用户名: 密码: 验证码:
江淮流域持续性暴雨过程的中期形成机制初析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
江淮流域持续性暴雨过程是造成大范围洪涝的高影响天气事件,了解导致此类事件的全球和区域影响,对改进其预报是十分必要的。本文采用1951-2004年共54年全国日降水观测和NCEP/NCAR再分析资料,首先利用天气统计分析方法,揭示其天气气候特征;然后采用相关与合成分析相结合的方法,普查过程发生前30天内的中期信号,揭示其时空分布特征和天气学含义,并通过信号间链接关系的研究,初步构建江淮流域持续性暴雨过程中期形成机制的概念模型。
     江淮流域持续性暴雨过程存在三条中期信号链:“赤道太平洋信号链”源自过程前4-3周赤道东太平洋中高层暖高压异常,通过纬向遥相关向西传播,先后影响前3周澳大利亚附近中高层气旋性低槽发展和前2周中西亚地区气旋性低槽发展,最后影响前1周我国东南沿海副热带高压的加强西伸北抬;“南印度洋信号链”源自前4周南美洲东南侧极涡外缘深厚气旋性冷低压槽发展,它与澳大利亚低槽发展一起,通过能量频散促使前3周马达加斯加岛南侧气旋性低槽加强,该特征通过纬向风的经向遥相关引起中欧和中西亚分别出现反气旋性和气旋性风切变加强;上述两条信号链分别向中西亚传递的影响,激发“欧亚信号链”:前2周中西亚中高层气旋性低槽发展,能量快速向东频散,引起欧亚经向环流加强,我国东部沿海和白令海南侧低槽均随之发展,在过程前2-1周出现一次显著的欧亚波列发展过程。
     欧亚波列结束前后伴随出现明显的环流调整:中高纬白令海南侧低槽明显西退,促使鄂霍茨克海阻高的形成和稳定;在中纬度中西亚低槽逐渐东移并在巴尔克斯湖附近稳定下来,与减弱西退的东部沿海低槽趋于气旋性打通,形成宽平槽区,有利于弱冷空气频繁东移偏北南下;在副热带,随着我国东部沿海低槽减弱北抬,促使下游中低层西太平洋副高及其西缘的偏南风低空急流西伸加强,同时上游高层青藏高压及其东缘偏北大风东扩,二者在我国东南地区垂直重叠,导致经向垂直环流加强,其低空急流带来的暖湿空气与华北频繁南下的弱冷空气稳定交汇于江淮流域,形成持续性强雨带。显然上述欧亚波列结束前后伴随的环流调整的结果正是导致了有利于持续性暴雨产生的稳定环流特征的形成。
     本文最后选取1991年一次江淮持续性暴雨过程个例,根据过程前2-1周欧亚波列信号特征设计流场扰动进行初值集合模拟试验,结果表明:持续性强降水及其环流背景的模拟对于欧亚波列信号区的初始扰动是敏感的,该扰动对模拟环流的后继影响,确与持续性暴雨期间稳定环流特征的建立和维持有密切关系。
Persistent heavy rainfall (PHR) events over the Yangtze-Huai river valley are one of the weather related high-impact events. To improve the forecast skill of the PHR events, it is necessary to find out the global-to-regional influences on the initiation and evolution of this kind of events. Based on daily rainfall data measured in China and NCEP/NCAR daily reanalysis for 54 years from 1951 to 2004, the climatology characteristics of the PHR events over the study area were firstly investigated, then the significant medium range signals from the global circulation prior to the PHR events were identified by the synoptical meteorology-correlation analysis, then the spatial-temporal distribution features and synoptic meanings of these signals were revealed, finally a tentative concept model of the medium range formation mechanism of the PHR events over the Yangtze-Huai river valley was constructed by synthetically analyzing the linkage between the signals.
     There are three chains of medium range signals for the PHR events. The first one, "Equatorial Pacific signals chain" originates from the development of upper level warm high over the eastern equatorial Pacific 4-3 weeks before the onset of the PHR events. By zonal teleconnection, it propagates its effects westerly thereafter to influence the developments of upper level cyclonic troughs near Australia and west Asia respectively 1-2 weeks later in succession, finally, to influence significant extending westward and jumping northward of the subtropical high near southeast China coast 1 week prior to the events. The second one, "South Indian Ocean signals chain" stems from the cold trough with cyclonic shear at periphery of polar vortex over southwest Atlantic 4 weeks before the onset of the PHR events. Then in company with the trough development at Australia, it causes the enhancing of the trough with cyclonic shear at south of Madagascar by energy dispersion mechanism. The signal feature of cyclonic shear near Madagascar then causes the anticyclonic shear in Central Europe and cyclonic shear in west Asia respectively by meridional teleconnection of zonal wind. The impacts of above two chains on the west Asia cyclonic trough trigger off the third signals chain, "Eurasian signals chain". The development of upper level cyclonic trough in west Asia disperses energy quickly downstream, which causes the development of two troughs at the East China coast and southern Bering Sea separately and induces significant Rossby wave-train activity over Eurasia during two weeks before the onset of the PHR events.
     With the disappearance of Eurasian Rossby wave train, significant adjustment of large scale circulation occurs. The west retreat of the trough at southern Bering Sea contributes to the occurrence and stability of Okhotsk blocking high. The trough in west Asia shifts eastward and simultaneously the trough in East China coast weakens and retreats westerly. Both of them connect to form a wider and flatter trough extending from Balkhash lake to northeast China, which favors propagating southeasterly of multi-minor-troughs with weak cold air in sequence. As the trough in east China coast shrink northward, the Subtropical West Pacific High (SWPH) extends westward along with low level southerly jet on the west frank of the SWPH and simultaneously the South Asia High (SAH) extends eastward along with upper level strong northerlies on the east frank of SAH. As a result, a local meridional circulation is developed in the southeast China with upper level northerly and lower level southerly. Obviously, it is above significant adjustment of circulation that results in the formation of stable circulation characteristics favoring the formation of the PHR events over the study area.
     As the last part of this thesis, an experiment of ensemble numerical simulation was conducted for a typical PHR event in 1991. To carry out the ensemble simulation, a series of initial wind disturbance which is based on the characteristics of Rossby wave train signals in Eurasian were imposed on the initial conditions of control experiment. The results indicate that the simulation of PHR event and corresponding circulation characteristics are sensitive to the Rossby wave train signals in Eurasian. The subsequent influences of the initial disturbances with the characteristics of that signals was closely relate to the establishment of the stable circulation during the PHR event.
引文
鲍学俊,王盘兴,覃军.南极涛动与江淮梅雨异常的时滞相关分析[J].南京气象学院学报,2006,29(3):348-352
    卞林根,陆龙骅,贾朋群.南极海冰和极涡指数的时空特征及相互关系[J].地理学报,1996,51(1):33-43
    丁一汇.高等天气学[M].北京:气象出版社,1991:648-688
    丁一汇.1991年江淮流域持续性特大暴雨研究[M].北京:气象出版社,1993:1-255
    杜钧.集合预报的现状和前景.应用气象学报[J],2002,13(1):16-28
    范可,王会军.有关南半球大气环流与东亚气候的关系研究的若干新进展[J].大气科学,2006,30(3):402-412
    关吉平,张立凤,张铭.集合预报研究现状与展望[J].气象科学,2006,26(2):228-235
    何金海,陈丽臻.南半球中纬度准40天振荡及其与北半球夏季风的关系[J].南京气象学院学报,1989,12(1):11-18
    何金海,吴志伟,江志红等.东北冷涡的“气候效应”及其对梅雨的影响[J].科学通报,2006,51(23):2803-2809
    黄荣辉,李维京.夏季热带西太平洋上空的热源异常对东亚上空副热带高压的影响及其物理机制[J].大气科学,1988,12(特刊):107-116
    黄士松,汤明敏.西北太平洋和南印度洋上环流系统的中期振荡与遥相关[J].气象科学,1988,8(4):1-13
    黄樱,钱永甫.南亚高压与华北夏季降水的关系[J].高原气象,2003,22(6):602-607
    李崇银,张勤.全球大气低频遥相关[J].自然科学进展,1991,1(4):330-334
    李崇银.气候动力学引论[M].第二版.北京:气象出版社,2000:197-208
    李崇银,龙振夏,穆明权.大气季节内振荡及其重要作用[J].大气科学,2003,27(4):518-535
    李崇银.大气季节内振荡研究的新进展[J].自然科学进展,2004,14(7):734-741
    李桂龙,李崇银.江淮流域夏季旱涝与不同时间尺度大气扰动的关系[J].大气科学,1999,23(1):39-50
    李丽平,王盘兴,管兆勇.大气季节内振荡研究进展[J].南京气象学院学报,2002,25(4):565-572
    林爱兰,梁建茵,古德军.热带大气季节内振荡对东亚季风区的影响及不同时间尺度变化研究进展[J].热带气象学报,2008,24(1):11-19
    刘舸,张庆云,孙淑清.澳大利亚东侧环流及海温异常与长江中下游夏季旱涝的关系[J].大气科学,2008,32(2):231-241
    陆日宇,黄荣辉.东亚-太平洋遥相关型波列对夏季东北亚阻塞高压年际变化的影响[J].大气科学,1998,22(5):727-734
    苗春生,吴志伟,何金海等.近50年东北冷涡异常特征及其与前汛期华南降水的关系分析[J].大气科学,2006,30(6):1249-1256
    钱永甫,张琼,张学洪.南亚高压与我国盛夏气候异常[J].南京大学学报,2002,38(3):295-307
    施能,魏风英,封国林等.气象场相关分析及合成分析中蒙特卡洛检验方法及应用[J].南京气象学院学报,1997,20(3):355-359
    宋敏红,钱正安,蔡英.准静止波强迫对1998年和1991年江淮洪涝影响的数值模拟[J].高原气象,2006,25(3):390-400
    陶诗言,张庆云,张顺利.夏季北太平洋副热带高压系统的活动[J].气象学报,2001,59(6): 747-758
    陶诗言,卫捷.再论夏季西太平洋副热带高压的西伸北跳[J].应用气象学报,2006,17(5):513-525
    王会军,范可.南半球对流层上层纬向风与东亚夏季风环流[J].科学通报,2006,51(13):1595-1600
    吴国雄,丑纪范,刘屹岷等.副热带高压研究进展及展望[J].大气科学,2003,27(4):503-517
    吴国雄,毛江玉,段安民等.青藏高原影响亚洲夏季气候研究的最新进展[J].气象学报,2004,62(5):528-540
    薛峰.南半球环流变化对东亚夏季风的影响[J].气候与环境研究,2005,10(3):401-408
    章基嘉,孙国武,陈葆德.青藏高原大气低频变化的研究[M].北京:气象出版社,1991:1-107
    张庆云,陶诗言.亚洲中高纬度环流对东亚夏季降水的影响[J].气象学报,1998,56(2):199-211
    张庆云,陶诗言.夏季西太平洋副热带高压异常时的东亚大气环流特征[J].大气科学,2003,27(3):369-380
    周建琴,蔡英,钱正安等.夏季不同源地水汽对我国西北区降水影响的数值模拟(Ⅰ,Ⅱ)[J].高原气象,2009,28(6):1211-1232
    Baldwin M P. and Dunkerton T J. Stratospheric harbingers of anomalous weather regimes [J]. Science,2001,294,581-584.
    Ding Q, and Wang B. Circumglobal teleconnection in the Northern Hemisphere summer [J]. Journal of Climate,2005,18(17):3483-3505.
    Ding Q, and Wang B. Intraseasonal teleconnection between the summer Eurasian wave train and the Indian monsoon [J]. Journal of Climate,2007,20(15):3751-3767
    Ding, Y, Liu Y, Shi X, Li Q. The experimental use of the regional climate model in the seasonal prediction in China National Climate Center [C]. In:Proceedings of the 2nd Workshop on Regional Climate Model. Yokohama, Japan:GAME Publication 2003,39:9-14
    Ding Y and Johnny C. L. Chan. The East Asian summer monsoon:an overview [J]. Meteorology and Atmospheric Physics,2005,89 (1):117-142
    Ding Y. The variability of the Asian summer monsoon [J]. J. Meteor. Soc. Japan,2007, 85B,21-54
    Dole R M. Linking weather and climate. Science and Technology Infusion Climate Bulletin [J/OL], [2009-10-3]. http://www.nws.noaa.gov/ost/climate/STIP/CW_Connection/RDole_052406.pdf]
    Gao H, Xue F, Wang H J. Influence of interannual variability of Antarctic oscillation on mei-yu along the Yangtze and Huaihe River valley and its importance to prediction [J]. Chinese Science Bulletin,2003,48 (2):61-67
    Gao X, Zhao Z, Giorgi F. Changes of extreme events in regional climate simulations over east Asia [J]. Adv. Atmos. Sci.,2002,19 (5):927-942
    Gong DY, Wang SW. Definition of antarctic oscillation index [J]. Geophys. Res. Lett., 1999,26(4):459-462
    GrellG, Dudhia J, Stauffer D. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5) [R]. NCAR TECHNICAL NOTE,1995, NCAR/TN-398+STR
    Hamill T M, Whitaker J S and Mullen S L. Reforecasts, an Important Data set for Improving Weather Predictions [J]. Bull. Amer. Meteor. Soc.,2006,87(1):33-46
    Kalnay, E., and co-authors. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc.,1996,77:437-472
    Lau K M. East Asian Summer Monsoon Rainfall Variability and Climate teleconnection [J]. J. Meteor. Soc. Japan,1992,70(3):211-242
    Lin Z,Lu R. Interannual Meridional Displacement of the East Asian Upper-tropospheric Jet Stream in Summer [J]. Adv. Atmos. Sci.,2005,22 (2):199-211
    Lorenz E N. A study of the predictability of a 28-variable atmosphere model [J]. Tellus,1965,17 (3):321-333
    Luo Y, Zhao Z, Ding Y. Ability of NCAR RegCM2 in Reproducing the Dominant Physical Processes during the Anomalous Rainfall Episodes in the Summer of 1991 over the Yangtze-Huaihe Valley [J]. Adv. Atmos. Sci.,2002,19(2):236-254
    Mo K C. Relationships between low-frequency variability in the Southern Hemisphere and sea suface temperature anomalies [J]. J. Climate,2000,13(20):3599-3610
    Nan S, Li J. The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere annular mode [J]. Geophys. Res. Lett.,2003,30(24):CLM 4-1-CLM 4-4
    Nitta T. Convective activities in the tropical western Pacific and their impact on the Mothern Hemisphere summer circulation [J]. J. Meteor. Soc. Japan,1987, 65(3):373-390
    Qin J, Wang P, Gong Y. Impacts of Antarctic Oscillation on summer moisture Transport and precipitation in eastern China [J]. Chinese Geographical Science,2005, 15 (1):22-28
    Rogers J C. The north-Pacific oscilation [J]. International Journal of Climatology. 1981,1(1):39-57
    Rogers J C, van Loon H. Spatial variability of sea level pressure and 500 mb height anomalies over the Southern Hemisphere [J]. Mon. Wea. Rev.,1982,110(10): 1375-1392
    Schaefer J T. The critical success index as an indicator of warning skill [J]. Weather Forecasting,1990:5(4):570-575
    Shapiro M A, Thorpe A. THORPEX:A global atmospheric research programme for the beginning of the 21st century [R]. WMO Bulletin,2004,54(3):1-51
    Tang Y, Gan J, Zhao L, Gao K. On the Climatology of Persistent Heavy Rainfall Events in China [J]. Adv. Atmos. Sci.,2006,23(5):678-692
    Toth Z, Pena M, Vintzileos A. Bridging the gap between weather and climate forecasting:research priorities for intraseasonal prediction [J]. Bull. Amer. Meteor. Soc.,2007,88(9):1427-1429
    Wang B. Climate regimes of tropical convection and rainfall [J]. Journal of Climate, 1994,7(7):1109-1118
    Wang Y. Effects of blocking anticyclones in Eurasia in the rainy season [J]. J. Meteor. Soc. Japan,1992,70(5):929-951
    Wang, Y., Sen O, Wang B. A Highly resolved regional climate model (IPRC-RegCM) and its simulation of the 1998 severe precipitation event over China. Part Ⅰ:model description and verification of simulation [J]. Journal of Climate,2003,16 (11):1721-1738
    Wang Y, Yasushi F, Kuranoshin K. A Teleconnection Pattern Related with the Development of the Okhotsk High and the Northward Progress of the Subtropical High in East Asian Summer [J]. Adv. Atmos. Sci.,2003,20(2):237-244
    Weickmann K, Berry E. A synoptic-dynamic model of subseasonal atmospheric variability [J]. Mon. Wea. Rev.,2007,135(2):449-474
    Xiong Z, Wang S, Zeng Z, Fu C. Analysis of Simulated Heavy Rain over the Yangtze River Valley During 11-30 June 1998 Using RIEMS [J]. Adv. Atmos. Sci.,2002, 20 (5):815-824
    Xue F, Wang H, He J. Interannual variability of Mascarene high and Australian high and their influences on summer rainfall over East Asia [J]. Chinese Science Bulletin,2003,48 (5):492-497
    Xue F, Wang H, He J. Interannual Variability of Mascarene High and Australian High and Their Influences on East Asian Summer Monsoon [J]. J. Meteor. Soc. Japan, 2004,82 (4):1173-1186
    Xue F, He J. Influence of the Southern Hemispheric Circulation on East-west Oscillation of the Western Pacific Subtropical High [J]. Chinese Science Bulletin,2005,50(14):1532-1536
    Yang H, Li C. The Relation between Atmospheric Intraseasonal Oscillation and Summer Severe Flood and Drought in the Changjiang-Huaihe River Basin [J]. Adv. Atmos. Sci.2003,20 (4):540-553
    Zhang P, Song Y and Vernon E K. South Asian High and Asian-pacific-American Climate Teleconnection [J]. Adv. Atmos. Sci.,2005,22(6):915-923

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700