用户名: 密码: 验证码:
全球变暖对北太平洋年代际变化的影响及可能机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PDO (Pacific Decadal Oscillation)是北太平洋年代际变化的主模态,它有两个周期段,15年~25年和50年~70年。当PDO正位相发生时,阿留申低压加强,北太平洋呈现“马蹄形”型的SST异常,北太平洋中西部偏冷,赤道中东太平洋、北美沿岸和阿拉斯加湾偏暖。自1870年第二次工业革命以来,人类活动消耗大量矿物燃料,森林被砍伐,大气中的温室气体浓度持续增加,温室效应增强,导致了全球变暖。全球变暖不仅会引起气候平均态的变化,也会引起气候变率PDO的变化。北太平洋年代际变化影响亚洲和北美的气候,影响海洋生态环境和渔业经济,调制ENSO的发生发展及其气候影响,因此,研究全球变暖对北太平洋年代际变化(PDO)的影响及影响机制,对于气候的短期、长期预测预报等具有重要意义。
     在FOAM (Fast Ocean Atmosphere Model)中加入太阳常数和温室气体浓度的历史观测数据,FOAM首次被用于模拟20世纪的气候,并且抓住了20世纪全球变暖的主要气候变化特征,和IPCC AR4模式实验和观测的结果基本一致。20世纪全球变暖的主要气候变化特征在下面阐述。(1)地球表面气温升高约0.6℃~0.7℃,海表面温度升高0.4℃~0.5℃;地球表面气温升高幅度,冰雪大于陆地,陆地大于海洋,北半球大于南半球;对流层变暖,平流层变冷。(2)中纬度西风增强,西风带和信风带向极地移动;中纬度海洋增温小于热带海洋,这和中纬度西风带增强可能有互为因果的关系。(3)海洋吸收了巨大的热量,减缓了全球变暖;高纬度海洋变淡,低纬度海洋变咸,说明水循环增强;太平洋总体变淡,印度洋和大西洋中低纬度变咸;北大西洋经向翻转环流减弱。
     全球变暖使得北太平洋年代际变化(PDO)减弱。(1)FOAM和IPCC AR4模式的全球变暖对比实验结果表明:全球变暖后,整个北太平洋的SST和500hPa位势高度的年代际(周期大于8年)标准差降低,降低比率分别是20%-40%和5%-10%,降低比率最大值在黑潮延伸体和副极地海洋西部,说明北太平洋年代际变化减弱。(2)对比FOAM控制实验和CO2加倍实验中的PDO,得到以下结论:全球变暖使得PDO模态减弱,PDO频率向高频移动,黑潮延伸体和副极地海洋西部的SST年代际振幅减弱最明显。
     PDO频率向高频移动的原因主要考虑全球变暖对海洋Rossby波波速的影响。(1)通过做两个海洋阻挡实验,分别研究了整个北太平洋和副极地海洋Rossby波在PDO中的作用,结果表明,整个北太平洋Rossby波的调整对于PDO起着决定性作用,副极地海洋Rossby波对于PDO的两个周期段(特别是大于30年的周期)起着非常重要的作用。(2)全球变暖使得海洋上层比下层增暖更多,海洋浮力频率变高,海洋Rossby波加速;全球变暖使得北太平洋中纬度纬向流垂直切变增大,这也使得第一斜压Rossby波加速;波速加快比率约10%-70%,副极地海洋Rossby波的加速比率最大。(3)Rossby波加速使得Rossby波跨越北太平洋海盆的时间缩短,海洋对风应力异常强迫或浮力异常强迫的调整加速,所以PDO向高频移动(周期变短)。
     本文也是首次通过做初值实验研究大气对于中纬度SST异常的响应在全球变暖后的变化。对于黑潮延伸体SST正异常强迫,(1)全球变暖前,涡旋的反馈作用占主导,大气的响应是高压,相当正压结构,中纬度西风减弱,SST正异常衰减得慢;(2)当全球变暖后,中纬度对流层高层的大气斜压性增强,涡旋活动可能受到抑制,因此,涡旋的反馈作用减弱,所以,大气的响应是低压,中纬度西风加强,SST正异常衰减速率加快。全球变暖后,SST正异常衰减加快,这可能对黑潮延伸体SST年代际标准差(振幅)减弱有贡献。
Pacific Decadal Oscillation (PDO) is the dominate mode of North Pacific decadal variability, with the periods of 15 years-25 years and 50 years-70 years. In PDO positive phase, the Aleutian Low strengthens, and the north pacific has the horseshoe-like SST anomalies, with negative SST anomaly in the central and western north Pacific and positive SST anomaly in the central and eastern equatorial Pacific, along the North America coast and in the Alaska Gulf. Since the second Industrial Revolution in 1870, human consumption of lots of fossil fuels and deforestation leads to elevating greenhouse gas concentrations, enhanced greenhouse effect and the global warming. Global warming not only modifies the climatology, but also affects the natural climate variability PDO. PDO influences the Asia and North America climate, the marine ecological environment and fishery, modulates the ENSO activities and its climate impact, so the effect of global warming on north pacific decadal variability (PDO) and the mechanism are significant to short and long term climate prediction and forecast.
     With the annual forcing of history solar constant and greenhouse gases, FOAM (Fast Ocean Atmosphere Model) is first used to simulate the 20th century climate, and captures the main characteristics of 20th century global warming, in consistent with the results of IPCC AR4 models experiments and observation. These main characteristics are as followings. (1) Global mean surface air temperature rises by 0.6℃~0.7℃, and global mean SST by 0.4℃~0.5℃; For temperature rise over different earth coverage, ice is larger than land, land larger than ocean, and the northern hemisphere larger than the southern hemisphere; The troposphere warms, while the stratosphere cools. (2) The mid-latitude westerly enhances, with the poleward migration of westerly belts and trade wind belts;The mid-latitude ocean warms less than the tropical ocean, and this might be cause or result of the stronger mid-latitude westerly. (3) Ocean absorbs huge heat, mitigating global warming; High latitudes become fresher, while low latitudes saltier, implying stronger hydrological cycle; The overall Pacific Ocean becomes fresher, while Indian Ocean and low and mid-latitude Atlantic Ocean become saltier; The Atlantic Meridional Overturning Circulation decreases.
     Global warming weakens North Pacific decadal variability (PDO). (1) Global warming comparison experiments of FOAM and IPCC AR4 models show that:in global warming, the decadal (>8 years) standard deviations of North Pacific SST and 500hPa geopotential height decrease respectively by 20%~40% and 5%~10%, most obviously in the Kuroshio Extension and the western Subpolar Ocean, indicating weakening of the North Pacific decadal variability. (2) PDO character Comparison in FOAM control experiment and the double CO2 experiment shows that:in global warming, the PDO mode weakens, shifting to higher frequency, and SST decadal amplitude decreases most obviously also in the Kuroshio Extension and the western Subpolar Ocean.
     Cause for PDO shifting to higher frequency points to ocean Rossby wave speed change in global warming. (1) Two ocean Partial Blocking experiments are done to detect the role of ocean Rossby wave in PDO; The result shows that the overall North Pacific ocean Rossby wave is vital to PDO, and the Subarctic Ocean Rossby wave is important to the periods of PDO (especially longer than 30 years). (2) In global warming, the upper ocean warms more than the deep ocean, leading to higher buoyancy frequency and faster Rossby wave. Additionally, larger zonal current vertical shear also speeds the first baroclinic Rossby wave in the North Pacific mid-latitude; North Pacific Rossby wave speeds by 10%-70% in global warming, most obviously in the Subarctic Ocean. (3) The faster Rossby wave shortens the north pacific transit time, speeds ocean adjustment to wind stress anomaly or buoyancy anomaly forcings, so PDO shifts to higher frequency (shorter period).
     It is also the first time to compare the atmosphere responses to mid-latitude SST anomaly in present climate and in global warming by doing initial value experiments. (1) In response to positive SST anomaly forcing in the Kuroshio Extension in present climate, the eddy feedback dominates and the atmosphere response is high with equivalent barotropic structure, leading to weaker westerly and slow decay rate of the initial positive SST anomaly. (2) In response to the same positive SST anomaly forcing in global warming, the upper troposphere baroclinity decreases in the mid-latitudes; the eddy activities and eddy feedback weakens, so the atmosphere response is low; As a result, the westerly enhances and the SST positive anomaly decays fast. In global warming, the faster decay rate of positive SST anomaly may contribute to the SST decadal standard deviation decrease in the Kuroshio Extension.
引文
[1]黄荣辉,蔡榕硕,陈际龙,等.我国旱涝灾害的年代际变化及其与东亚气候系统变化的关系.大气科学,2006,30(5):730~743
    [2]江志红,屠其璞,施能.多窗谱分析方法及其在全球变暖研究中的应用.气象学报,2001,59(4):480~490
    [3]王衍明.大气物理学.青岛:青岛海洋大学出版社,1993.111-114
    [4]于淑秋,林学椿.北太平洋海温的气候跃变及其对中国汛期降水的影响.热带气象学报,1997,13(3):265~275。
    [5]徐建军,朱乾根ENSO及其年代际异常对全球及亚洲季风降水影响的数值研究.气象学报,1999,57(3):302~315
    [6]李峰,何金海.北太平洋海温异常与东亚夏季风相互作用的年代际变化.热带气象学报,2000,16(3):260~271
    [7]朱乾根,施能,吴朝晖,等.近百年北半球冬季大气活动中心的长期变化及其与中国气候变化的关系.气象学报,1997,55(6):750~758
    [8]钟颖,徐明.大尺度环流系统对西北太平洋变性TC频数影响的气候诊断分析.成都信息工程学院学报,2007,22(3):374~378
    [9]Alexander M A, Deser C, Timlin M S. The Reemergence of SST Anomalies in the North Pacific Ocean. J. Climate,1999,12:2419~2433
    [10]Alexander M A, Blade I, Newman M, et al. The Atmospheric Bridge:The Influence of ENSO Teleconnections on Air-Sea Interaction over the Global Oceans. J. Climate,2002, 15:2205~2231
    [11]An S. A mechanism for the multi-decadal climate oscillation in the North Pacific. Theoretical and Applied Climatology,2008,91:77~84
    [12]Barnett T P, Pierce D W, AchutaRao K M, et al. Penetration of Human Induced Warming into the World's Oceans. Science,2005,309:284~287
    [13]Barsugli J J, Battisti D S. The Basic Effects of Atmosphere-Ocean Thermal Coupling on Midlatitude Variability. J. Atmos. Sci.,1998,55:477~493.
    [14]Bindoff N L, Willebrand L, Artale V, et al. Observations:Oceanic climate change and sea level. In:Solomon S, Qin D, Manning M, et al. (eds). Climate change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press,2007.392~393
    [15]Bjerkness J. Atlantic air-sea interaction. Advance in Geophysics,1964,10:1-82
    [16]Bjerknes J. A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus,1966,18:820~829
    [17]Boyer T P, Levitus S, Antonov J I, et al. Linear trends in salinity for the World Ocean, 1955~1998. Geophys Res Lett,2005,32:L01604, doi:10.1029/2004GL021791
    [18]Brohan P, Kennedy J J, Harris I, et al. Uncertainty estimates in regional and global observed temperature changes:A new data set from 1850. J. Geophys. Res.,2006,111:D12106, doi:10.1029/2005JD006548
    [19]Chelton D B, Schlax M. Global Observations of Oceanic Rossby waves. Science,1996,272: 234~238
    [20]Chelton D B, DeSzoeke R A, SchlaxM G, et al. Geographical Variability of the First Baroclinic Rossby Radius of Deformation. J. Climate,1998,28:433~460
    [21]Clough S A, Iacono M J. Line-by-line calculation of atmospheric fluxes and cooling rates: Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons. J Geophys Res,1995,100(D8):16519~16535.
    [22]Cobb K M, Charles C D, Hunter D E. A central tropical Pacific coral demonstrates Pacific, Indian, and Atlantic decadal climate connections. Geophys. Res. Lett.,2001,28(11): 2209~2212
    [23]D'Arrigo R, Villalba R, Wiles G. Tree-ring estimate of pacific decadal climate variability. Clim. Dyn.,2001,18:219~224
    [24]Deser C, Magnusdottir G, Saravanan R, et al. The Effects of North Atlantic SST and Sea Ice Anomalies on the Winter Circulation in CCM3. Part Ⅱ:Direct and Indirect Components of the Response. J Climate,2004a,17(5):877~889
    [25]Deser C, Phillips A S, Hurrell J W. Pacific Interdecadal Climate Variability:Linkages between the Tropics and the North Pacific during Boreal Winter since 1900. J. Climate, 2004b,17:3109~3124
    [26]Deser C, Phillips A. Atmospheric Circulation Trends,1950-2000:The Relative Roles of Sea Surface Temperature Forcing and Direct Atmospheric Radiative Forcing. J Climate, 2009,22:396~413
    [27]De Verdiere A C, Huck T. Baroclinic Instability:An Oceanic Wavemaker for Interdecadal Variability. J. Phys. Oceanogr.,1999,29:893~910
    [28]Dewar W, Morris M Y. On the propagation of baroclinic waves in the general circulation. J. Phys Oceanogr.,2000,30:2637~2649
    [29]Di Lorenzo E, Schneider N, Cobb K M, et al. North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett.,2008,35:L08607, doi:10.1029/2007GL032838
    [30]D'Orgeville M, Peltier W R. On the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation:Might they be related?, Geophys. Res. Lett.,2007,34:L23705, doi:10.1029/2007/GL031584
    [31]D'Orgeville M, Peltier W R. Implications of Both Statistical Equilibrium and Global Warming Simulations with CCSM3 Part I:On the Decadal Variability in the North Pacific Basin. J. Climate,2009,22:5277~5297
    [32]Eddy J A. Climate and the changing sun. Clim. Change,1977,1:174~190
    [33]Francis R C, Hare S R, Hollowed A B, et al. Effects of interdecadal climate variability on the oceanic ecosystems of the NE Pacific. Fish. Oceanogr.,1998,7:1~21
    [34]Frankignoul C, Hasselmann K. Stochastic climate models Part 2 application to sea surface temperature anomalies and thermocline variability. Tellus,1977,29:289~305
    [35]Frankignoul C, Muller P, Zorita E. A Simple Model of the Decadal Response of the Ocean to Stochastic Wind Forcing. J. Phys. Oceanogr.,1997,27:1533~1546
    [36]Free M, Seidel D J, Angell J K, et al. Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC):A new data set of large-area anomaly time series. J Geophys Res,2005,110:D22101, doi:10.1029/2005JD006169.
    [37]Gershunov A, Barnett T P. Interdecadal Modulation of ENSO Teleconnections. Bull. Amer. Meteor. Soc.,1998,79:2715~2725
    [38]Graham N E. Decadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s:Observations and model results. Clim. Dyn.,1994,10:135~162
    [39]Gu D, Philander S G H. Interdecadal climate fluctuations that depend on exchanges between the Tropics and extratropics. Science,1997,275:805~807
    [40]Guilyardi E, Wittenberg A, Fedorov A, et al. Understanding El Nino in Ocean-Atmosphere General Circulation Models:Progress and Challenges. Bull. Amer. Meteor. Soc.,2009,90: 325~340
    [41]Haigh J D, Blackburn M, Day R. The response of tropospheric circulation to perturbations in lower-stratospheric temperature. J Climate,2005,18:3672~3685
    [42]Hasselmann K. Stochastic climate models. Part Ⅰ. Theory. Tellus,1976,28:473~484
    [43]Held I M, Soden B J. Water vapor feedback and global warming. Annu Rev Energy Environ, 2000,25:441~475
    [44]Jacobs G A, Hurlburt H E, Kindle J C, et al. Decade-scale trans-Pacific propagation and warming effects of an El Nino anomaly. Nature,1994,370:360~363
    [45]Jacob R L. Low frequency variability in a simulated atmosphere-ocean system:[Ph.D. thesis]. Wisconsin-Madison:University of Wisconsin-Madison,1997
    [46]Jiang S, Jin F F, Ghil M. Multiple Equilibria Periodic and Aperiodic Solutions in a Wind-Driven, Double-Gyre, Shallow-Water Model. J. Phys. Oceanogr.,1995,25:764~786
    [47]Jin F F. A theory of interdecadal climate variability of the North Pacific ocean-atmosphere system. J. Climate,1997,10:1821~1835
    [48]Kiehl J T, Trenberth K E. Earth's annual global mean energy budget. Bull. Amer. Metetor. Soc.,1997,78:197~208
    [49]Killworth P D, De Szoeke R, Chelton D. The speed of observed and theoretical long extratropical planetary waves. J. Phys. Oceanogr.,1997,27:1946~1966
    [50]Kirtman B P. Oceanic Rossby Wave Dynamics and the ENSO Period in a Coupled Model. J. Climate,1997,10:1690~1704
    [51]Kleeman R, McCreary Jr J P, Klinger B A. A mechanism for generating ENSO decadal variability. Geophys. Res. Lett.,1999,26(12):1743~1746
    [52]Kushnir Y, Robinson W A, Blade I, et al. Atmospheric GCM Response to Extratropical SST Anomalies:Synthesis and Evaluation. J. Climate,2002,15:2233~2256
    [53]Kwon Y O, Deser C. North Pacific Decadal Variability in the Community Climate System Model Version 2. J. Climate,2007,20:2416~2433
    [54]Lambert F H, Gillett N P, Stone D A, et al. Attribution studies of observed land precipitation changes with nine coupled models. Geophys Res Lett,2005,32:L18704, doi:10.1029/2005GL023654
    [55]Landscheidt. Trends in Pacific Decadal Oscillation Subjected To Solar Forcing. http://www.john-daly.com/theodor/pdotrend.htm,2001
    [56]Latif M, Barnett T P. Causes of decadal climate variability over the North Pacific and North America. Science,1994,266:634~637
    [57]Latif M, Barnett T P. Decadal Climate Variability over the North Pacific and North America: Dynamics and Predictability. J. Climate,1996,9:2407~2423
    [58]Levitus S, Antonov J, Boyer T. Warming of the world ocean,1955-2003. Geophys. Res. Lett.,2005,32:L02604, doi:10.1029/2004GL021592
    [59]Liu Z. Planetary wave modes in thermocline circulation:Non-Doppler shift mode, advective mode and Green mode. Quat. J. Royal Meteor. Soc.,1999,125:1315~1339
    [60]Liu Z, Wu L, Gallimore R, et al. Search for the origins of Pacific decadal climate variability. Geophys. Res. Lett.,2002,29(10):1404, doi:10.1029/2001GL013735.
    [61]Liu Z, Wu L. Atmospheric Response to North Pacific SST:The Role ofOcean-Atmosphere Coupling. J. Climate,2004,17:1859~1882
    [62]Lorenz D J, DeWeaver E T. Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J Geophys Res,2007,112:D10119, doi:10.1029/2006JD008087
    [63]Lu J, Vecchi G A, Reichler T. Expansion of the Hadley cell under global warming. Geophys Res Lett,2007,34:L06805, doi:10.1029/2006GL 028443.
    [64]Lysne J, Chang P, Giese B. Impact of the extratropical Pacific on equatorial variability, Geophys. Res. Lett.,1997,24(21):2589-2592
    [65]Manabe S, Wetherald R T. The Effects of Doubling the CO2 Concentration on the climate of a General Circulation Model. J Climate,1975,32:3-15
    [66]Mantua N J, Hare S R, Zhang Y, et al. A Pacific decadal climate oscillation with impacts on salmon. Bull. Amer. Metetor. Soc.,1997,78:1069~1079
    [67]Mantua N J, Hare S R. The Pacific decadal oscillation. J. Oceanogr.,2002,58:35~44
    [68]Mann M E, Lees J M. Robust estimation of background noise and signal detection in climatic time series. Clim Change,1996,33:409~445
    [69]Meehl G A, Washington W M, Ammann C M, et al. Combinations of Natural and Anthropogenic Forcings in Twentieth-Century Climate. J. Climate,2004,17:3721~3727
    [70]Meehl G A, Covey C, Delworth T, et al. The WCRP CMIP3 multi-model dataset:A new era in climate change research. Bull. Amer. Meteor. Soc.,2007,88:1383-1394
    [71]Mestas-Nunez A M, Enfield D B. Rotated global modes of non-ENSO sea surface temperature variability. J. Climate,1999,12:2734~2746
    [72]Merryfield W J. Changes to ENSO under CO2 Doubling in a Multimodel Ensemble. J. Climate,2006,19:4009~4027
    [73]Meyers S D, Johnson M A, Liu M, et al. Interdecadal variability in a numerical model of the northeast Pacific Ocean:1970-89. J. Phys. Oceanogr.,1996,26:2635~2652
    [74]Miller A J, Cayan D R, Barnett T P, et al. Interdecadal variability of the Pacific Ocean: Model response to observed heat flux and wind stress anomalies. Climate Dynamics,1994a, 9:287~302
    [75]Miller A J, Cayan D R, Barnett T P, et al. The 1976~77 climate shift of the Pacific Ocean. Oceanography,1994b,7:21~26
    [76]Miller A J, Schneider N. Interdecadal climate regime dynamics in the North Pacific Ocean: theories, observations and ecosystem impacts. Progress In Oceanography,2000,47: 355~379
    [77]Minobe S. Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific:Role in climatic regime shifts. Geophys. Res. Lett.,1999,26:855~858
    [78]Munnich M, Latif M, Venzke S, et al. Decadal Oscillations in a Simple Coupled Model. J. Climate,1998,11:3309~3319
    [79]Mysak L A, Venegas S A. Decadal climate oscillations in the Arctic:a new feedback loop for atmosphere-ice-ocean interactions. Geophys. Res. Lett.,1998,25:3607~3610
    [80]Nakamura H. Midwinter Suppression of Baroclinic Wave Activity in the Pacific. J. Atmos. Sci.,1992,49:1629~1642
    [81]Namias J. Multiple Causes of the North American Abnormal Winter 1976-77. Mon. Wea. Rev.,1978,106:279~295
    [82]Namias J. Recent Seasonal Interactions between North Pacific Waters and the Overlying Atmospheric Circulation. J. Geophys. Res.,1959,64(6):631~646
    [83]Namias J. Seasonal interactions between the north pacific ocean and the atmosphere during the 1960's. J. climate,1969,97:173~192
    [84]Neelin J D, Weng W. Analytical Prototypes for Ocean-Atmosphere Interaction at Midlatitudes. Part I:Coupled Feedbacks as a Sea Surface Temperature Dependent Stochastic Process. J. Climate,1999,12:697~721
    [85]Newman M, Compo G P, Alexander M A. ENSO-Forced Variability of the Pacific Decadal Oscillation. J. Climate,2003,16:3853~3857
    [86]Overland J E, Adams J M, Bond N A. Decadal Variability of the Aleutian Low and Its Relation to High-Latitude Circulation. J. Climate,1999,12:1542~1548
    [87]Peng S, Robinson W A, Hoerling M P. The Modeled Atmospheric Response to Midlatitude SST Anomalies and Its Dependence on Background Circulation States. J. Climate,1997,10: 971~987
    [88]Peng S, Robinson W A. Relationships between Atmospheric Internal Variability and the Responses to an Extratropical SST Anomaly. J. Climate,2001,14:2943~2959
    [89]Pierce D W, Barnett T P, Schneider N, et al. The role of ocean dynamics in producing decadal climate variability in the North Pacific. Clim. Dyn.,2001,18:51~70
    [90]Qiu B. Kuroshio Extension Variability and Forcing of the Pacific Decadal Oscillations: Responses and Potential Feedback. J. Phys. Oceanogr.,2003,33:2465~2482
    [91]Qiu B, Schneider N, Chen S. Coupled decadal variability in the North Pacific:An observationally-constrained idealized model. J. Climate,2007,20:3602~3620
    [92]Rauthe M, Hense A, Paeth H. A model intercomparison study of climate change-signals in extratropical circulation. Int. J. Climatol.,2004,24:643~662
    [93]Saenko O A. Influence of Global Warming on Baroclinic Rossby Radius in the Ocean:A Model Intercomparison. J. Climate,2006,19:1354~1360
    [94]Sakamoto T T, Hasumi H, Ishii M, et al. Responses of the Kuroshio and the Kuroshio Extension to global warming in a high-resolution climate model, Geophys. Res. Lett.,2005, 32, L14617, doi:10.1029/2005GL023384
    [95]Santer B D, Wigley T M L, Gaffen D J, et al. Interpreting Differential Temperature Trends at the Surface and in the Lower Troposphere. Science,2000,287:1227~1232
    [96]Santer B D, Wehner M F, Wigley T M L, et al. Contributions of and natural forcing to recent tropopause height changes. Science,2003,301:479~483
    [97]Santer B D. Identification of anthropogenic climate change using a second-generation reanalysis. J Geophys Res,2004,109:D21104, doi:1029/2004/JD005075
    [98]Sato Y, Yukimoto S, Tsujino H, et al. Response of North Pacific Ocean Circulation in a Kuroshio-Resolving Ocean Model to an Arctic Oscillation (AO)-Like Change in Northern Hemisphere Atmospheric Circulation Due to Greenhouse-Gas Forcing. J. Meteorol. Soc. Jpn.,2006,84:295~309
    [99]Saravanan R, McWilliams J C. Advective ocean-atmosphere interaction:an analytical stochastic model with implications for decadal variability. J. Climate,1998,11:165~188
    [100]Schmittner A, Latif M, Schneider B. Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys Res Lett,2005,32: L23710, doi:10.1029/2005GL024368
    [101]Schneider N, Miller A J, Alexander M A, et al. Subduction of decadal North Pacific temperature anomalies:Observations and dynamics. J. Phys. Oceanogr.,1999a,29: 1056~1070
    [102]Schneider N, Venzke S, Miller A J, et al. Pacific thermocline bridge revisited. Geophys. Res. Lett.,1999b,26:1329~1332
    [103]Seager R, Kushnir Y, Naik N H, et al. Wind-Driven Shifts in the Latitude of the Kuroshio-Oyashio Extension and Generation of SST Anomalies on Decadal Timescales. J. Climate,2001,14:4249~4265
    [104]Seidel D J, Fu Q, Randel W J, et al. Widening of the tropical belt in a warming climate. Nature Geoscience,2008,1:21~24
    [105]Svensmark H, Friis-Christensen E. Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships. J. Atmos. Sol. Terr. Phys.,1997,59: 1225~1232
    [106]Stouffer R J, Yin J., Gregory J M, et al. Investigating the Causes of the Response of the Thermohaline Circulation to Past and Future Climate Changes. J. Climate,2006,19: 1365~1387
    [107]Strong C, Magnusdottir G. The Role of Tropospheric Rossby Wave Breaking in the Pacific Decadal Oscillation. J. Climate,2009,22:1819~1833
    [108]Sun J, Wang H J. Relationship between Arctic Oscillation and Pacific decadal Oscillation on decadal timescale. Chinese Science Bulletin,2006,51(1):75~79
    [109]Thompson D W J, Wallace J M. The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett.,1998,25(9):1297~1300
    [110]Toggweiler J R, Russell J. Ocean circulation in a warmer climate. Nature,2008,451: 286~288
    [111]Trenberth K E. Recent Observed Interdecadal Climate Changes in the Northern Hemisphere. J. Climate.,1990,71:988~993
    [112]Trenberth K E, Hurrell J W. Decadal atmosphere-ocean variations in the Pacific. Climate Dynamics,1994,9:303-319
    [113]Le Treut H, Somerville R, Cubasch U, et al. Historical Overview of Climate Change. In: Solomon S, Qin D, Manning M, et al. (eds). Climate change 2007:The Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press,2007.115~116
    [114]Vecchi G A, Soden B J. Global warming and the weanking of the tropical circulation. J Climate,2006,20:4316~4340
    [115]Wang B. Interdecadal changes in El Nino onset in the last four decades. J. Climate,1995,8: 267~285
    [116]White W B, Cayan D R. Quasi-periodicity and global symmetries in interdecadal upper ocean temperature variability. J. Geophys. Res.,1998,103:21335-21354
    [117]Wu L, Liu Z, Gallimore R, et al. Pacific Decadal Variability:The Tropical Pacific Mode and the North Pacific Mode. J. Climate,2003,16:1101~1120
    [118]Wu L, Liu Z. Decadal Variability in the North Pacific:The Eastern North Pacific Mode. J. Climate,2003,16:3111~3131
    [119]Wu L, Lee D, Liu Z. The 1976/77 North Pacific Climate Shift:The Role of Subtropical Ocean Adjustment and Coupled Ocean-Atmosphere Feedbacks. J. Climate,2005,18: 5125~5140
    [120]Wu L, Liu Z, Li C, et al. Extratropical control of recent tropical Pacific decadal climate variability:A relay teleconnection. Climate Dynamics,2007, DOI 10.1027/s00382-006-0198-5
    [121]Yin J H. A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett.,2005,32:L18701, doi:10.1029/2005GL023684.
    [122]Zelle H, Van Oldenborgh G J, Burgers G, et al. El Nino and Greenhouse Warming:Results from Ensemble Simulations with the NCAR CCSM. J. Climate,2005,18:4669~4683
    [123]Zhang Y, Wallance J M, Battisti D S. ENSO-like decadal variability 1900-93. J. Climate, 1997,10:1004~1020
    [124]Zhong Y, Liu Z. On the Mechanism of Pacific Multidecadal Climate Variability in CCSM3: The Role of the Subpolar North Pacific Ocean. J. Phys. Oceanogr.,2009,39:2052-2076

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700