to prepare well-defined eight-arm star-shaped poly(s-caprolactone) (SPCL) in the presence of yttrium tris(2,6-di-tert-butyl-4-methylphenolate) [Y(DBMP)3] under mild conditions. End group 1H NMR and SEC-MALLS analyses confirmed the well-defined eight-arm star structures. Subsequently, novel amphiphilic star triblock copolymers, star poly(ε-caprolactone)-block-poly(acrylic acid)-block-poly(ε-caprolactone)s (SPCL-PAA-PCL) consisting eight PCL-b-PAA-b-PCL triblock arms were prepared by combination of ATRP, "Click" reaction, and selective hydrolysis using SPCL as starting material. These amphiphilic star triblock copolymers could self-assemble into spherical micelles in aqueous solution which were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM).
     Considering the influence of the initiators'solubilities for preparing well-defined star polymers, per-2,3-acetyl-β-cyclodextrin with seven primary hydroxyl groups was synthesized and used as multifunctional initiator for CROP of CL. Well-defined P-cyclodextrin-centered seven-arm star poly(ε-caprolactone) (CDSPCL) with narrow molecular weight distributions (≤1.15) have been successfully prepared in the presence of Sn(Oct)2 for the first time. Both the "core" and the "arm" of these star polymers are biodegradable. Subsequently, two kinds of amphiphilic seven-arm star block copolymers were synthesized from CDSPCL:one was amphiphilic seven-arm star poly(ε-caprolactone-b-ethylene glycol) (CDSPCL-b-PEG), which was synthesized by the coupling reaction of CDSPCL with carboxyl-terminated mPEGs. CDSPCL-b-PEG could self-assemble into spherical micelles in water with the particle size ranging from 10-40 nm. The other one was amphiphilic seven-arm star poly(ε-caprolactone-b-tert-butyl acrylate-b-ethylene glycol) (CDSPCL-PrBA-PEG), which was synthesized by combination of ATRP, and "Click" reaction from CDSPCL. Some CDSPCL-PtBA-PEG with proper components could self-assemble into novel "core-shell-corona" micelles and "multi-wall" vesicles, which were characterized by DLS, TEM, and AFM. The possible reason for the formation of these novel aggregates was the differential crystallinity between PCL and PtBA. Furthermore, seven-arm amphiphilic star copolymers (CDSPCL-PAA-PEG) with two different hydrophilic chains (PAA and PEG) were synthesized by the selective hydrolysis of CDSPCL-PtBA-PEG, which could self-assemble into pH-response aggregates in water.
     Only few papers concerned the synthesis of well-defined miktoarm star copolymers based on macrocyclic compounds. In this dissertation, novel heterotetrafunctional A2B2 and A14B7 initiators were synthesized from selective substitution reactions of calix[4]arene and P-cyclodextrin. A2B2 miktoarm star copolymers [C4S(PCL)2-(PEG)2] consisting of two PCL arms and and two PEG arms were synthesized from calix[4]arene-based A2B2 initiator by the combination of CROP, and "Click" reaction; while A14B7 miktoarm star copolymers [CDS(PCL-PAA)] consisting of fourteen PCL arms and seven PAA arms were synthesized by the combination of CROP, and ATRP.1H NMR, SEC-MALLS, FT-IR analyses confirmed that they had well-defined miktoarm star architectures, controlled molecular weight and reasonably narrow molecular weight distribution. DLS, TEM, and AFM were used to characterize the morphologies of the self-assembled aggregates from these amphiphilic A14B7 and A2B2 miktoarm star copolymers. In general, the weight fraction of hydrophilic chains was the keypoint to control the morphologies of the aggregates:amphiphilic star copolymers with low weight fraction of hydrophilic chains preferred to form large aggregates, such as worm like micelles and vesicles; while amphiphilic star copolymers with high weight fraction of hydrophilic chains preferred to form small aggregates, such as spherical micelles.
     Novel two kinds of drug-conjugated miktoarm star copolymers, A2B2 miktoarm star copolymers (PCL)2-(PEG)2-D and A14B7 miktoarm star copolymers CDS(PCL)14-(PEG)7-D with ibuprofen conjugated on the end of the PCL chains have been synthesized by the combination of CROP and "Click" chemistry using 2,2-bis(bromomethyl)propane-1,3-diol and per-6-(tert-butyldimethylsilyl)-β-CD as starting material, respectively.'H NMR, SEC-MALLS, FT-IR analyses suggested that these copolymers had designed well-defined miktoarm star architectures and controlled molecular weight. These copolymers could self-assemble into various morphologies (such as spherical micelles, lamellar aggregates, and worm-like aggregates) in aqueous solution, which can be controlled by the composition of the copolymers. The drug-loading efficiency and drug-encapsulation efficiency of the drug-conjugated miktoarm star copolymers were significantly higher than those of the corresponding non-drug-conjugated miktoarm star copolymers.
     Novel main chain drug-grafted amphiphilic seven-arm star copolymers CDS-P(CL-co-DTC)-D-b-PEG with tunable amount of drug molecules have been prepared in this dissertation. The synthetic route was as follows:bromide functionalized cyclic carbonate monomer had been designed and used to copolymerize with CL in the presence of per-2,3-acetyl-β-CD to prepare seven-arm star copolymers [CDS-P(CL-co-DBTC)]. Then, amphiphilic star copolymers CDS-P(CL-co-DBTC)-b-PEG had been synthesized by esterification coupling reaction between CDS-P(CL-co-DBTC) and carboxyl-terminated mPEGs. Subsequently, bromide groups on the main chains of CDS-P(CL-co-DBTC)-b-PEG had been converted into azide groups by treating with NaN3. Finally, the targeted CDS-P(CL-co-DTC)-D-b-PEG had been synthesized by "Click" reation between alkyne functionalized ibuprofen and azide functionalized amphiphilic star copolymers. Furthermore, CDS-P(CL-co-DTC)-D-b-PEG could self-assemble into spherical micelles, worm-like aggregates and vesicles with a diameter of several hundreds nm, according to the composition of the copolymer.
引文
[1]. Hadjichristidis, N.; Pitsikalis, M.; Pispas, S.; Iatrou, H. Polymers with complex architecture by living anionic polymerization. Chem. Rev.2001,101,3747-3792.
    [2].孙家英,张立武,梅虎,梁桂兆,周原.星形聚合物的研究与应用进展.化工进展,2006,25,281-285.
    [3]. Szwarc, M.; Levy, M.; Milkovich, R. Polymerization initiated by electron transfer to monomer:a new method of formation of block polymers. J. Am. Chem. Soc.1956,78(11),2656-2657.
    [4]. Chang, W. L.; Frisch K. C.; Ashida, K. Anionic polymerization of star-shaped nylon 6 with a trifunctional initiator. J. Polym. Sci. Part A:Polym. Chem.1989,27,3637-3649.
    [5]. Hirao, A.; Hayashi, M.; Tokuda, Y.; Haraguchi, N.; Higashihara, T.; Ryu, S. W. Precise synthesis of regular and asymmetric star polymers and densely branched polymers with starlike structures by means of living anionic polymerization. Polym. J.2002,34(9),633-658.
    [6]. Shohi, H.; Sawamoto, M.; Higashimura, T. Tri-armed star polymers by living cationic polymerization.1. Trifunctional initiators for living polymerization of isobutyl vinyl ether. Macromolecules 1991,24, 4926-4931.
    [7]. Fukui, H.; Sawamoto, M.; Higashimura, T. Multifunctional coupling agents for living cationic polymerization.3. Synthesis of tri-and tetraarmed poly(vinyl ethers) with tri-and tetrafunctional silyl enol ethers. Macromolecules 1994,27,1297-1302.
    [8]. Storey, R. F.; Shoemake, K. A. Poly(styrene-b-isobutylene) multiarm star-block copolymers. J. Polym. Sci. Part A:Polym. Chem.1999,37,1629-1641.
    [9]. Wang, J. S.; Matyjaszewski, K. Controlled/"living" radical polymerization:atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc.1995,117(20), 5614-5615.
    [10]. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of methyl methacrylate with carbon tetrachloride/dichlorotris-(triphenylphosphine) ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system:possibility of living radical polymerization. Macromolecules 1995,28,1721-1723.
    [11]. Percec, V.; Barboiu, B. "Living" radical polymerization of styrene initiated by arenesulfonyl chlorides and CuI(bpy)nCl. Macromolecules 1995,28,7970-7972.
    [12]. Wang, J. S.; Greszta, D.; Matyjaszewski, K. Atom transfer radical polymerization (ATRP):a new approach towards well-defined (co)polymers. Polym. Mater. Sci. Eng.1995,73,416-417.
    [13]. Kasko, A. M.; Heintz, A. M.; Pugh, C. The effect of molecular architecture on the thermotropic behavior of poly[ll-(4'-cyanopheny-4"phenoxy)undecyl acrylate] and its relation to polydispersity. Macromolecules 1998,31,256-271.
    [14]. Moschogianni, P.; Pispas, S.; Hadjichristidis, N. Multifunctional ATRP initiators:synthesis of four-arm star homopolymers of methyl methacrylate and graft copolymers of polystyrene and poly(t-butyl methacrylate). J. Polym. Sci. Part A:Polym. Chem.2001,39,650-655.
    [15]. Heise, A.; Hedrick, J. L.; Trollsas. M.; Miller, R. D.; Frank, C. W. Novel starlike poly(methyl methacrylate)s by controlled dendritic free radical initiation. Macromolecules 1999,32,231-234.
    [16]. Collins, J. E.; Fraser, C. L. Transition metals as templates for multifunctional initiators:bulk atom transfer radical polymerization of styrene using di-tetra-and hexafunctional ruthenium tris(bipyridine) reagents. Macromolecules 1998,31,6715-6717.
    [17]. Baek, K. Y.; Kamigaito, M.; Sawamoto, M. Synthesis of star-shaped copolymers with methyl methacrylate and n-butyl methacrylate by metal-catalyzed living radical polymerization:block and random copolymer arms and microgel cores. J. Polym. Sci. Part A:Polym. Chem.2002,40,633-641.
    [18]. Pasquale, A. J.; Long, T. E. Synthesis of star-shaped polystyrenes via nitroxide-mediated stable free-radical polymerization. J. Polym. Sci. Part A:Polym. Chem.2001,39,216-223.
    [19]. Tsoukatos, T.; Pispas, S.; Hadjichristidis, N. Star-branched polystyrenes by nitroxide living free-radical polymerization. J. Polym. Sci. Part A:Polym. Chem.2001,39,320-325.
    [20]. Miura, Y.; Dote, H. Synthesis of 12-arm star polymers and star diblock copolymers by nitroxide-mediated radical polymerization using dendritic dodecafunctional macroinitiators. J. Polym. Sci. Part A:Polym. Chem.2005,43,3689-3700.
    [21]. Miura, Y.; Yoshida, Y. Syntheses of functional alkoxyamines and application to syntheses of well-defined star polymers. Macromol. Chem. Phys.2002,203,879-888.
    [22]. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J. Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Living free-radical polymerization by reversible addition-fragmentation chain transfer:the RAFT process. Macromolecules 1998,31,5559-5562.
    [23]. Chong, Y. K.; Le, T. P. T.; Moad, G.; Rizzardo, E.; Thang, S. H. A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization:the RAFT process. Macromolecules 1999,32,2071-2074.
    [24]. Moad, G.; Chiefari, J.; Chong, Y. K.; Krstina, J.; Mayadunne, R. T. A.; Postma, A.; Rizzardo, E.; Thang, S. H. Living free radical polymerization with reversible addition-fragmentation chain transfer (the life of RAFT). Polym. Int.2000,49(9),993-1001.
    [25]. Mayadunne, R. T. A.; Jeffery, J.; Moad, G.; Rizzardo, E. Living free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization):approaches to star polymers. Macromolecules 2003,36,1505-1513.
    [26]. Boschmann, D.; Vana, P. Z-RAFT star polymerization of acrylates:star coupling via intermolecular chain transfer to polymer. Macromolecules 2007,40,2683-2693.
    [27]. Rosenbaum, M. S.; Davis, T. P.; Chen, V.; Fane, A. G. Star-polymer synthesis via radical reversible addition-fragmentation chain-transfer polymerization. J. Polym. Sci. Part A:Polym. Chem.2001,39, 2777-2783.
    [28]. Stenzel M. H.; Davis T. P.; Barner-kowollik, C. Poly(vinyl alcohol) star polymers prepared via MADIX/RAFT polymerization. Chem. Commun.2004,13,1546-1547.
    [29]. Chaffey-Millar, H.; Smith-Hart, G.; Barner-kowollik, C. Living star polymer formation (RAFT) studied via electrospray ionization mass spectrometry. J. Polym. Sci. Part A:Polym. Chem.2008,46, 1873-1892.
    [30]. Chen, M.; Ghiggino, K. P.; Launikonis, A.; Mau, A. W. H.; Rizzardo, E.; Sasse, W. H. F.; Thang, S. H.; Wilson, G. J. RAFT synthesis of linear and star-shaped light harvesting polymers using di-and hexafunctional ruthenium polypyridine reagents. J. Mater. Chem.2003,13,2696-2700.
    [31]. Chen, M.; Ghiggino, K. P.; Thang, S. H.; Wilson, G. J. Tailored amphiphilic star-shaped light-harvesting copolymers. Polym. Int.2006,55(7),757-763.
    [32]. Zhou, G. C.; He, J. B.; Harruna,I.I. Synthesis and characterization of tris(2,2-bipyridine) ruthenium-cored star-shaped polymers via RAFT polymerization. J. Polym. Sci. Part A:Polym. Chem. 2007,45,4225-4239.
    [33]. Zheng, Q.; Pan, C. Y. Synthesis and characterization of dendrimer-star polymer using dithiobenzoate-terminated poly(propylene imine) dendrimer via reversible addition-fragmentation transfer polymerization. Macromolecules 2005,38,6841-6848.
    [34]. Zheng, Q.; Pan, C. Y. Preparation and characterization of dendrimer-star PNIPAAM using dithiobenzoate-terminated PPI dendrimer via RAFT polymerization. Eur. Polym. J.2006,42,807-814.
    [35]. Jesberger, M.; Barner, L.; Stenzel, M. H.; Malmstrom, E.; Davis, T. P.; Barner-kowollik, C. Hyperbranched polymers as scaffolds for multifunctional reversible additon-fragmentation chain-transfer agents:a route to polystyrene-core-polyesters and polystyrene-block-poly(butyl acrylate)-core-polyesters. J. Polym. Sci. Part A:Polym. Chem.2003,41,3847-3861.
    [36]. Hao, X. J.; Nilsson, C.; Jesberger, M.; Stenzel, M. H.; Malmstrom, E.; Davis, T. P.; Ostmark, E.; Barner-kowollik, C. Dendrimers as scaffolds for multifunctional reversible addition-fragmentation chain transfer agents:syntheses and polymerization. J. Polym. Sci. Part A:Polym. Chem.2004,42,5877-5890.
    [37]. Darcos, V.; Dureault, A.; Taton, D.; Gnanou, Y.; Marchand, P.; Caminade, A. M.; Majoral, J. P.; Destarac, M.; Leising, F. Synthesis of hybrid dendrimer-star polymers by the RAFT process. Chem. Commun.2004,13,2110-2111.
    [38]. Okada, M. Chemical syntheses of biodegradable polymers. Prog. Polym. Sci.2002,27,87-133.
    [39]. Xie, W. Y.; Jiang, N.; Gan, Z. H. Effects of multi-arm structure on crystallization and biodegradation of star-shaped poly(ε-caprolactone). Macromol. Biosci.2008,8,775-784.
    [40]. Dong, C. M.; Qiu, K. Y.; Gu, Z. W.; Feng, X. D. Synthesis of star-shaped poly(s-caprolactone)-b-poly(DL-lactic acid-alt-glycolic acid) with multifunctional initiator and stannous octoate catylyst. Macromolecules 2001,34,4691-4696.
    [41]. Wang, J. L.; Dong, C. M. Physical properties, crystallization kinetics, and spherulitic growth of well-defined poly(ε-caprolactone)s with different arms. Polymer 2006,47,3218-3228.
    [42]. Kim, K. H.; Cui, G. H.; Lim, H. J.; Hun, J.; Ahn, C. H.; Jo, W. H. Synthesis and micellization of star-shaped poly(ethylene glycol)-block-poly(s-caprolactone). Macromol. Chem. Phys.2004,205, 1684-1692.
    [43]. Cui, Y. J.; Tang, X. Z.; Huang, X. B.; Chen, Y. Synthesis of the star-shaped copolymer of s-caprolactone and L-lactide from a cyclotriphosphazene core. Biomacromolecules 2003,4,1491-1494.
    [44]. Cui, Y. J.; Ma, X. M.; Tang, X. Z.; Luo, Y. P. Synthesis, characterization, and thermal stability of star-shaped poly(ε-caprolactone) with phosphazene core. Eur. Polym. J.2004,40,299-305.
    [45]. Yuan, W. Z.; Tang, X. Z.; Huang, X. B.; Zheng, S. X. Synthesis, characterization and thermal properties of hexaarmed star-shaped poly(ε-caprolactone)-b-poly(D,L-lactide-co-glycolide) initiated with hydroxyl-terminated cyclotriphosphazene. Polymer 2005,46,1701-1707.
    [46]. Wan, T.; Liu, Y.; Yu, J. Q.; Chen, S.; Li, F.; Zhang, X. Z.; Chen, S. X.; Zhuo, R. X. Synthesis and characterization of star oligo/poly(2,2-dimethyltrimethylene carbonate)s containing cholic acid moieties. J. Polym. Sci. Part A:Polym. Chem.2006,44,6688-6696.
    [47]. Kai, W. H.; Hua, L.; Zhao, L.; Inoue, Y. Synthesis of novel star shaped poly(ε-caprolactone) utilizing fullerene as the molecular core. Macromol. Rapid. Commun.2006,27,1702-1706.
    [48]. Chan, S. C.; Kuo, S. W.; Chang, F. C. Synthesis of the organic/inorganic hybrid star polymers and their inclusion complexes with cyclodextrins. Macromolecules 2005,38,3099-3107.
    [49]. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry:diverse chemical function from a few good reactions. Angew. Chem. Int. Ed.2001,40,2004-2021.
    [50]. Demko, Z. P.; Sharpless, K. B. A click chemistry approach to tetrazoles by huisgen 1,3-dipolar cycloaddition:synthesis of 5-sulfonyl tetrazoles from azides and sulfonyl cyanides. Angew. Chem. Int. Ed.2002,41,2110-2113.
    [51]. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A stepwise huisgen cycloaddition process:copper(1)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew. Chem. Int. Ed.2002,41,2596-2599.
    [52]. Binder, W. H.; Sachsenhofer, R. "Click" chemistry in polymer and materials science. Macromol. Rapid. Commun.2007,28,15-54.
    [53]. Binder, W. H.; Sachsenhofer, R. "Click" chemistry in polymer and materials science:an update. Macromol. Rapid. Commun.2008,29,952-981.
    [54]. Lecomte, P.; Riva, R.; Jerome, C.; Jerome R. Macromolecular engineering of biodegradable polyesters by ring-opening polymerization and "click" chemistry. Macromol. Rapid. Commun.2008,29, 982-997.
    [55]. Lundberg, P.; Hawker, C. J.; Hult, A.; Malkoch, M. Click assisted one-pot multi-step reactions in polymer science:accelerated synthetic protocols. Macromol. Rapid. Commun.2008,29,998-1015.
    [56]. Johnson, J. A.; Finn, M. G.; Koberstein, J. T.; Turro, N. J. Construction of linear polymers, dendrimers, networks, and other polymeric architectures by copper-catalyzed azide-alkyne cycloaddition "click" chemistry. Macromol. Rapid. Commun.2008,29,1052-1072.
    [57]. Droumaguet, B. L.; Velonia, K. Click chemistry:a powerful tool to create polymer-based macromolecular chimeras. Macromol. Rapid. Commun.2008,29,1073-1089.
    [58]. Gao, H. F.; Matyjaszewski, K. Synthsis of star polymers by a combination of ATRP and the "Click" coupling method. Macromolecules 2006,39,4960-4965.
    [59]. Altintas, O.; Yankul, B.; Hizal, G.; Tunca, U. As-type star polymers via click chemistry. J. Polym. Sci. Part A:Polym. Chem.2006,44,6458-6465.
    [60]. Dag, A.; Durmaz, H.; Hizal, G.; Tunca, U. Preparation of 3-arm star polymers (A3) via Diels-Alder click reaction. J. Polym. Sci. Part A:Polym. Chem.2008,46,302-313.
    [61]. Chan, J. W.; Yu, B.; Hoyle, C. E.; Lowe, A. B. Convergent synthesis of 3-arm star polymers from RAFT-prepared poly(N,N-diethylacrylamide) via a thiol-ene click reaction. Chem. Commun.2008,40, 4959-4961.
    [62]. Hadjichristidis, N.; Pispas, S.; Pitsikalis, M.; Iatrou, H.; Vlahos, C. Asymmetric star polymers: synthesis and properties. Adv. Polym. Sci.1999,142,71-127.
    [63]. Hadjichristidis, N. Synthesis of miktoarm star(μ-star) polymers. J. Polym. Sci. Part A:Polym. Chem. 1999,37,857-871.
    [64]. Gao, H. F.; Tsarevsky, N. V.; Matyjaszewski, K. Synthesis of degradable miktoarm star copolymers via atom transfer radical polymerization. Macromolecules 2005,38,5995-6004.
    [65]. Gao, H. F.; Matyjaszewski, K. Arm-first method as a simple and general method for synthesis of miktoarm star copolymers. J. Am. Chem. Soc.2007,129(38),11828-11834.
    [66]. Iatrou, H.; Hadjichristidis, N. Synthesis of a model 3-miktoarm star terpolymer. Macromolecules 1992,25,4649-4651.
    [67]. Bae, Y. C.; Fodor, Z.; Faust, R. Living coupling reaction in living cationic polymerization.1. coupling reaction of living polyisobutylene. Macromolecules 1997,30,198-203.
    [68]. Whittaker, M. R.; Urbani, C. N.; Monteiro, M. J. Synthesis of 3-miktoarm stars and 1st generation mikto dendritic copolymers by Living radical polymerization and click chemistry. J. Am. Chem. Soc. 2006,128(35),11360-11361.
    [69]. Wang, G. W.; Luo, X. L.; Huang, J. L. Synthesis of ABCD 4-miktoarm star-shaped quarterpolymers by combination of the click chemistry with multiple polymerization mechanism. J. Polym. Sci. Part A: Polym. Chem.2008,46,2154-2166.
    [70]. Fu, Q.; Wang, G. W.; Lin, W. C.; Huang, J. L. One-pot preparation of 3-miktoarm star terpolymers via click chemistry and atom transfer nitroxide radical coupling reaction. J. Polym. Sci. Part A:Polym. Chem.2009,47,986-990.
    [71]. Altintas, O.; Hizal, G.; Tunca, U. ABCD 4-miktoarm star quarterpolymers using click [3+2] reaction strategy. J. Polym. Sci. Part A:Polym. Chem.2008,46,1218-1228.
    [72]. Celik, C.; Hizal, G.; Tunca, U. Synthesis of miktoarm star and miktoarm star block cpolymers via a combination of atom transfer radical polymerization and stable free-radical polymerization. J. Polym. Sci. Part A:Polym. Chem.2003,41,2542-2548.
    [73]. Glaied,O.; Delaite, C.; Dumas, P. Synthesis of A2B block copolymers from a heterotrifunctional initiator. J. Polym. Sci. Part A:Polym. Chem.2006,44,1796-1806.
    [74]. Liu, H.; Xu, J.; Jiang, J. L.; Yin, J.; Narain, R.; Cai, Y. L.; Liu, S. Y.; Syntheses and micellar properties of well-defined amphiphilic A2B Y-shaped miktoarm star copolymers of ε-caprolactone and 2-(dimethylamino)ethyl methacrylate. J. Polym. Sci. Part A:Polym. Chem.2007,45,1446-1462.
    [75]. Erdogan, T.; Ozyurek, Z.; Hizal, G; Tunca, U. Facile synthesis of AB2-type miktoarm star polymers through the combination of atom transfer radical polymerization and ring-opening polymerization. J. Polym. Sci. Part A:Polym. Chem.2004,42,2313-2320.
    [76]. Glaied, O.; Delaite, C.; Dumas, P. Synthesis of PS(PEO)3 star block copolymers from a heterotetrafunctional initiator. J. Polym. Sci. Part A:Polym. Chem.2007,45,4179-4183.
    [77]. Erdogan, T.; Gungor, E.; Durmaz, H.; Hizal, G.; Tunca, U. Photoresponsive poly(methyl methacrylate)2-(polystyrene)2 miktoarm star copolymer containing an azobenzene moiety at the core. J. Polym. Sci. Part A:Polym. Chem.2006,44,1396-1403.
    [78]. Guo, Y. M; Xu, J.; Pan, C. Y. Block and star block copolymers by mechanism transformation.4. synthesis of S-(PSt)2(PDOP)2 miktoarm star copolymers by combination of ATRP and CROP. J. Polym. Sci. Part A:Polym. Chem.2001,39,437-445.
    [79]. Lorenzo, A. T.; Muller, A. J.; Priftis, D.; Pitsikalis, M.; Hadjichristidis, N. Synthsis and morphological characterization of miktoarm star copolymers (PCL)2(PS)2 of poly(ε-caprolactone) and polystyrene. J. Polym. Sci. Part A:Polym. Chem.2007,45,5387-5397.
    [80]. Glaied, O.; Delaite, C.; Dumas, P. Synthesis of A2B2 star block copolymers from a heterotetrafunctional initiator. J. Polym. Sci. Part A:Polym. Chem.2007,45,968-974.
    [81]. Guo, Y. M.; Pan, C. Y. Block and star block copolymers by mechanism transformation. Part 5. syntheses of polystyrene/polytetrahydrofuran A2B2 miktoarm star copolymers by transformation of CROP into ATRP. Polymer 2001,24,2863-2869.
    [82]. Heise, A.; Trollsas, M.; Magbitang, T.; Hedrick, J. L.; Frank, C. W.; Miller, R. D. Star polymers with alternating arms from miktofunctional μ-niitiators using consecutive atom transfer radical polymerization and ring-opening polymerization. Macromolecules 2001,34,2798-2804.
    [83]. Deng, G. H.; Ma, D. Y.; Xu, Z. Z. Synthesis of ABC-type miktoarm star polymers by click chemistry, ATRP and ROP. Eur. Polym. J.2007,43,1179-1187.
    [84]. Altintas,O.; Hizal, G.; Tunca, U. ABC-type hetero-arm star terpolymers through click chemistry. J. Polym. Sci. Part A:Polym. Chem.2006,44,5699-5707.
    [85]. Zhang, Y. F.; Li, C. H.; Liu, S. Y. One-pot synthesis of ABC miktoarm star terpolymers by coupling ATRP, ROP, and click chemistry techniques. J. Polym. Sci. Part A:Polym. Chem.2009,47,3066-3077.
    [86]. He, T.; Li, D. J.; Shen, X.; Zhao, B. Synthesis of ABC 3-miktoarm star terpolymers from a trifunctional initiator by combining ring-opening polymerization, atom transfer randical polymerization, and nitroxide-mediated radical polymerization. Macromolecules 2004,37,3128-3135.
    [87]. Tunca, U.; Ozyurek, Z.; Erdogan, T.; Hizal, G. Novel miktofunctional initiator for the preparation of an ABC-type miktoarm star polymer via a combination of controlled polymerization techniques. J. Polym. Sci. Part A:Polym. Chem.2004,42,4228-4236.
    [88]. Francis, R.; Lepoittevin, B.; Taton. D.; Gnanou, Y. Toward an easy access to asymmetric stars and miktoarm stars by atom transfer radical polymerization. Macromolecules 2002,35,9001-9008.
    [89]. Feng, X. S.; Pan, C. Y. Synthesis of amphiphilic miktoarm ABC star copolymers by RAFT mechanism using maleic anhydride as linking agent. Macromolecules 2002,35,4888-4893.
    [90]. Yuan, Y Y.; Wang, Y C.; Du, J. Z.; Wang, J. Synthesis of amphiphilic ABC 3-miktoarm star terpolymer by combination of ring-opening polymerization and click chemistry. Macromolecules 2008, 41,8620-8625.
    [91]. Gutsche, C. D.; Muthukrishnan, R. Calixarenes.1. Analysis of the product mixtures produced by the base-catalyzed condensation of formaldehyde with para-substituted phenols J. Org. Chem.1978,43, 4905-4906.
    [92]. Muthukrishnan, R.; Gutsche, C. D. Calixarenes.3. Preparation of the 2,4-dinitrophenyl and camphorsulfonyl derivatives of the calix[8]arene from p-tert-butylphenol. J. Org. Chem.1979,44, 3962-3964.
    [93]. Gutsche, C. D.; Dhawan, B.; No, K. H. Calixarenes.4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol. J. Am. Chem. Soc.1981,103,3782-3792.
    [94]. Gutsche, C. D.; Levine, J. A. Calixarenes.6. Synthesis of a functionalizable calix[4]arene in a conformationally rigid cone conformation.J. Am. Chem. Soc.1982,104,2652-2653.
    [95]. Gutsche, C. D.; Bauer, L. J. Calixarenes.14. The conformational properties of the ethers and esters of the calix[6]arenes and the calix[8]arenes. J. Am. Chem. Soc.1985,107,6059-6063.
    [96]. Stewart, D. R.; Krawiec, M.; Kashyap, R. P. Conformational characteristics of ethers and esters of p-tert-butylcalix[5]arene. J. Am. Chem. Soc.1995,117,586-601.
    [97]. Zhang, L.; Coffer, J. L.; Wang, J. Porous Silicon Coated with Calixarene Carboxylic Acid Derivatives:Effects on Luminescence Quenching Selectivity. J. Am. Chem. Soc.1996,118, 12840-12841.
    [98]. Wang, J. S.; Gutsche, C. D. Calixarenes.48. Complexation of fullerenes with bis-calix[n]arenes synthesized by tandem claisen rearrangement. J. Am. Chem. Soc.1998,120,12226-12231.
    [99]. Stewart, D. R.; Gutsche, C. D. Isolation, characterization, and conformational characteristics of p-tert-butylcalix[9-20]arenes. J. Am. Chem. Soc.1999,121,4136-4146.
    [100]. Molenveld, P.; Engbersen, J. F. J.; Reinhoudt, D. N. Dinuclear metallo-phosphodiesterase models: application of calix[4]arenes as molecular scaffolds. Chem. Soc. Rev.2000,29,75-86.
    [101]. Diamond, D.; McKervey, M. A. Calixarene-based sensing agents, Chem. Soc. Rev.1996,25,15-24.
    [102]. Danil de Namor, A. F.; Cleverley, R. M.; Zapata-Ormachea, M. L. Thermodynamics of calixarene chemistry, Chem. Rev.1998,98,2495-2525.
    [103]. Chen, Y. F.; Zhang, Y. F.; Shen, Z. Q. Polymerization of ethylene with calix[4]titanium-Al(iso-Bu)3 system. Acta Polymerica Sinica 2000,2,239-241.
    [104]. Shen, Z. Q.; Chen, Y. F.; Zhang, Y. F. Polymerization of ethylene with calix[8]arene neodymium-Al(i-Bu)3 system. Chem. J. Chinese Universities 1999,20(12),1982-1984.
    [105]. Zheng, Y. S.; Shen, Z. Q. Polymerization of styrene with calixarene-neodymium complex using alkylmagnesium as cocatalyst. Eur. Polym. J.1999,35,1037-42.
    [106]. Nie, J.; Zhang, Y. F.; Jiang, L. M.; Shen, Z. Q. Synthesis of ultra-high molecular weight polystyrene and polymerization kinetics. Acta Polymerica Sinica 2002,2,203-207.
    [107]. Ni, X. F.; Li, W. S.; Zhang, Y. F. Polymerization of 1,3-butadiene with new calixarene rare earth complex-based homogeneous catalysts. Chem. J. Chinese Universities,2000,21(12),1936-1938.
    [108]. Zheng, Y. S.; Shen, Z. Q. Polymerization of styrene and 1,3-butadiene by catalyst systems based on calix[4]arene neodymium complexes. Chinese Chemical Letters 1999,10(7),597-600.
    [109]. Zheng, Y. S.; Ying, L. Q.; Shen, Z. Q. Polymerization of propylene oxide by a new neodymium complex of calixarene derivative. Polymer,1999,41,1641-1643.
    [110]. Ge, L.; Huang, Q. H.; Zhang, Y. F.; Shen, Z. Q. Ring-opening polymerization of styrene oxide with rare earth coordination catalysts. Eur. Polym. J.2000,36(12),2699-2705.
    [111]. Ge, L.; Shen, Z. Q.; Zhang, Y. F. Ring-opening polymerization of trimethylene carbonate by calix[8]arene-neodymium. Chinese J. Polym. Sci.2000,18(1),77-80.
    [112]. Ling, J.; Shen, Z. Q.; Zhu, W. P.; Synthesis, charaterization, and mechanism studies on novel rare earth calixarene complexes initiating ring-opening polymerization of 2,2-dimethyltrimethylene carbonate. J. Polym. Sci. Part A:Polym. Chem.2003,41,1390-1399.
    [113]. Zhu, W. P.; Ling, J.; Xu, H.; Shen, Z. Q. Ring-opening polymerization of trimethylene carbonate by novel single component rare earth calixarene complexes. Chinese J. Polym. Sci.2005,23(4),407-410.
    [114]. Zhu, W. P.; Ling, J.; Xu, H.; Shen, Z. Q. Copolymerization of trimethylene carbonate and 2,2-dimethyltrimethylene carbonate by rare earth calixarene complexes. Polymer,2005,46,8379-8385.
    [115]. Taton, D.; Saule, M.; Logan, J.; Duran, R.; Hou, S. J.; Chaikof, E. L.; Gnanou, Y. Polymerization of ethylene oxide with a calixarene-based precursor:Synthesis of eight-arm poly(ethylene oxide) stars by the core-first methodology. J. Polym. Sci. Part A:Polym. Chem.2003,41,1669-1676.
    [116]. Zhu, W. P.; Ling, J.; Shen, Z. Q. Synthesis and charaterization of amphiphilic star-shaped polymers with calix[6]arene cores. Macromol. Chem. Phys.2006.207,844-849.
    [117]. Lou, L. P.; Jiang, L. M.; Liu, J. Z.; Sun, W. L.; Shen, Z. Q. Synthesis and charaterization of optically active star-shaped poly(N-phenylmaleimide)s with a calixarene core. Polym. Int.2007,56,796-802.
    [118]. Jacob, S.; Majoros, I.; Kennedy, J. P. New Stars:Eight polyisobutylene arms emanating from a calixarene core. Macromolecules 1996,29,8631-8641.
    [119]. Jacob, S.; Majoros, I.; Kennedy, J. P. Novel star-block thermoplastic elastomers:eight poly(styrene-b-isobutylene) arms radiating from a calix[8]arene core, Polym. Mater. Sci. Eng.1997,77, 185-186.
    [120]. Jacob, S.; Kennedy, J. P. Synthesis and characterization of novel octa-arm star-block thermoplastic consisting of poly(p-chlorostyrene-b-isobutylene) arms radiating from a calix[8]arene core. Polym. Bull. 1998,41(2),167-174.
    [121]. Jacob, S.; Majoros, I.; Kennedy, J. P. New polyisobutylene stars. ⅩⅣ. Novel thermoplastic elastomers:star-blocks consisting of eight poly(styrene-b-isobutylene) arms radiating from a calix[8]arene core, Rubber Chem. Technol.1998,71(4),708-721.
    [122]. Shim, J. S.; Kennedy, J. P. Scale-up precision synthesis of octa-arm polyisobutylene stars. Polym. Bull.2000,44(5-6),493-499.
    [123]. Hull, D. L.; Kennedy, J. P. Synthesis, characterization, and crosslinking of novel stars comprising eight poly(isobutylene-azeotropic-styrene) copolymer arms with allyl or hydroxyl termini. Ⅱ.Stars of eight isobutylene/styrene azeotropic copolymer arms emanating from a calix[8]arene core. J. Polym. Sci. Part A:Polym. Chem.2001,39,1525-1532.
    [124]. Angot, S.; Murthy, K. S.; Taton, D.; Gnanou, Y. Atom transfer radical polymerization of styrene using a novel octafunctional initiator:synthesis of well-defined polystyrene stars. Macromolecules 1998, 31,7218-7225.
    [125]. Angot, S.; Taton, D.; Hizal, G.; Gnanou, Y. Stars and star-block copolymers of precise functionality by atom transfer radical polymerization. Polym. Prepr.1999,40(2),348-349.
    [126]. Angot, S.; Murthy, K. S.; Taton, D.; Gnanou, Y. Scope of the copper halide/bipyridyl system associated with calixarene-based multihalides for the synthesis of well-defined polystyrene and poly(meth)acrylate stars, Macromolecules 2000,33,7261-7274.
    [127]. Gnanou, Y.; Taton, D. Stars and dendrimer-like architectures by the divergent method using controlled radical polymerization. Macromol. Symp.2001,174,333-341.
    [128]. Lepoittevin, B.; Matmour, R.; Francis, R.; Taton, D.; Gnanou, Y. Synthesis of dendrimer-like polystyrene by atom transfer radical polymerization and investigation of their viscosity behavior. Macromolecules 2005,38,3120-3128.
    [129]. Ueda, J.; Kamigaito, M.; Sawamoto, M. Calixarene-core multifunctional initiators for the ruthenium-mediated living radical polymerization of methacrylates. Macromolecules 1998,31(20), 6762-6768.
    [130]. Niederl, J. B.; Vogel, H. J. Aldehyde-resorcinal condensattions. J. Am. Chem. Soc.1940,62, 2512-2514.
    [131]. Tunstad, L. M.; Tucker, J. A.; Dalcanale, E.; Weiser, J.; Bryant, J. A.; Sherman, J. C.; Helgeson, R. C.; Knobler, C. B.; Cram, D. J. Host-guest complexation.48. Octol building blocks for cavitands and carcerands. J. Org. Chem.1989,54,1305-1312.
    [132]. Moran, J. R.; Karbach, S.; Cram, D. J. Cavitands:synthetic molecular vessels. J. Am. Chem. Soc. 1982,104,5826-5828.
    [133]. Cram, D. J. Molecular container compounds. Nature 1992,356,29-36.
    [134]. Cram, D. J.; Karbach, S.; Kim, Y. H.; Baczynskyj, L.; Marti, K.; Sampson, R. M.; Kalleymeyn, G. W. Host-guest complexation.47. Carcerands and carcaplexes, the first closed molecular container compounds. J. Am. Chem. Soc.1988,110,2554-2560.
    [135]. Strandman, S.; Luostarinen, M.; Niemela, S.; Rissanen, K.; Tenhu, H. Resocinarene-based ATRP initiators for star polymers. J. Polym. Sci. Part A:Polym. Chem.2004,42,4189-4201.
    [136]. Strandman, S.; Pulkkinen, P.; Tenhu, H. Effect of ligand on the synthesis of star polymers by resorcinarene-based ATRP initiators. J. Polym. Sci. Part A:Polym. Chem.2005,43,3349-3358.
    [137]. Strandman, S.; Tenhu, H. Star polymers synthesised with flexible resorcinarene-derived ATRP initiators. Polymer 2007,48,3938-3951.
    [138]. Abraham, S.; Choi, J. H.; Ha, C. S.; Kim. I. Synthesis of star polymers via nitroxide mediated free-radical polymerization:A core-first approach using resorcinarene-based alkoxyamine initiators. J. Polym. Sci. Part A:Polym. Chem.2007,45,5559-5572.
    [139]. 童林荟.环糊精化学—基础与应用.北京:科学出版社,2001.
    [140]. Breslow, R.; Dong, S. D. Biominetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev.1998,98,1997-2012.
    [141]. 王永健,张政朴,何炳林.环糊精聚合物的高分子效应.化学进展,2000,12,318-324.
    [142]. Harada, A.; Kamachi, M. Complex-formation between poly(ethylene glycol) and alpha-cyclodextrin. Macromolecules 1990,23,2821-2823.
    [143]. Ohno, K.; Wang, B.; Haddleton, D. M. Synthesis of well-defined cyclodextrin-core star polymers. J. Polym. Sci. Part A:Polym. Chem.2001,39,2206-2214.
    [144]. Karaky, K.; Reynaud, S.; Billon, L.; Francois, J.; Chreim, Y. Organosoluble star polymers from a cyclodextrin core. J. Polym. Sci. Part A:Polym. Chem.2005,43,5186-5194.
    [145]. Li, J. S.; Xiao, H. N. An efficient synthetic-route to prepare [2,3,6-tri-O-(2-bromo-2-methylpropionyl)]-β-cyclodextrin. Tetrahedron Lett.2005,46,2227-2229.
    [146]. Li, J. S.; Xiao, H. N.; Kim, Y. S.; Lowe, T. L. Synthesis of water-soluble cationic polymers with star-like structure based on cyclodextrin core via ATRP. J. Polym. Sci. Part A:Polym. Chem.2005,43, 6345-6354.
    [147]. Li, J. S.; Guo, Z. Z.; Xin, J. Y.; Zhao, G. L.; Xiao, H. N.21-arm star polymers with different cationic groups based on cyclodextrin core. Carbohyd. Polym.2010,79,277-283.
    [148]. Kakuchi, T; Narumi, A.; Matsuda, T.; Miura, Y.; Sugimoto, N.; Satoh, T.; Kaga, H. Glycoconjugated polymer.5. Synthesis and characterization of a seven-arm star polystyrene with a β-cyclodextrin core based on TEMPO-mediated living radical polymerizaiton. Macromolecules 2003,36, 3914-3920.
    [149]. Stenzel, M. H.; Davis, T. P. Star polymer synthesis using trithiocarbonate functional β-cyclodextrin cores (reversible addition-fragmentation chain-transfer polymerization)./. Polym. Sci. Part A:Polym. Chem.2002,40,4498-4512.
    [150]. Hoogenboom, R.; Moore, B. C; Schubert, U. S. Synthesis of star-shaped poly(e-caprolactone) via click chemistry and supramolecular click chemistry. Chem. Commun.2006,38,4010-4012.
    [151]. Xu, J.; Liu, S. Y. Synthesis of well-defined 7-arm and 21-arm poly(N-isopropylacrylamide) star polymers with (3-cyclodextrin cores via click chemistry and their thermal phase transition behavior in aqueous solution. J. Polym. Sci, Part A:Polym. Chem.2009,47,404-419.
    [152]. Miura, Y.; Narumi, A.; Matsuya, S.; Satoh, T.; Duan, Q.; Kaga, H.; Kakuchi, T. Synthesis of well-defined AB20-Type star polymers with cyclodextrin-core by combination of NMP and ATRP. J. Polym. Sci. Part A:Polym. Chem.2005,43,4271-4279.
    [153]. Uhrich, K. E.; Cannizzaro, S.; Langer, R. S.; Shakesheff, K. M. Polymeric system for controlled drug release. Chem. Rev.1999,99,3181-3198.
    [154]. Pitt, C. G.; Gu, Z. W.; Ingram, P.; Hendren, R. W. The synthesis of biodegradable polymers with functional side chains. J. Polym. Sci. Part A:Polym. Chem.1987,25,955-966.
    [155]. Tian, D.; Dubois, P.; Grandfils, C.; Jerome, R. Ring-opening polymerization of 1,4,8-trioxaspiro[4,6]-9-undecanone:a new route to aliphatic polyesters bearing functional pendent groups. Macromolecules 1997,30,406-409.
    [156]. Tian, D.; Dubois, P.; Jerome, R. Macromolecular engineering of polylactones and polylactides.23. Synthesis and characterization of biodegradable and biocompatible homopolymers and block copolymers based on 1,4,8-trioxaspiro[4,6]-9-undecanone. Macromolecules 1997,30,1947-1954.
    [157]. Tian, D.; Halleux, O.; Dubois, P.; Jerome, R. Poly(2-oxepane-1,5-dione):a highly crystalline modified poly(e-caprolactone) of high melting temperature. Macromolecules 1998,31,924-927.
    [158]. Latere, J. P.; Lecomte, P.; Dubois, P.; Jerome, R.2-Oxepane-1,5-dione:a precursor of a novel class of versatile semicrystalline biodegradable (co)polyesters. Macromolecules 2002,35,7857-7859.
    [159]. Stassin, F.; Halleux, O.; Dubois, P.; Detrembleur, C.; Lecomte, P.; Jerome, R. Ring opening copolymerization of ε-caprolactone, γ-(triethylsilyloxy)-ε-caprolactone and y-ethylene ketal-ε-caprolactone:a route to hetero-graft copolyesters. Macromol. Symp.2000,153,27-39.
    [160]. Trollsas, M.; Lee, V. Y.; Mecerreyes, D.; Lowenhielm, P.; Moller, M.; Miller, R. D.; Hedrick, J. L. Hydrophilic aliphatic polyesters:synthesis, and ring-opening polymerization of functional cyclic esters. Macromolecules 2000,33,4619-4627.
    [161]. Trollsas, M.; Lowenhielm, P.; Lee, V. Y.; Moller, M.; Miller, R. D.; Hedrick, J. L. New approach to hyperbranched polyesters:self-condensing cyclic ester polmerization of bis(hydroxymethyl)-substituted ε-caprolactone. Macromolecules 2000,32,9062-9066.
    [162]. Liu, M. J.; Vladimirov, N.; Frechet, M. J. A new approach to hyperbranched polymers by ring-opening polymerization of an AB monomer:4-(2-hydroxyethyl)-ε-caprolactone. Macromolecules 1999,32,6881-6884.
    [163]. Mecerreyes, D.; Atthoff, B.; Boduch, K. A.; Trollsas, M.; Hedrick, J. L. Unimolecular combination of an atom transfer radical polymerization initiator and a lactone monomer as a route to new graft copolymers. Macromolecules 1999,32,5175-5182.
    [164]. Mecerreyes, D.; Trollsas, M.; Hedrick, J. L. ABC BCD polymerization:a self-condensing vinyl and cyclic ester polymerization by combination free-radical and ring-opening techniques. Macromolecules 1999,32,8753-8759.
    [165]. Detrembleur, C.; Mazza, M.; Halleux, O.; Lecomte, P.; Mecerreyes, D.; Hedrick, J. L. Jerome, R. Ring-opening polymerization of γ-bromo-ε-caprolactone:a novel route to functionalized aliphatic polyesters. Macromolecules 2000,33,14-18.
    [166]. Li, H. Y.; Riva, R.; Jerome, R.; Lecomte, P. Combination of ring-opening polymerization and click chemistry for the synthesis of an amphiphilic tadpole-shaped poly(ε-caprolactone) grafted by PEO. Macromolecules 2007,40,824-831.
    [167]. Riva, R.; Schmeits, S.; Jerome, C.; Jerome, R.; Lecomte, P. Combination of ring-opening polymerization and click chemistry:toward functionalization and grafting of poly(ε-caprolactone). Macromolecules 2007,40,796-803.
    [168]. Riva, R.; Schmeits, S.; Stoffelbach, F.; Jerome, C.; Jerome, R.; Lecomte, P. Combination of ring-opening polymerization and click chemistry towards functionalization of aliphatic polyesters. Chem. Commun.2005,42,5334-5336.
    [169]. Li, H. Y.; Riva, R.; Kricheldorf, H. R.; Jerome, R.; Lecomte, P. Synthesis of eight-and star-shaped poly(ε-caprolactone)s and their amphiphilic derivatives. Chem. Eur. J.2008,14,358-368.
    [170]. Habnouni, S. E.; Darcos, V.; Coudane, J. Synthesis and ring opening polymerization of a new functional lactone, α-iodo-ε-caprolactone:a novel route to functionalized aliphatic polyesters. Macromol. Rapid. Commun.2009,30,165-169.
    [171]. Habnouni, S. E.; Blanquer, S.; Darcos, V.:Coudane, J. Aminated PCL-based copolymers by chemical modification of poly(α-iodo-ε-caprolactone-co-s-caprolactone). J. Polym. Sci. Part A:Polym. Chem.2009,47,6104-6115.
    [172]. Mecerreyes, D.; Hunes, J.; Miller, R. D.; Hedrick, J. L.; Detrembleur, C.; Lecomte, P.; Jerome, R.; San Roman, J. First example of an unsymmetrical difunctional monomer polymerizable by two living/controlled methods. Macromol. Rapid. Commun.2000,21,779-784.
    [173]. Lou, X. D.; Detrembleur, C.; Lecomte, P.; Jerome, R. Two-step backbiting reaction in the ring-opening polymerization of y-acryloyloxy-s-caprolactone initiated with aluminium isopropoxide. Macromol. Rapid. Commun.2002,23,126-129.
    [174]. Mecerreyes, D.; Miller, R. D.; Hedrick, J. L.; Detrembleur, C.; Jerome, R. Ring-opening polymerization of 6-hydroxynon-8-enoic acid lactone:novel biodegradable copolymers containing allyl pendent groups. J. Polym. Sci. Part A:Polym. Chem.2000,38,870-875.
    [175]. Lou, X. D.; Detrembleur, C.; Lecomte, P.; Jerome, R. Living ring-opening (co)polymerization of 6,7-dihydro-2(5H)-oxepinone into unsaturated aliphatic polyesters. Macromolecules 2001,34, 5806-5811.
    [176]. Lou, X. D.; Detrembleur, C.; Lecomte, P.; Jerome, R. Controlled synthesis and chemical modification of unsaturated aliphatic (co)polyesters based on 6,7-dihydro-2(3H)-oxepinone. J. Polym. Sci. Part A:Polym. Chem.2002,40,2286-2297.
    [177]. Chen, X. H.; McCarthy, S. P.; Gross, R. A. Synthesis, charaterization, and epoxidation of an aliphatic polycarbonate from 2,2-(2-pentene-1,5-diyl)trimethylene carbonate (°HTC) ring-opening polymerization. Macromolecules 1997,30,3470-3476.
    [178]. Chen, X. H.; Gross, R. A. Versatile copolymers from [L]-Lactide and [D]-xylofuranose. Macromolecules 1999,32,308-314.
    [179]. Shen, Y. Q.; Chen, X. H.; Gross, R. A. Aliphatic polycarbonates with controlled quantities of D.xylofuranose in the main chain. Macromolecules 1997,32,3891-3897.
    [180]. Al-Azemi, T. F.; Bisht, K. S. Novel functional polycarbonate by lipase-catalyzed ring-opening polymerization of 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one. Macromolecules 1999,32, 6536-6540.
    [181]. Al-Azemi, T. F.; Harmon, J. P.; Bisht, K. S. Enzyme-catalyzed ring-opening copolymerization of 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one(MBC) with trimethylene carbonate(TMC):synthesis and characterization. Biomacromolecules 2000,1,493-500.
    [182]. Lee, R. S.; Yang, J. M.; Lin, T. F. Novel, biodegradable, functional poly(ester-carbonate)s by copolymerization of tans-4-hydroxy-L-proline with cyclic carbonate bearing a pendent carboxylic group. J. Polym. Sci. Part A:Polym. Chem.2004,42,2303-2312.
    [183]. Guan, H. L.; Xie, Z. G.; Zhang, P. B.; Wang, X.; Chen, X. S.; Wang, X. H.; Jing, X. B. Synthesis and charaterization of novel biodegradable block copolymer poly(ethylene glycol)-block-poly(L-lactide-co-2-methyl-2-carboxyl-propylene carbonate). J. Polym. Sci. Part A:Polym. Chem.2005,43,4771-4780.
    [184]. Guan, H. L.; Xie, Z. G.; Tang, Z. H.; Xu, X. Y,; Chen, X. S.; Jing, X. B. Preparation of block copolymer of ε-caprolactone and 2-methyl-2-carboxyl-propylene carbonate. Polymer 2005,46, 2817-2824.
    [185]. Ray, W. C.; Grinstaff, M. W. Polycarbonate and poly(carbonate-ester)s synthesized from biocompatible building blocks of glycerol and lactic acid. Macromolecules 2003,36,3557-3562.
    [186]. Wolinsky, J. B.; Ray, W. C.; Colson, Y. L.; Grinstaff, M. W. poly(carbonate-ester)s based on units of 6-hydroxyhexanoic acid and glycerol. Macromolecules 2007,40,7065-7068.
    [187]. Lu, C. H.; Shi, Q.; Chen, X. S.; Lu, T. C.; Xie, Z. G.; Hu, X. L.; Ma, J.; Jing X. B. Sugars-grafted aliphatic biodegradable poly(L-lactide-co-carbonate)s by click reaction and their specific interaction with lectin molecules. J. Polym. Sci. Part A:Polym. Chem.2007,45,3204-3217.
    [188]. Han, Y. D.; Shi, Q.; Hu, J. L.; Du, Q.; Chen, X. S.; Jing, X. B. Grafting BSA onto poly[(L-lactide)-co-carbonate] microspheres by click chemistry. Macromol. Biosci.2008,8,638-644.
    [189]. Hu, X. L.; Chen, X. S.; Xie, Z. G.; Liu, S.; Jing, X. B. Synthesis and charaterization of amphiphilic block copolymers with allyl side-groups. J. Polym. Sci. Part A:Polym. Chem.2007,45,5518-5528.
    [190]. Hu, X. L.; Chen, X. S.; Liu, S.; Shi, Q.; Jing, X. B. Novel alipatic poly(ester-carbonate) with pendant allyl ester groups and its folic acid fuctionalization. J. Polym. Sci. Part A:Polym. Chem.2008, 46,1852-1861.
    [191]. Hu, X. L.; Chen, X. S.; Wei, J. Z.; Liu, S.; Jing, X. B. Core crosslinking of biodegradable block copolymer micelles based on poly (ester-carbonate). Macromol. Biosci.2009,9,456-463.
    [192]. Hu, X. L.; Liu, S.; Chen, X. S.; Mo, G. J.; Xie, Z. G.; Jing, X. B. Biodegradable amphiphilic block copolymers bearing protected hydroxyl groups:synthesis and characterization. Biomacromolecules 2008, 9,553-560.
    [193]. Hu, X. L.; Chen, X. S.; Xie, Z. G.; Cheng, H. B.; Jing, X. B. Aliphatic poly(ester-carbonate)s bearing amino groups and its RGD peptide grafting. J. Polym. Sci. Part A:Polym. Chem.2008,46, 7022-7032.
    [194]. Hu, X. L.; Chen, X. S.; Cheng, H. B.; Jing, X. B. Cinnamate-functionalized poly(ester-carbonate):synthesis and its UV irradiation-induced photo-crosslinking. J. Polym. Sci. Part A: Polym. Chem.2009,47,161-169.
    [195]. Xie, Z. G.; Hu, X. L.; Chen, X. S.; Sun, J.; Shi, Q.; Jing, X. B. Synthesis and charaterization of novel biodegradable poly(carbonate ester)s with photolabile protecting groups. Biomacromolecules 2008, 9,376-380.
    [196]. Chen, W.; Meng, F. H.; Li, F.; Ji, S. J.; Zhong, Z. Y. pH-responsive biodegradable micelles based on acid-labile polycarbonate hydrophobe:synthesis and triggered drug release. Biomacromolecules 2009,10, 1727-1735.
    [197]. 江明,A.艾森伯格,刘国军,张希等.大分子自组装.北京:科学出版社,2006.
    [198]. Zhang, L.; Eisenberg, A.; Multiple morphologies of crew-cut aggergates of polystyrene-b-poly(acrylic acid) block copolymers. Science 1995,268,1728-1731.
    [199]. Buchnall, D. G.; Anderson, H. L. Polymers get organized. Science 2003,302,1904-1905.
    [200]. Yan, D. Y.; Zhou, Y. F.; Hou, J. Supramolecular self-assembly of macroscopic tubes. Science 2004, 303,65-67.
    [201]. Li, Z. B.; Kesselman, E.; Talmon, Y.; Hillmyer, M. A.; Lodge, T. P. Multicompartment micelles from ABC miktoarm stars in water. Science 2004,306,98-101.
    [202]. Duncan, R. The dawning era of polymer therapeutics. Nature Rev. Drug Discovery 2003,2, 347-360.
    [203]. Torchilin, V. P. Micellar mamocarriers:pharmaceutical perspectives. Pharm. Res.2007,24,1-16.
    [204]. Kataoka, K.; Togawa, H.; Harada, A.; Matsumoto, T.; Katayose, S. Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline. Macromolecules 1996,29,8556-8557.
    [205]. Xiong, X. B.; Mahmud, A.; Uludag, H.; Lavasanifar, A. Conjugation of arginine-glycine-aspartic acid peptides to poly(ethylene oxide)-b-poly(ε-caprolactone) micelles for enhanced intracellular drug delivery to metastatic tumor cells. Biomacromolecules 2007,8,874-884.
    [206]. Georgiou, T. K.; Vamvakaki, M.; Patrickios, C. S. Nanoscopic cationic methacrylate star homopolymers:synthesis by group transfer polymerization, characterization and evaluation as transfection reagents. Biomacromolecules 2004,5,2221-2229.
    [207]. Georgiou, T. K.; Vamvakaki, M.; Phylactou, L. A.; Patrickios, C. S. Synthesis, characterization, and evaluation as transfection reagents of double-hydrophilic star copolymers:Effect of Star Architecture. Biomacromolecules 2005,6,2990-2997.
    [208]. Georgiou, T. K.; Phylactou, L. A.; Patrickios, C. S Synthesis, characterization, and Evaluation as transfection reagents of ampholytic star copolymers:effect of star architecture. Biomacromolecules 2006,7,3505-3512.
    [209]. Xu, F. J.; Zhang, Z. X.; Ping, Y.; Li, J.; Kang, E. T.; Neoh, K. G. Star-shaped cationic polymers by atom transfer radical polymerization from (3-cyclodextrin cores for nonviral gene delivery. Biomacromolecules 2009,10,285-293.
    [210]. Ling, J.; Shen, Z. Q.; Huang, Q. H. Novel Single Rare Earth Aryloxide Initiators for Ring-Opening Polymerization of 2,2-Dimethyltrimethylene Carbonate. Macromolecules 2001,34,7613-7616.
    [211]. Ling, J.; Shen, Z. Q. Lanthanum tris(2,6-di-tert-butyl-4-methylphenolate) as a novel, versatile initiator for homo-and copolymerization of cyclic carbonates and lactones. Macromol. Chem. Phys.2002, 203,735-738.
    [212]. Ling, J.; Zhu W. P.; Shen, Z. Q. Controlling ring-opening copolymerization of epsilon-caprolactone with trimethylene carbonate by scandium tris(2,6-di-tert-butyl-4-methylphenolate). Macromolecules 2004,37,758-763.
    [213]. Hoegberg, A. G. S. Cyclooligomeric phenol-aldehyde condensation products.2. Stereoselective synthesis and DNMR study of two 1,8,15,22-tetraphenyl[14]metacyclophan-3,5,10,12,17,19,24, 26-octols. J. Am. Chem. Soc.1980,102(19),6046-6050.
    [214]. Jia, Z. F.; Zhou, Y. F.; Yan, D. Y. Amphiphilic star-block copolymers based on a hyperbranched core:synthesis and supramolecular self-assembly. J. Polym. Sci. Part A:Polym. Chem.2005,43, 6534-6544.
    [215]. Shen, Z.; Chen, Y.; Barriau, E.; Frey, H. Multi-arm star polyglycerol-block-poly(tert-butyl acrylate) and respective multi-arm poly(acrylic acid) stars. Macromol. Chem. Phy.2006,207,57-64.
    [216]. Li, P. P.; Li, Z. Y.; Huang, J. L. Water-soluble star brush copolymer with four arms composed of poly(ethylene oxide) as backbone and poly(acrylic acid) as side chains. Macromolecules 2007,40, 491-498.
    [217]. Hong, H. Y.; Mai, Y Y.; Zhou, Y. F.; Yan, D. Y.; Chen, Y. Synthesis and supramolecular self-assembly of thermosensitive amphiphilic star copolymers based on a hyperbranched polyether core. J. Polym. Sci. Part A:Polym. Chem.2008,46,668-681.
    [218]. Xu, N.; Lu, F. Z.; Du, F. S.; Li, Z. C. Synthesis of saccharide-terminated poly(ε-caprolactone) via michael addition and "click" chemistry Macromol. Chem. Phy.2007,208,730-738.
    [219]. Ashton, P. R.; Koniger, R.; Stoddart, J. F. Amino acid derivatives of P-cyclodextrin. J. Org. Chem. 1996,61,903-908.
    [220]. Corey, E. J.; Venkateswarlu, A. Protection of hydroxyl groups as tert-butyldimethylsilyl derivatives. J. Am. Chem. Soc.1972,94(17),6190-6191.
    [221]. Yuan, W. Z.; Yuan, J. Y.; Zhang, F. B.; Xie, X. M.; Pan, C. Y. Synthesis, characterization, crystalline morphologies, and hydrophilicity of brush copolymers with double crystallizable side chains. Macromolecules 2007,40,9094-9102.
    [222]. Li, Z. B.; Hillmyer, M. A.; Lodge, T. P. Synthesis and characterization of triptych μ-ABC star triblock copolymers. Macromolecules 2004,37,8933-8940.
    [223]. Saito, N.; Liu, C.; Lodge, T. P.; Hillmyer, M. A. Multicompartment micelles from polyester-containing ABC miktoarm star terpolymers. Macromolecules 2008,41,8815-8822.
    [224]. Uchman, M.; Stepanek, M.; Prochazka, K.; Mountrichas, G.; Pispas, S.; Voets, I. K. Multicompartment nanoparticles formed by a heparin-mimicking block terpolymer in aqueous solutions. Macromolecules 2009,42,5605-5613.
    [225]. Liu, D.; Wang, T.; Keddie, J. L. Protein nanopatterning on self-organized poly(styrene-b-isoprene) thin film templates. Langmuir 2009,25,4526-4534.
    [226]. Casnati, A.; Pochini, A.; Ungaro, R.; Franco, U.; Arnaud, F.; Fanni, S.; Schwing, M.; Egberink, R. M. Jong, F.; Reinhoudt, D. N. Synthesis, complexation, and membrane transport studies of 1,3-alternate calix[4]arene-crown-6 conformers:a new class of cesium selective lonophores. J. Am. Chem. Soc.1995, 117,2767-2777.
    [227]. 刘育;尤长城;张衡益.超分子化学-合成受体的分子识别与组装.天津:南开大学出版社,2001.
    [228]. Luo, L. B.; Eisenberg, A. Thermodynamic size control of block copolymer vesicles in solution. Langmuir 2001,17,6804-6811.
    [229]. Zhou, Y. F.; Yan, D. Y. Real-time membrane fission of giant polymer vesicles. Angew. Chem. Int. Ed. 2005,44,3223-3226.
    [230]. Zhou, Y. F.; Yan, D. Y. Real-time membrane fusion of giant polymer vesicles. J. Am. Chem. Soc. 2005,127,10468-10469.
    [231]. Wang, J.; Jiang, M. Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation. J. Am. Chem. Soc.2006,128,3703-3708.
    [232]. Gao, H. F.; Matyjaszewski, K. Synthesis of miktoarm star polymers via ATRP using the in-out method:determination of initiation efficiency of star macroinitiators. Macromolecules 2006,39, 7216-7223.
    [233]. Gao, H. F.; Matyjaszewski, K. Synthesis of low-polydispersity miktoarm star copolymers via a simple arm-first method:macromonomers as arm precursors. Macromolecules 2008,41,4250-4257.
    [234]. Wiltshire, J. T.; Qiao, G. G. Selectively degradable core cross-linked star polymers. Macromolecules 2006,59,9018-9027.
    [235]. Wilhelm, M.; Zhao, C. L.; Wang, Y. C.; Xu, R. L.; Winnik, M. A.; Mura, J. L.; Riess, G.; Croucher, M. D. Poly(styrene-ethylene oxide) block copolymer micelle formation in water:a fluorescence probe study. Macromolecules 1991,24,1033-1040.
    [236]. Zhang, Q.; Remsen, E. E.; Wooley, K. L. Shell cross-linked nanoparticles containing hydrolytically degradable, crystalline core domains. J. Am. Chem. Soc.2000,122,3642-3651.
    [237]. Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery:design, characterization and biological significance. Adv. Drug Delivery Rev.2001,47,113-131.
    [238]. Savic, R.; Luo, L. B.; Eisenberg, A.; Maysinger, D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 2003,300,615-618.
    [239]. Bae, Y; Nishiyama, N.; Kataoka, K. In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjugate Chem.2007,18,1131-1139.
    [240]. Jabr-Milane, L.; Vlerken, L.; Devalapally, H.; Shenoy, D.; Komareddy, S.; Bhavsar, M.; Amiji, M. Multi-functional nanocarriers for targeted delivery of drugs and genes. J. Controlled Release 2008,130, 121-128.
    [241], Gan Z. H.; Jim, T. F.; Li, M.; Yuer, Z.; Wang, S. G.; Wu, C. Enzymatic biodegradation of poly(ethylene oxide-b-ε-caprolactone) diblock copolymer and its potential biomedical applications. Macromolecules 1999,32,590-594.
    [242]. Yamamoto, Y.; Nagasaki, Y.; Kato, Y.; Sugiyama, Y.; Kataoka, K. Long-circulating poly(ethylene glycol)-poly(lactide) block copolymer micelles with modulated surface charge. J. Controlled Release 2001,77,27-38.
    [243]. Desai, N. P.; Hubell, J. A. Biological responses to polyethylene oxide modified polyethylene terephthalate surfaces. J. Biomed. Mater. Res. A 1991,25,829-843.
    [244]. Drumheller, P. D.; Hubbell, J. A. Densely crosslinked polymer networks of poly(ehthylene glycol) in trimethylolpropane triacrylate for cell-adhesion-resistant surfaces. J. Biomed. Mater. Res. A 1995,29, 207-215.
    [245]. Soo, P. L.; Luo, L. B.; Maysinger, D.; Eisenberg, A. Incorporation and release of hydrophobic probes in biocompatible polycaprolactone-block-poly(ethylene oxide) micelles:implications for drug delivery. Langmuir 2002,18,9996-10004.
    [246]. Ge, H. X.; Hu, Y.; Jiang, X. Q.; Cheng, D. M.; Yuan, Y. Y; Bi, H.; Yang, C. Z. Preparation, characterization, and drug release behaviors of drug nimodipine-loaded poly(epsilon-caprolactone)-poly(ethylene oxide)-poly(epsilon-caprolactone) amphiphilic triblock copolymer micelles. J. Pharm. Sci.2002,91,1463-1473.
    [247]. Luo, L. B.; Tam, J.; Maysinger, D.; Eisenberg, A. Cellular internalization of poly(ethylene oxide)-b-poly(ε-caprolactone) diblock copolymer micelles. Bioconjugate Chem.2002,13,1259-1265.
    [248]. Nie, T.; Zhao, Y.; Xie, Z. W.; Wu, C. Micellar formation of poly(caprolactone-block-ethylene oxide-block-caprolactone) and its enzymatic biodegradation in aqueous dispersion. Macromolecules 2003,36,8825-8829.
    [249]. Shuai, X. T.; Ai, H.; Nasongkla, N.; Kim. S.; Gao, J. M. Micellar carriers based on block copolymers of poly(ε-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J. Controlled Release,2004,98,415-426.
    [250]. Hwang, M. J.; Suh, J. M.; Bae, Y. H.; Kim, S. W.; Jeong, B. Caprolactonic poloxamer analog: PEG-PCL-PEG. Biomacromolecules 2005,6,885-890.
    [251]. Xie, W. H.; Zhu, W. P.; Shen, Z. Q. Synthesis, isothermal crystallization and micellization of mPEG-PCL diblock copolymers catalyzed by yttrium complex. Polymer 2007,48,6791-9798.
    [252]. Noh, T.; Kook, Y. H.; Park, C.; Youn, H.; Kim, H.; OH, E. T.; Choi, E. K.; Park, H. J.; Kim, C. Block copolymer micelles conjugated with anti-EGFR antibody for targeted delivery of anticancer drug. J. Polym. Sci Part A:Polym. Chem.2008,46,7321-7331.
    [253]. Gou, M. L.; Zheng, L.; Peng, X. Y.; Men, K.; Zheng, X. L.; Zeng, S.; Guo, G.; Luo, F.; Zhao, X.; Chen, L. J.; Wei, Y. Q.; Qiao, Z. Y. Poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL) nanoparticles for honokiol delivery in vitro. Int. J. Pharm.2009,375,170-176.
    [254]. Gong, C. Y; Shi, S.; Wang, X. H.; Wang, Y. J.; Fu, S. Z.; Dong, P. W.; Chen, L. J.; Zhao, X.; Wei, Y. Q.; Qian, Z. Y. Novel composite drug delivery system for honokiol delivery:self-assembled poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) micelles in thermosensitive poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) hydrogel. J. Phys. Chem. B 2009,113, 10183-10188.
    [255]. Qiu, L. Y.; Bae, Y. H. Polymer architecture and drug delivery. Pharm. Res.2006,23,1-30.
    [256]. Geng, Y.; Dalhaimer, P.; Cai, S. S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol.2007,2,249-255.
    [257]. Rieger, J.; Bernaerts, K. V.; Du Prez, F. E.; Jerome, R.; Jerome, C. Lactone end-capped poly(ethylene oxide) as a new building block for biomaterials. Macromolecules 2004,37,9738-9745.
    [258]. Rieger, J.; Passirani, C.; Benoit, J. P.; Butsele, K. V. Jerome, R.; Jerome, C. Synthesis of Amphiphilic Copolymers of Poly(ethylene oxide) and Poly(ε-caprolactone) with Different Architectures, and Their Role in the Preparation of Stealthy Nanoparticles. Adv. Funct. Mater.2006,16,1506-1514.
    [259]. Du, J. Z.; Tang, L. Y.; Song, W. J.; Shi, Y.; Wang, J. Evaluation of polymeric micelles from brush polymer with poly(s-caprolactone)-b-poly(ethylene glycol) side chains as drug carrier. Biomacromolecules 2009,10,2169-2174.
    [260]. Hua, C.; Peng, S. M.; Dong, C. M. Synthesis and characterization of linear-dendron-like poly(ε-caprolactone)-b-poly(ethylene oxide) copolymers via the combination of ring-opening polymerization and click chemistry. Macromolecules 2008,41,6686-6695.
    [261]. Yang, Y.; Hua, C.; Dong, C. M. Synthesis, self-assembly, and In vitro doxorubicin release behavior of dendron-like/linear/dendron-like poly(s-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone) triblock copolymers. Biomacromolecules 2009,10,2310-2318.
    [262]. Wang, F.; Bronich, T. K.; Kabanov, A. V.; Rauh, R. D.; Roovers, J. Synthesis and Evaluation of a Star Amphiphilic Block Copolymer from Poly(s-caprolactone) and Poly(ethylene glycol) as a Potential Drug Delivery Carrier. Bioconjugate Chem.2005,16,397-405.
    [263]. Wang, F.; Bronich, T. K.; Kabanov, A. V.; Rauh, R. D.; Roovers, J. Synthesis and Characterization of Star Poly(ε-caprolactone)-b-Poly(ethylene glycol) and Poly(L-lactide)-b-Poly(ethylene glycol) -Copolymers:Evaluation as Drug Delivery Carriers. Bioconjugate Chem.2008,19,1423-1429.
    [264]. Bertin, P. A.; Watson, K. J.; Nguyen, S. T. Indomethacin-containing nanoparticles derived from amphiphilic polynorbornene:a model ROMP-based drug encapsulation system Macromolecules 2004,37, 8364-8372.
    [265]. Hans, M.; Shimoni, K.; Danino, D.; Siegel, S. J.; Lowman, A. Synthesis and characterization of mPEG-PLA prodrug micelles. Biomacromolecules 2005,6,2708-2717.
    [266]. Parrish, B.; Emrick, T. Soluble camptothecin derivatives prepared by click cycloaddition chemistry on functional aliphatic polyesters. Bioconjugate Chem.2007,18,263-267.
    [267]. Giacomelli, C.; Schmidt, V.; Borsali, R. Nanocontainers formed by self-assembly of poly(ethylene oxide)-b-poly(glycerol monomethacrylate)-drug conjugates. Macromolecules 2007,40,2148-2157.
    [268]. Perumal, O.; Khandare, J.; Kolhe, P.; Kannan, S.; Lieh-Lai, M.; Kannan, R. M. Effects of branching architecture and linker on the activity of hyperbranched polymer-drug conjugates. Bioconjugate Chem. 2009,20,842-846.
    [269]. Zhang, J.; Wang, L. Q.; Wang, H. J.; Tu, K. H. Micellization phenomena of amphiphilic block copolymers based on methoxy poly(ethylene glycol) and either crystalline or amorphous poly(caprolactone-b-lactide). Biomacromolecules 2006,7,2492-2500.
    [270]. Arroyo, M.; Sinisterra, J. V. High enantioselective esterification of 2-arylpropionic acids catalyzed by immobilized lipase from candida antarctica:a mechanistic approach. J. Org. Chem.1994,59, 4410-4417.
    [271]. Luo, X. L.; Wang, G. W.; Pang, X. C.; Huang, J. L. Synthesis of a novel kind of amphiphilic graft copolymer with miktoarm star-shaped side chains. Macromolecules 2008,41,2315-2317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700