用户名: 密码: 验证码:
油气井复合射孔/压裂过程动态信息获取方法和理论
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合射孔和高能气体压裂是将射孔弹、推进剂等火工品放到井下油气层,利用其爆炸燃烧产生的动态高压使地层形成多条裂缝,达到增产的目的。复合射孔/压裂作用过程的机理复杂,影响因素多,理论不完善,而最大的障碍是受高温、高压、高冲击、空间狭窄等环境条件的限制,信息获取十分困难,常规研究方法和手段很难使用。本课题围绕复合恶劣环境下信息获取的关键难点问题展开研究,旨在建立井下作用机理的信息获取平台,为复合射孔器和高能气体压裂弹的设计、增产施工工艺的优化提供理论和信息支持。
     论文采用理论分析和试验验证相结合的方法,主要进行了以下四个方面的研究:
     (1)研究了井下射孔/压裂的信号特征,特殊的环境条件对测试系统的影响;进行了抗恶劣环境结构设计,多种触发方式等设计内容。设计并实现了环空多参数测试系统和射孔器内压力测试系统。
     (2)针对井下高温高压高冲击以及空间狭小复杂恶劣环境,进行了多个方面的研究。进行基于厚壁圆筒的自增强耐高压设计和枪内测试系统的防护设计与改进;利用霍普金森杆冲击测试装置对不同封装材料和封装方式的芯片进行高冲击试验,为所制作的芯片封装优选提供实验依据;研究了高分子聚合物灌封材料缓冲机理,采用添加无机填料的方法改进了环氧树脂灌封材料高温力学性能,同时使用真空灌封-加压固化的新工艺使电路模块整体强化灌封得到提高,保证了电路模块高温环境下的高强度高阻抗要求。
     (3)提出了模拟应用环境下动态校准的新思想和新方法,研究并建立了模拟井下温度压力环境的校准实验系统,改进了加压状态下传感器加速度效应试验系统,对传感器的温度效应和加速度效应进行了修正,得出校准曲线和补偿公式;模拟井下温度压力环境的校准实验系统可模拟井深达5000m的地温(<150℃)和静压(<50MPa),同时还采用火药推动活塞模拟井下射孔/压裂的动压,并通过三路经计量溯源的压力测试系统对测试仪进行动态校准。利用这些系统进行了动态校准实验,研究分析了测试系统的动态不确定度,不仅确保了实测过程中的精度,而且对动态测试仪器在恶劣环境下的精度提高具有普遍意义。
     (4)井下多参数测试系统对现有主要的射孔/压裂工艺类型进行了大量测试,很多数据是国内外首次获得。对常规射孔、内置式复合、外套式复合、爆燃压裂、煤层气井复合射孔等多种类型井下典型实测数据进行了详细分析;探索了高能气体井下压裂作用机理,特别是总结了高能气体动态高压脉冲波形对裂缝形态和长度的影响机制;利用动压曲线表征了压裂行为,探讨了压裂作用的有利压力波形;分析和研究了动压实测曲线的规律;分析了套管井复合射孔的重要影响因素:射孔直径、射孔密度、推进剂燃烧特性、井眼内压挡液体、射孔方位,并对这些因素影响复合射孔效果的机理进行了研究;提出了一种基于P-t曲线的“估-测-评-改”螺旋上升的施工工艺的优化设计方法。
     本文的研究成果已经应用于国内主要大油气田包括大庆油田、辽河油田、长庆油田、普光气田、韩城煤层气田等十几家油田和企业,为其提供了关键的井下实时实况的信息获取方法。在此基础上推进了井下射孔/压裂的机理研究,优化了射孔/压裂施工工艺参数,提高了射孔/压裂的效果和油气层的产量。
Composite perforation and high energy gas fracturing is to put the priming system such as perforating bullet and propellant into underground oil and gas layer. The dynamic high pressure produced by its explosion combustion make the formation formed multiple fractures, and achieving the purpose of production. Composite perforation/fracturing process mechanism is complex and the theory is not sound. The influence factors are various, but the most difficult thing is the limit of high-temperature, high-pressure, high-impact, narrow space and other environmental conditions, so the access to information, conventional research methods and means is very difficult to get. This paper focuses on the key difficult problem of information acquisition in composite harsh environment to conduct research, aimed at building access to information platform of underground mechanism. It provides a data and information support of composite perforation, the design of the high-energy gas fracture and the stimulation of construction process optimization.
     This paper used a method of combining theoretical analysis and experimental verification, four mainly researches are as follows:
     (1) This paper studies signal characteristics of the downhole perforation and fracturing, the influence of special environment conditions on the testing system, structure design to resistant the bad environment, the analysis of pressure pipeline effect, variety of trigger modes, etc. We design and implement the annulus multi-parameter testing system and gun internal pressure test system.
     (2) We had more aspects of the research counter the complicated severe environment in downhole which is high temperature high pressure high impact and narrow space, the design of high pressure resistance based on the thick wall cylinder and the protection design and improvement of gun inside testing system. Using hopkinson bar impact testing device to conduct high impact test for different packaging materials and packaging mode chips. It provided an experimental and theoretical basis for the SoC encapsulation. We studied the changing mechanism of potting material strength characteristics along with temperature. We improved the high temperature performance of epoxy potting materials by using the method of adding inorganic filler. We made circuit module integral reinforcement potting improved by using the new technology of vacuum potting-pressure curing. This ensures the high strength and high impedance requirement of circuit module under high temperature environment. We have conducted the high temperature resistant and micro power design of the circuit by the research and analysis of the related chip high temperature performance.
     (3) We have put forward new ideas and methods of the dynamic calibration in the analog environment; established a calibration experiment system which is dedicated for simulating the temperature and pressure environment in the downhole; improved the sensor acceleration effect test system under pressure conditions; fixed a sensor temperature effect and acceleration effect and achieved the calibration curve and compensation formula. The calibration experiment system for simulating of the downhole temperature and pressure environment can simulate a well temperature(<150℃) and static pressure (<50mpa) with the depth of5000m underground. And it can simulate the dynamic pressure of the downhole perforation/fracturing. We conducted dynamic calibrations for testers by using a pressure test system whose three swings were measured and traced. Dynamic calibration experiments were conducted by using these systems, and the dynamic uncertainty of testing systems were studied and analyzed. All of these not only to ensure the measured accuracy of the petroleum downhole tester, but also the universal significance to improve the accuracy of the dynamic test instruments in harsh environments. It is an important academic innovation.
     (4) Some detailed analysis about typical experimental data for various types of downhole such as conventional perforation, built-in composite, coat type compound, deflagration fracturing, coalbed methane well composite perforation, etc. was conducted in this paper. We explore the high energy gas well fracturing mechanism, especially summarizes the influence mechanism between the high energy gas dynamic high voltage pulse waveform and crack form and length; represent the fracture behavior by using the dynamic pressure curve; discusses the favorable pressure waveform of fracturing effect; analyzes and studies the law of dynamic pressure measured curve. Moreover, we analyzed the important influence factors of composite perforation in cased well:perforation diameter, perforation density and propellant combustion characteristics, well intraocular pressure in liquid, perforation azimuth. And the mechanism about how these factors affecting composite perforation effect was studied. Finally, we put forward a optimization design method of "estimate-test-estimate-alter" which is based on P-t curve.
     This article research conclusion was applied on dozens of oilfield and enterprise in domestic such as Daqing oilfield, Liaohe oilfield, Changqing oilfield, Puguang gas field, Hancheng CBM field and so on. It provides acquisition method of key downhole real-time live information. The downhole multi-parameter testing system conducted a lot of tests for the existing main perforation/fracturing technology type. The acquisition of some data was the first at home and abroad. The information acquisition method and theory promotes the downhole perforation/fracturing mechanism research. It provides key information support for not only the optimization of the design parameters in perforation/fracturing construction technology and the increase effect of perforating/fracturing but also improvement of the exploitation of oil and gas layer rate and yield.
引文
[1]王安仕,秦发动.高能气体压裂技术[M].西北大学出版社.1998,1-2.
    [2]陈喜庆.复合射孔工艺技术研究[D].硕士学位论文.大庆:大庆石油学院,2008.
    [3]王爱华.爆炸压裂和爆燃压裂机理研究和理论计算[M].西安石油大学,1999:21-56.
    [4]王路超.射孔参数优选技术研究.中国石油大学硕士学位论文.东营:中国石油大学.2007.
    [5]李东传,石健,金成福等.复合射孔器压裂能力评价方法的探讨[J].火工品,2008(3),32-35.
    [6]孙新波,刘辉,王宝兴等.复合射孔技术综述[J].爆破器材,2007,49(5),29-31.
    [7]J.F.Schatz. Improved modeling of the dynamic fracturing of rock with propellants[J]. Rock Mechanics,1992.
    [8]J.F.Cuderman, D.A.Northrop. A Propellant-Based Technology for Multiple Fracturing Wellbores to Enhance Gas Recovery:Application and Result s in Devonian Shale [R], SPE/DOE/GRI 12838,in Proceedings of 1984 SPE/DOE/GRI Unconventional Gas Recovery Symposium, Pittsburgh, PA, May 13-15, pp.77-86.
    [9]Cuderman, J.F. High Energy Gas Fracturing Development Final Report to GRI[R], Sandia Report SAND88-02471/GRI, (1989).
    [10]J.F.Cuderman. High Energy Gas Fracture Experiments in Fluid-Filled Boreholes-Potential Geothermal Application[R].SANDIA REPORT SAND85-2809, 1986.6.
    [11]Schatz, J.F., Ziegler, B. J.and R.A.Bellman.Prediction and Interpretation of Multiple Radial Fracture Stimulations[R], Report SAIC-87/1056, Science Applications International Corp. For Gas Research Institute contract 5084-213-1149 (GRI-87/0199), March 1987.
    [12]J.F.Cuderman. High-Energy Gas Fracturing in Cased and Perforated Wellbores[R]. SANDIA REPORT SAND86-1133.1986.6.
    [13]Schatz, J.F. et al. High-Speed Downhole Memory Recorder and Software Used to Design and Confirm Perforating/Propellant Behavior and formation Fracturing[J], Paper SPE 56434 presented at the 1999 Annual Technical Conference And Exhibition held in Houston, Texas 3-6 October 1999.
    [14]J.F. Schatz, Kent C.Folse. High-Speed Pressure and Accelerometer Measurements Characterize Dynamic Behavior During Perforating Events in Deepwater Gulf of Mexico[J]. Society of Petroleum Engineers Inc. SPE90042,2004.9.
    [15]J.Burman, M.Schoener-Scott. Predicting Wellbore Dynamic-Shock Loads Prior to Perforating[J]. SPE 144059.2011.4.
    [16]成建龙,周志华,乔晓光.复合射孔器动态压力测试方法研究[J].测井技术[J].2005.29:55-59.
    [17]俞英,王岚,崔海弘等.一种用于井下的压力、加速度测试仪[J].应用科技2000年9月,第27卷第9期.
    [18]高里,乔建明,金伯英.油气井高能气体压裂P-t测试仪的应用研究[J].测试技术学报.1998, Vol012 NO.3.
    [19]郭福田,薛光辉.井下存储式电子压力计的设计[J].石油规划设计.1999,10(1):35.
    [20]安丰春,杨玉玲.大庆油田复合射孔工艺技术的研究与应用[J].兵工学报,2005年1月.
    [21]李东传,金成福,刘权民,余海鹰.复合射孔检测技术现状及其发展趋势[J].测井技术.2011年4月,第35卷第2期.
    [22]梁纯,孙新波,王海东.导爆索爆速的测定及影响因素分析[J].测井技术.2006.30(1):98-100.
    [23]孙新波,刘辉,王宝兴等.复合射孔技术综述[J].爆破器材.2007,49(5):29-31.
    [24]刁刚田,刘志华,周家驹等.复合射孔技术的应用[J].钻采工艺.2003,26(6):30-32.
    [25]雷炜,张果,杜林等.川西地区复合射孔技术的应用研究[J].天然气工业.2006,26(5):58-60.
    [26]郭廷亮,陈锋,袁吉诚.StimGun外套式复合射孔器在塔里木QL-x井的应用[J].测井技术.2005,29(3):253-255.
    [27]窦益华,徐海军,姜学海,等.射孔测试联作封隔器中心管损坏原因分析[J].石油机械.2007,35(9):113-115.
    [28]王艳萍,黄寅生,潘永新,等.复合射孔技术的现状与趋势[J].爆破器材.2002,31(3):30-33.
    [29]王旱祥,颜廷杰,李增亮.射孔对套管强度的影响[J].石油机械.2000年05期.
    [30]戴扬,高学仕,陆玲.螺旋布孔射孔套管承载能力有限元分析[J].石油矿场机械.2003年05期.
    [31]成建龙,孙宪宏,乔晓光等.复合射孔枪泄压孔及装药量对环空动态压力的影响研究[J].测井技术.2007,31(1):50-55.
    [32]张文栋.存储测试系统的设计理论及其应用[M].北京:高等教育出版社.2002:1-4.
    [33]刘祖凡.井下动态压力测试技术研究[D].硕士学位论文.太原:中北大学,2012.
    [34]曹万有,张文柱,王道宏等.高膛压火炮技术[M].北京:国防工业人民出版社.1999.
    [35]金志明.枪炮内弹道学[M].北京:北京理工大学出版社.2004.
    [36]Marek L. Winia. Dynamic High Pressure Measurement Issues and Instrumentation[J]. Workshop on the Measurement of Transient Pressure and Temperature, Gaithersburg, Mariland, April 1991(4):22-23.
    [37]张慧.武器压力测试中传压管道的动态特性研究[D].硕士学位论文.南京:南京理工大学.2006.
    [38]GJBXXXX.中华人民共和国国家军用标准:火炮内弹道试验方法[S].北京:国防科学技术工业委员会,1997.
    [39]邓欣伟.内弹道的膛压检测方法研究[J].沈阳理工大学学报.Vol.27, No.3,2008 (6):9-11.
    [40]范锦彪.高值加速度溯源性校准理论及高冲击测试技术研究[D].博士学位论文.太原.中北大学,2010.
    [41]宋萍,李科杰.硬目标侵彻武器高冲击试验和高过载传感器技术国外发展概况[J].测控技术[J].2002,Vo1.21 No.zl 30-32.
    [42]F.E.Heuze.弹体对岩体材料(特别是岩石)侵入研究的综述[J].防护工程.1994,No.3,96-113.
    [43]林俊德.侵彻武器及气体炮试验[J].中国工程科学.2003,Vol.5 No.11,25-33.
    [44]朱新军,段福海,胡青春.封闭行星齿轮内部功率流与系统参数的关系研究[J].机械.2007,34(4):14-16.
    [45]李成.履带车辆主动悬挂系统振动控制的研究[D].博士学位论文,哈尔滨:哈尔滨工程大学.2009.
    [46]杨庚.基于SOPC技术的坦克电器测试系统的设计与实现[D].博士学位论文,长沙:中南大学,2007.
    [47]夏志皋.塑性力学[M].上海:同济大学出版社.2008:142-149.
    [48]杨桂通.弹性力学[M].北京:高等教育出版社,2005.
    [49]蒋学东,李小平厚壁圆筒在动载荷作用下的应力分析[J].江苏工业学院学报.,2004,116(13):8-13.
    [50]刘迎春,叶湘滨.传感器技术[M].北京:国防科技大学出版社,2002.
    [51]Miklowitz J. The Theory of Elastic Waves And Waveguides[M]. Amsterdam:North-Holland Publishing Company,1978.
    [52]朱明武,梁人杰,柳光辽.动压测量原理[J].北京:国防工业出版社,1983:240-249.
    [53]徐鹏.高g值冲击测试及弹载存储测试装置本征特性研究[D].博士学位论文.太原:中北大学,2006年.
    [54]李玉龙,郭伟国,贾德新等.高g值加速度传感器校准系统的研究.爆炸与冲击[J],1997.1.
    [55]LJ.Emst, K.B.M.Kaspar. Fully cured dependent modeling and simulation of FMC's with Application to package warpage simulation[R]. IEEE 2006 Proeeding, ICEPI 2006:123-129.
    [56]金家存.军用微电子器件耐高过载技术研究[D].硕士学位论文.南京:南京理工大学,2008.
    [57]吴晓莉,张河.高冲击下电子线路灌封材料的缓冲机理及措施研究[J].包装工程.2004,第25卷,第1期.
    [58]胡时胜,刘剑飞,王正道等.低密度多孔介质的缓冲和减振[J].振动与冲击.1999,18(2):39-42.
    [59]卢子兴,赵明洁.泡沫塑料力学性能研究进展[J].力学与实践.1998,20(2):1-9.
    [60]Xu Peng, Zu Jing, Lin Zu-Seng. The study of buffer structure of on-board test's circuit module in high shock[J]. The proceeding of IMTC2003, USA,20-22 May,431-434.
    [61]徐鹏,范锦彪,祖静.泡沫铝叠片的压缩性能与高g值冲击缓冲吸能研究[J].华北工学院学报,2004,25(3).
    [62]廖明惠.灌封材料在航天产品中的应用[J].宇航材料工艺.1995,3.
    [63]高华,赵海霞.灌封技术在电子产品中的应用[J].电子工艺技术.2003,第24卷,第6期.
    [64]靳鸿.基于SoC的弹载动态参数测试仪构建方法研究及其应用[D].博士学位论文.太原:中北大学,2005.
    [65]贺曼罗.环氧树脂胶粘剂[M].北京:中国石化出版.2004.4.
    [66]李芝华,谢科予.环氧灌封料低温开裂问题及对策研究进展[J].材料导报.2006,第20卷,第8期.
    [67]祖静,张志杰,裴东兴,等.新概念动态测试[J].测试技术学报,2004(18):1-6.
    [68]裴东兴.新概念动态测试若干问题的研究[D].博士学位论文.北京:北京理工学.2005.
    [69]张志杰,祖静,杨志刚,张爱萍,范锦标,高压传感器的低温环境因子研究[J].测试技术学报,1998,12(2).
    [70]陈兽华,李永新.瞬态压力测量中传压管道频率特性研究[J].电子测量技术.2007.2(30):21-24.
    [71]朱明武,梁人杰,王宗文.动压测量[M].北京:国防工业出版社,1985:122-135.
    [72]崔春生,马铁华等.模拟油井校准系统原理及应用[J].中国测试技术.2007,33(6).
    [73]崔春生.新型石油井下动态参数测试技术研究[D].硕士学位论文.太原:中北 大学.2007.
    [74]费业泰.误差理论与数据处理(第5版)[M].北京:机械工业出版社.2006.
    [75]范锦彪.高值加速度溯源性校准理论及高冲击测试技术研究[D].博士学位论文.太原:中北大学.2010.
    [76]章烨辉.基于平面电容传感器的大量程、高精度二维位移直接解耦测量方法和系统研究[D].硕士学位论文.杭州:浙江大学.2008.
    [77]WEN H K, WANG Qiang. Touch model capacitive pressure sensors[J]. Sensors and Actuators,1999(75):242-251.
    [78]田玉冬.基于最小二乘法的电容传感器非线性辨识和拟合分析[J].冶金自动化.2006年.
    [79]黄俊钦.测试系统动力学[M].北京:国防工业出版社.1996:15-60.
    [80]J.Zu. Calibration Technology for Dynamic Parameters[J].2006 MSC 5E.
    [81]张志杰.动态测试中单次性过程测试数据的置信度——环境因子和反滤波方法研究[D].北京理工大学博士学位论文.2004.
    [82]Cuderman, J.F., and D.A. Northrop 1984. A propellant-based technology for multiple fracturing wellbores to enhance gas recovery:applications and results in Devonian shale[J]. Presented at the SPE/DOE/GRI Unconventional Gas Recovery Symposium? Pittsburgh, PA.
    [83]Nilson, R.H., M.J. Proffer, and R.E. Duff. Modeling of gas-driven fractures induced by propellant combustion within a borehole[J]. Int. J. Rock Mech. Min. Sci. & Geomech.1985,22:3-19.
    [83]J.F.Schatz, B.J.ZeiglerS, J.M.Hanson. Laboratory, Computer Modeling, and Field Studies of the Pulse Fracturing Process[J]. SPE 18866,1989,3.
    [84]ЖeлтOB B.ПДeфopMaции гopHых пopoд[M],MocKBa, Heдpa1996, c.196.
    [85]Cuderman, J.F.. Tailored-Pulse Fracturing in Cased and Perforated Boreholes[J]. paper SPE 15253 presented at the 1986 SPE Unconventional Gas Technology Symposium, May 18-21.
    [86]Schatz, J.F., E.J. Zeigler, R.A. Bellman. Prediction and interpretation of multiple radial fracture stimulations[J]. Final report for GRI,1987.
    [87]R.P. Swift. A Prespective On Modeling Tailored-Pulse Loading (TPL) for Borehole Stimulation[J].Technical Report by Lawrence Livermore National Laboratory, for U. S. Dept. of Energy,1984.
    [88]Hanson, J.M., R.A. Schmidt, C.H. Cooley. Multiple Fracture Stimulation Using Controlled Pulse Pressurization[J]. SPE/DOE/GRI Unconventional Gas Recovery Stimulation, Pittsburgh,1984.
    [89]J.M.Hanson, R.G. Van Buskirk, C.H. Cooly. Multiple Fracture Stimulation Using Controlled Pulse Pressurization[J].Annual Report prepared by Terra Tek Research under Contract No.5081-260-0576,1984.
    [90]J.F.Cuderman. Application of Propellants for Controlled Pressurization of Boreholes in Geologic Medic[J].Sandia National Laboratories Technical Report,1985.
    [91]Cuderman, J.F. and D.A. Northrop. Propellant-Based Technology for Multiple Fracturing Wellbores to Enhance Gas Recovery:Application and Results in Deconian Shale[J]. SPE/DOE/GRI Unconventional Gas Recovery Symposium, Pittsburgh, 1984.
    [92]J.F. Cuderman. High Energy Gas Fracturing Development[R], Report by Sandia National Laboratories for Gas Research Institute,1983.
    [93]A.Canal, P.Miletto etal.Predicting Pressure Behavior and Dynamic Shock Loads on Completion Hardware During Perforating[C]. Offshore Technology Conference,Houston,Texas,US A,2010.
    [94]Cuderman, J.F. Multiple Fracturing Experiment-Propellant and Borehole Considerations [R]. SPE/DOE Unconventional Gas Recovery Symposium, Pittsburgh, PA,1982.
    [95]Cuderman, J.F., P.W. Cooper, E.P. Chen.A Multiple Fracturing Technique for Enhanced Gas Recovery[C], Proc. Of the 1981 Int. Gas Res. Conf.,657-666.
    [96]Cuderman, J.F.:"High Energy Gas Fracturing in Cased and Perforated Boreholes", Sandia National Laboratories SAND88-UCB72, (1988).
    [97]J.F.Cuderman.Effects of Wellbore Liquids in Propellant-Based Fracturing[C].in Proceedings of 27th U.S. Symposium on Rock Mechanics, University, AL, June 23-25,1986.
    [98]J.F.Cuderman. Tailored-Pulse Fracturing in Cased and Perforated Boreholes[C], in Proceedings of SPE/DOE 1986 Unconventional Gas Technology Symposium, Louisville, KY, May 18-21,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700