用户名: 密码: 验证码:
印刷电路板生产、回收拆解及废弃堆置过程中重金属与溴系阻燃剂的污染、释放规律及人体暴露研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印刷电路板(PCB)是所有电子电气产品(EEE)中重要的基础部件之一。我国作为全球最大的PCB生产基地,每年的产量可达21400万平方米。在PCB的生产、回收拆解及废弃堆置过程中会产生并释放出大量的污染物,其中包括重金属与溴系阻燃剂(BFRs)。然而,已有的研究比较零散,尚未针对PCB整个产品生命周期过程中重金属与BFRs的污染与释放规律进行综合性的研究,亦未评估对PCB生产、回收从业人员人体健康的潜在影响。
     本研究在建立了多种环境介质与固体废弃物样品中重金属(Cu、Zn、Pb、Ni、Cd、 Cr、Sn)以及多溴联苯醚(PBDEs)、四溴双酚A (TBBPA)分析检测方法的基础上,首先调查了PCB中污染物质的含量与普遍赋存特征,而后针对PCB生命周期中三个重要阶段(1)生产、(2)回收拆解以及(3)废弃处置过程,通过现场采样调查与实验室模拟实验相结合的方法,系统考察了上述三个过程中重金属与BFRs在生产车间、回收单元以及模拟填埋环境中的污染情况,阐释了污染物的分布特征与释放规律,并且评估了污染物的人体暴露与健康风险。主要结果和结论如下:
     首先,从我国典型电子垃圾(WEEE)拆解区、有资质的VEEE资源化再生利用企业以及小型废旧家电回收点等处采集了具有代表性的废弃电路板(WPCB)样品(n92),经过分析发现各重金属含量由高到低为:Cu(189g/kg)>Sn(33.0g/kg)>Pb(17.1g/kg)>Zn(8.91g/kg)>Ni(1.93g/kg)>PBDEs(0.79g/kg)>Cr(0.44g/kg)>Cd(0.26g/kg)>TBBPA(0.17g/kg),其中Pb、Cd超过了RoHS指令规定的限值。PBDEs同系物的指纹图谱与Penta-BDE工业品相似程度较高,BDE-47与BDE-99所占比例最大,表明WPCB与废塑料等WEEE不同,采用Penta-BDE工业品作为主要添加剂,是环境中低溴代联苯醚污染的直接来源之一;将WPCB样品根据不同产品、年代、地区进行分类,发现其所含污染物存在较大差异,其中1995-2000年问来自中国和日本电视机的WPCB污染最严重,有效地分选出高污染WPCB能够更好地控制BFRs的潜在释放与环境污染。采用物质流分析法(SFA)对国内WPCB中重金属与BFRs的赋存量进行了推算,至2010年底,我国WPCB中(Cu、Zn、Pb、Ni、Cd、Cr、Sn、PBDEs和TBBPA的赋存量分别为338000、13700、6010、3300、300、31300、429和40.6吨。此外研究发现2006年后Pb、Cr和PBDEs等RoHS限制物质的累积赋存量的增长趋势减缓,PBDEs的增长率从30%-40%下降到了6%左右,说明RoHHS指令的实施有效地抑制了EEE中有毒有害物质的使用。
     其次,对PCB生产过程的污染及其释放特征进行了研究,同时评估从业工人的人体暴露风险。通过对典型PCB生产厂家生产废料(废粉料、清洗废水、污水处理设施脱水污泥与最终出水)进行分析,研究发现Cu、Zn、Pb、Ni、Cr、Sn以及TBBPA污染普遍存在,而Cd与PBDEs均未检出,表明减少RoHS限制物质的使用己成为了PCB生产的主流趋势;最终出水中污染物的含量均处于较低水平,TBBPA浓度甚至低于我国湖泊水,表明良好地管理PCB生产活动将有助于控制其对自然水体造成的污染。生产废料中污染物的释放系数呈现以下规律:Cu>Zn>Sn≈Ni>Pb>Cr>>TBBPA,消耗清洗废水的“湿制程”是重金属污染的主要来源,而产生废粉料的“干制程”则是TBBPA污染的源头。此外,Cu向水体和土壤的年均释放总量分别达到了11400和1910kg;TBBPA的释放仅为0.02和<0.01kg,因此可以忽略TBBPA对环境造成的负面影响。
     随后,分析了采集自PCB生产车间的灰尘与PM1o样品,结果显示,重金属与TBBPA含量均高于文献报道同类场所的参考值。PM10样品中不同重金属之间相关性较好,表明存在相同的污染来源,扫描电镜显示了PM1o由环氧树脂颗粒、玻璃纤维束以及自然颗粒物组成,说明了生产过程废粉料是污染的重要来源;灰尘样品中重金属之间的相关性较差,其污染来源较为复杂。利用灰尘和PM1o中污染物浓度之比的对数Log (dust/PM10)值表征了污染物在两相间的分配规律。重金属的Log (dust/PM10)<0,污染以PM1o颗粒相为主;TBBPA的Log (dust/PM10)>0,表明灰尘是TBBPA污染的重要载体。根据不同车间Log(dust/PM10)值的谱系聚类分析显示,污染物的分配规律存在3种情况,主要由车间所涉及的生产工艺决定。
     对车间内污染物人体暴露量的贡献进行了估算,依次是Cu(73.4%)>Sn(10.0%)>Zn(9.38%)>Cr(3.61%)>Pb(2.15%)>Ni(1.09%)。TBBPA的暴露量远低于重金属,但高于国内外文献报道的的平均值,因此PCB生产是导致职业环境中TBBPA暴露的重要途径之一。灰尘摄入是从业工人主要暴露途径,占总暴露量69.5%-96.9%。单个重金属的非致癌风险HI均小于1,基本不会对从业工人人体健康造成危害;而5种重金属HI的总和在捞边车间中大于1,表明多种重金属非致癌风险的累积可能会对从业工人的人体健康造成一定的危害。Cr的Risk值在致癌风险阈值范围之内,Cr存在一定的致癌风险。
     再次,针对WPCB回收拆解过程的污染特征与暴露风险进行了研究。在一家典型的WEEE资源化再生利用企业中,研究发现WPCB手工预拆解车间内灰尘与PM10样品中的污染高于机械拆解车间。手工预拆解车间Pb的污染比较严重;而机械拆解车间受WPCB拆解影响,Cu为最主要的污染物。除Cu外,车问内重金属污染主要发生在PM10颗粒相中。车间环境样品中PBDEs同系物以BDE-209为主,与WPCB原材料中的组成不相符(BDE-47、BDE-99为主)。分析认为该现象主要由各PBDEs同系物在气相与颗粒相中分配能力的差异所致。此外,WPCB拆解车间还可能受到其他拆解行为的影响(拆解高BDE-209含量的塑料)。不同车间中污染物的HI均大于1,其中Pb的非致癌风险的“贡献”最大(84%),表明拆解工人在拆解活动中面临着一定的非致癌健康风险。致癌重金属Cr、Cd和Ni的Risk值均超过了致癌风险阈值范围,表明WPCB拆解过程存在一定的致癌风险,且大于PCB生产过程。
     最后,分别采用了TCLP、SPLP以及NIES改进浸出法研究了模拟堆置条件下WPCB中重金属与BFRs的浸出特征。结果显示,WPCB所含重金属在标准TCLP、SPLP浸出法中的浸出浓度特征为Cu>Pb>Sn>Zn>Cr>Cd>Ni,其中Cu和Pb浸出毒性最大。BFRs在NIES改进浸出法中的浸出遵循一阶指数衰减方程,显示出先快速浸出而后缓慢趋向于浸出平衡的现象;浸提剂种类、目标污染物性质以及WPCB的比表面积等因素会对BFRs的浸出率产生影响;浸出液中PBDEs同系物的组成与实际垃圾填埋场渗滤液中低溴代联苯醚的组成相似;通过计算,2010年底我国填埋场中BFRs潜在浸出总量达到了101kg。因此,在随意丢弃、露天堆放或不规范填埋等不当处置情况下,WPCB所含BFRs将在短时间内浸出并对周边环境造成污染,是填埋地土壤、渗滤液甚至地下水中污染的重要来源。
Printed circuit board (PCB) is one of the essential components in all electric and electronic equipments (EEE). As the global PCB production base, China has the largest production amount which is estimated to be214million m. Hundred kinds of chemicals including heavy metals and brominated flame retardants (BFRs), are involved and released during the PCB production, recycling and disposal processes, which may cause severe environmental pollution. However, comprehensive study on contamination and emission of heavy metals and BFRs during the whole life cycle of PCB product is currently limited.
     In this study, reliable analytical and instrumental methods were built up for the qualitative and quantitative determination of Cu, Zn, Pb, Ni, Cd, Cr, Sn, Polybrominated Diphenyl Ethers (PBDEs) and Tetrabromobisphenol A (TBBPA) in PCB, solid waste and environmental samples. Field investigation and laboratory simulation were both conducted to investigate the contamination and emission of heavy metals and BFRs in three important processes of life cycle of PCB as follows:(1) production,(2) recycling and (3) disposal. Meanwhile, the heavy metals and BFRs released to the environment and the human exposure to those substantces were also evaluated in the above processes.
     A total of92representative waste printed circuit board (WPCB) samples were randomly collected from large e-waste recycling facilities and small dismantling workshops in China and analyzed for heavy metals and BFRs. The mean concentration exhibited the following order:Cu (189g/kg)> Sn (33.0g/kg)> Pb (17.1g/kg)> Zn (8.91g/kg)> Ni (1.93g/kg)> PBDEs (0.79g/kg)> Cr (0.44g/kg)> Cd (0.26g/kg)> TBBPA (0.17g/kg), with Pb and Cr exceeding the RoHS regulatory limits. The PBDEs profile in our samples of which BDE-47and BDE-99contributed to the majority were quite comparable with the Penta-BDE technical mixture. It suggested that the Penta-BDE techincal mixture used in WPCB, unlike the case of waste plastic, was one of the direct emission sources of lower-BDEs in the environment. Wide variations of the occurrences of heavy metals and BFRs were found in WPCB samples of different source, production place and date, indicating the WPCB from Chinese and Japanese TV sets produced in1995-2000were most highly polluted among all samples. Sorting of those materials is helpful for accomplishing a better control of the potential pollutant release in the subsequent disposal processes. Substance flow analysis was applied to estimate the pollutant inventories in WPCB and the results showed that the increasing tendency of the cumulative inventory of RoHS regulated substance, e.g., Pb, Cr and PBDEs, began to decline after2006, especially for PBDEs (dropping from30-40%to6%). It evidently showed the positive impact of RoHS direction on reducing the application of hazardous substance in EEE.
     Cu, Zn, Pb, Ni, Cr, Sn and TBBPA were ubiquitous in production wastes collected from a typical PCB plant while Cd and PBDEs were not detected, which was in agreement with the phase-out of hazardous substance in EEE. The low pollutant levels in the effluent showed that limited pollution was released to the environment from well-managed PCB production. The emission factors of pollutants were caculated as follows:Cu> Zn> Sn≈Ni> Pb> Cr>> TBBPA. Emission of heavy metals and BFRs were mainly originated from wet process that consumed rinsing water and dry process that produced solid waste, respectively. Annual emission of Cu to water and land were estimated to be11400and1910kg and those of TBBPA were quite minor (0.02and<0.01kg), which had negligible impact on environment.
     Heavy metals and BFRs levels in PM10and dust samples from PCB production workshop were relatively higher than those in other related locations ever reported in literatures. Significant correlation among heavy metal in PM10samples suggested similar emission sources. However, insignificant correlation in dust samples indicated that emission sources were more complicated for dust. The distribution of pollutant between dust and PM10were characterised by comparing their concentrations in two phases and the results were given in Log (dust/PM10). The heavy metals pollution occurred mainly in the form of PM10with Log (dust/PM10)<0. Contrarily, TBBPA pollution occurred in the form of dust with Log (dust/PM10)>0. According to the Ward's clustering method, the distribution pattern was categoried into3types, depending on the production process involved in the workshop.
     The exposure contribution in workshop presented the following trend:Cu (73.4%)> Sn (10.0%)> Zn (9.38%)> Cr (3.61%)> Pb (2.15%)> Ni (1.09%). TBBPA exposure was quite minor compared to heavy metals but still much higher than the reported value in literature, which indicated that PCB production was an important occupational exposure source of BFRs. Dust ingestion contributed to the majority (69.5%-96.9%) of total exposure pathway. Total Hazardous Index (HI) values of heavy metal exceeded the acceptable level in the milling worshop which suggested potential noncancerous toxic risk to the workers. Carcinogenic risk value of Cr was greater than the threshold value of10"6, suggesting the potential cancerous risk to the worker.
     Heavy metals and BFRs contamination during WPCB dismantling process was investigated based on a typical WEEE recycling facility. In general, dust and PM10samples from the manual pre-dismantling workshop contained higher levels of heavy metals than those from the mechanical dismantling workshop. Pb was the predominate element in the samples from manual pre-dismantling workshop, whlie the mechanical dismantling workshop was mainly polluted by Cu, resulting from the WPCB dismantling activities. The heavy metals pollution occurred mainly in the form of PM10in the dismantling workshop, which was similar to the PCB production. BDE-209was the predominate congener in the environmental samples collected from WPCB dismantling workshop, which was in disagreement with the congener profile in the WPCB material that was predominated by BDE-47and BDE-99. It was mainly attributed to the vapor/particle partitioning of PBDE congeners in ambient air. In addition, the WPCB dismantling workshop might also be influenced by the dismantling activities of other WEEE, such as plastic that contained high concentration of BDE-209. HI values in both dismantling workshops exceeded the acceptable level, which indicated the potential noncancerous toxic risk to the dismantling workers. Carcinogenic risk value of Ni, Cr and were greater than the threshold value of10-6, which suggested that the workers were exposed to the cancerous risk caused by the dismantling of WPCB.
     Leaching tests of WPCB using TCLP and SPLP showed the leaching concentration of Cu> Pb> Sn> Zn> Cr> Cd> Ni, with Cu and Pb being the most leachable elements. In the modified NIES leaching tests, initially leacing concentration of BFRs increased sharply, then maintained or even slightly declined after a certain contact period. The leaching behavior fitted well with first-order exponential decay equation and the leaching ratio was influenced by the leachate, the target substance and the specific surface area of WPCB. The potential leached-out volume of BFRs in domestic landfill sites was estimated to reach101kg by the end of2010. These results showed that BFRs had the potential to leach out in short period and became pollution source to soil, landfill leachate and even underground water ocne WPCB were discarded, dumped or disposed in improper ways.
引文
[1]印刷电路板简介.http://baike.baidu.com.2013.
    [2]祝大同.废弃PCB再利用技术的新进展[J].印制电路信息,2006,6:18-22.
    [3]林金堵,著.现代印制电路先进技术[M].中国印制电路行业协会CPCA及印制电路信息杂志社,2003.
    [4]中国电路板协会.http://www.cpca.org.cn.2012.
    [5]童家庆,著.全球电路板供需分析与台湾未来机会[M].台湾电路板协会,2004.
    [6]台湾电路板协会.http://www.tpca.org.tw.2010
    [7]LaDou J. Printed circuit board industry[J]. International journal of hygiene and environmental health,2006,209(3):211-219.
    [8]Lam C W, Lim S-R,Schoenung J M. Environmental and risk screening for prioritizing pollution prevention opportunities in the US printed wiring board manufacturing industry[J]. Journal of Hazardous Materials,2011,189(1):315-322.
    [9]Biiyukbay B, Ciliz N, Goren G E, et al. Cleaner production application as a sustainable production strategy, in a Turkish Printed Circuit Board Plant[J]. Resources, Conservation & Recycling,2010,54(10):744-751.
    [10]Veit H M, Bernardes A M, Ferreira J Z, et al. Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy [J]. Journal of Hazardous Materials,2006,137(3):1704-1709.
    [11]Bromine Science and Environmental Forum (BSEF), TBBPA factsheet. http://www.bsef.com.2004.
    [12]U.S. EPA, Partnership to evaluate flame retartants in printed circuit boards, design for the environment programe. http://www.epa.gov.2008.
    [13]中国环保部,清洁生产标准-印制电路板制造业(HJ 450-2008).http://www.zhb.gov.cn.2008.
    [14]U.S. EPA, Printed wiring board industry factsheet, design for the environment (DfE) program, http://www.epa.gov.2000.
    [15]Babu B R, Parande A K,Basha C A. Electrical and electronic waste:a global environmental problem[J]. Waste Management & Research,2007,25(4):307-318.
    [16]张宇平,吴韬.从废旧印刷电路板中回收贵金属技术[J].资源再生,2010,12:43-45.
    [17]温雪峰,李金惠,朱雪梅,等.我国废弃电路板资源化现状及其对策[J].矿冶,2005,14(1):66-69.
    [18]白庆中,王晖,韩洁,等.世界废弃印刷电路板的机械处理技术现状[J].环境污染治理技术与设备,2001,2(1):84-89.
    [19]庞磊,朱亦丹,程露,等.浅谈废弃电路板的回收及资源化利用[J].安全,2008,9:7-9.
    [20]Liu X, Tanaka M, Matsui Y. Electrical and electronic waste management in China: progress and the barriers to overcome[J]. Waste Management & Research,2006,24(1): 92-101.
    [21]Deng W, Louie P, Liu W, et al. Atmospheric levels and cytotoxicity of PAHs and heavy metals in TSP and PM2.5 at an electronic waste recycling site in southeast China[J]. Atmospheric Environment,2006,40(36):6945-6955.
    [22]Terazono A, Murakami S, Abe N, et al. Current status and research on E-waste issues in Asia[J]. Journal of Material Cycles & Waste Management,2006,8(1):1-12.
    [23]丘波,彭琳,徐锡金,等.电子废弃物回收拆解业工人健康调查[J].环境与健康杂志,2005,22(6):419-421.
    [24]徐锡金,彭琳,李玮,等.电子废弃物拆解地区儿童血铅水平[J].环境与健康杂志,2006,23(1):58-60.
    [25]韩岱,霍霞,郑良楷,等.电子废物拆解区儿童的血铅和智力情况调查[J].汕头大学医学院学报,2007,20(3):170-172.
    [26]中国环保部,关于加强关于加强废弃电子电气设备环境管理的公告http://www.zhb.gov.cn.2003.
    [27]中国环保部,电子废物污染环境防治管理办法.http://www.zhb.gov.cn.2007.
    [28]Andersson P L, Oberg K,Orn U. Chemical characterization of brominated flame retardants and identification of structurally representative compounds[J]. Environmental Toxicology and Chemistry,2006,25(5):1275-1282.
    [29]Hites R A. Polybrominated diphenyl ethers in the environment and in people:a meta-analysis of concentrations[J]. Environmental science & technology,2004,38(4): 945-956.
    [30]George K W,Haggblom M M. Microbial O-methylation of the flame retardant tetrabromobisphenol-A[J]. Environmental science & technology,2008,42(15): 5555-5561.
    [31]Ballschmiter K, Mennel A,Buyten J. Long chain alkyl-polysiloxanes as non-polar stationary phases in capillary gas chromatography[J]. Fresenius'journal of analytical chemistry,1993,346(4):396-402.
    [32]刘汉霞,张庆华,江桂斌,等.多溴联苯醚及其环境问题[J].化学进展,2005,17(3):554-562.
    [33]United Nations, Stockholm Convention on Persistent Organic Pollutants. http://www.un.org.2004.
    [34]DeCarlo V J. Studies on brominated chemicals in the environment[J]. Annals of the New York Academy of Sciences,1979,320(1):678-681.
    [35]Jiang Y, Wang X, Zhu K, et al. Occurrence, compositional profiles and possible sources of polybrominated diphenyl ethers in urban soils of Shanghai, China[J]. Chemosphere, 2010,80(2):131-136.
    [36]Gevao B, Ghadban A N, Uddin S, et al. Polybrominated diphenyl ethers (PBDEs) in soils along a rural-urban-rural transect:Sources, concentration gradients, and profiles[J]. Environmental Pollution,2011,159(12):3666-3672.
    [37]Jaward F M, Farrar N J, Harner T, et al. Passive air sampling of PCBs, PBDEs, and organochlorine pesticides across Europe[J]. Environmental science & technology,2004, 38(1):34-41.
    [38]Strandberg B, Dodder N G, Basu I, et al. Concentrations and spatial variations of polybrominated diphenyl ethers and other organohalogen compounds in Great Lakes air[J]. Environmental science & technology,2001,35(6):1078-1083.
    [39]Xia K, Luo M B, Lusk C, et al. Polybrominated diphenyl ethers (PBDEs) in biota representing different trophic levels of the Hudson River, New York:from 1999 to 2005[J]. Environmental science & technology,2008,42(12):4331-4337.
    [40]Chen L-G, Mai B-X, Bi X-H, et al. Concentration levels, compositional profiles, and gas-particle partitioning of polybrominated diphenyl ethers in the atmosphere of an urban city in South China[J]. Environmental science & technology,2006,40(4):1190-1196.
    [41]Sun K, Zhao Y, Gao B, et al. Organochlorine pesticides and polybrominated diphenyl ethers in irrigated soils of Beijing, China:levels, inventory and fate[J]. Chemosphere, 2009,77(9):1199-1205.
    [42][42] Ackerman L K, Schwindt A R, Massey Simonich S L, et al. Atmospherically deposited PBDEs, pesticides, PCBs, and PAHs in Western US National Park fish: Concentrations and consumption guidelines[J]. Environmental science & technology, 2008,42(7):2334-2341.
    [43]Wang P, Zhang Q, Wang Y, et al. Altitude dependence of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in surface soil from Tibetan Plateau, China[J]. Chemosphere,2009,76(11):1498-1504.
    [44]Zheng X, Liu X, Jiang G, et al. Distribution of PCBs and PBDEs in soils along the altitudinal gradients of Balang Mountain, the east edge of the Tibetan Plateau[J]. Environmental Pollution,2012,161:101-106.
    [45]De Wit C A, Alaee M,Muir D C. Levels and trends of brominated flame retardants in the Arctic[J]. Chemosphere,2006,64(2):209-233.
    [46]Letcher R J, Bustnes J O, Dietz R, et al. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish[J]. Science of the Total Environment,2010,408(15):2995-3043.
    [47]Watanabe I, Kashimoto T,Tatsukawa R. Polybrominated biphenyl ethers in marine fish, shellfish and river and marine sediments in Japan[J]. Chemosphere,1987,16(10): 2389-2396.
    [48]Lindstrom G, Wingfors H, Dam M, et al. Identification of 19 polybrominated diphenyl ethers (PBDEs) in long-finned pilot whale (Globicephala melas) from the Atlantic [J]. Archives of Environmental Contamination and Toxicology,1999,36(3):355-363.
    [49]de Wit C A. An overview of brominated flame retardants in the environment[J]. Chemosphere,2002,46(5):583-624.
    [50]Luross J M, Alaee M, Sergeant D B, et al. Spatial distribution of polybrominated diphenyl ethers and polybrominated biphenyls in lake trout from the Laurentian Great Lakes [J]. Chemosphere,2002,46(5):665-672.
    [51]Jaspers V, Covaci A, Voorspoels S, et al. Brominated flame retardants and organochlorine pollutants in aquatic and terrestrial predatory birds of Belgium:levels, patterns, tissue distribution and condition factors[J]. Environmental Pollution,2006,139(2):340-352.
    [52]Voorspoels S, Covaci A, Lepom P, et al. Levels and distribution of polybrominated diphenyl ethers in various tissues of birds of prey[J]. Environmental Pollution,2006, 144(1):218-227.
    [53]Elliott J E, Wilson L K,Wakeford B. Polybrominated diphenyl ether trends in eggs of marine and freshwater birds from British Columbia, Canada,1979-2002 [J]. Environmental science & technology,2005,39(15):5584-5591.
    [54]Boon J P, Lewis W E, Tjoen-A-Choy M R, et al. Levels of polybrominated diphenyl ether (PBDE) flame retardants in animals representing different trophic levels of the North Sea food web[J]. Environmental science & technology,2002,36(19):4025-4032.
    [55]Burreau S, Zebuhr Y, Broman D, et al. Biomagnification of PBDEs and PCBs in food webs from the Baltic Sea and the northern Atlantic Ocean[J]. Science of the Total Environment,2006,366(2):659-672.
    [56]Law R J, Alaee M, Allchin C R, et al. Levels and trends of polybrominated diphenylethers and other brominated flame retardants in wildlife [J]. Environment International,2003,29(6):757-770.
    [57]Darnerud P,Thuvander A. Studies on immunological effects of polybrominated diphenyl ether (PBDE) and polychlorinated biphenyl (PCB) exposure in rats and mice[J]. Organohalogen Compounds,1998,35:415-418.
    [58]Hallgren S, Sinjari T, Hakansson H, et al. Effects of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) on thyroid hormone and vitamin A levels in rats and mice[J]. Archives of Toxicology,2001,75(4):200-208.
    [59]European Parliament, Restriction of Hazardous Substances Directive 2002/95/EC (RoHS). http://eur-lex.europa.eu.2003.
    [60]中国环保部,电子信息产品污染控制管理方法.http://www.zhb.gov.cn.2007.
    [61]Saint-Louis R, Pelletier E. LC-ESI-MS-MS method for the analysis of tetrabromobisphenol A in sediment and sewage sludge[J]. Analyst,2004,129(8): 724-730.
    [62]Morris S, Allchin C R, Zegers B N, et al. Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea estuaries and aquatic food webs[J]. Environmental science & technology,2004,38(21):5497-5504.
    [63]曹洋,李莉,杨苏文,等.高效液相色谱法分析湖泊环境介质中的四溴双酚A[J].吉林广播电视大学学报,2010,4:9-10.
    [64]Yang S, Wang S, Liu H, et al. Tetrabromobisphenol A:tissue distribution in fish, and seasonal variation in water and sediment of Lake Chaohu, China[J]. Environmental Science and Pollution Research,2012,19(9):4090-4096.
    [65]Xu J, Zhang Y, Guo C, et al. Levels and distribution of tetrabromobisphenol A and hexabromocyclododecane in Taihu Lake, China[J]. Environmental Toxicology and Chemistry,2013,32(10):2249-2255.
    [66]Berger U, Herzke D,Sandanger T M. Two trace analytical methods for determination of hydroxylated PCBs and other halogenated phenolic compounds in eggs from Norwegian birds of prey[J]. Analytical chemistry,2004,76(2):441-452.
    [67]Cariou R, Antignac J-P, Marchand P, et al. New multiresidue analytical method dedicated to trace level measurement of brominated flame retardants in human biological matrices[J]. Journal of Chromatography A,2005,1100(2):144-152.
    [68]Van der Ven L, Van de Kuil T, Verhoef A, et al. Endocrine effects of tetrabromobisphenol-A (TBBPA) in Wistar rats as tested in a one-generation reproduction study and a subacute toxicity study[J]. Toxicology,2008,245(1):76-89.
    [69]Mariussen E,Fonnum F. The effect of brominated flame retardants on neurotransmitter uptake into rat brain synaptosomes and vesicles[J]. Neurochemistry International,2003, 43(4):533-542.
    [70]Canesi L, Lorusso L C, Ciacci C, et al. Effects of the brominated flame retardant tetrabromobisphenol-A (TBBPA) on cell signaling and function of Mytilus hemocytes: Involvement of MAP kinases and protein kinase C[J]. Aquatic toxicology,2005,75(3): 277-287.
    [71]Ronisz D, Farmen Finne E, Karlsson H, et al. Effects of the brominated flame retardants hexabromocyclododecane (HBCDD), and tetrabromobisphenol A (TBBPA), on hepatic enzymes and other biomarkers in juvenile rainbow trout and feral eelpout[J]. Aquatic toxicology,2004,69(3):229-245.
    [72]彭浩,金军,王英,等.四溴双酚-A及其环境问题[J].环境与健康杂志,2006,23(6):571-573.
    [73]Lee J, Bae H, Jeong J, et al. Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals [J]. Plant Physiology,2003,133(2):589-596.
    [74]Benvenuti M, Mascaro I, Corsini F, et al. Mine waste dumps and heavy metal pollution in abandoned mining district of Boccheggiano (Southern Tuscany, Italy)[J]. Environmental Geology,1997,30(3-4):238-243.
    [75]Nriagu J O,Pacyna J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals[J]. Nature,1988,333(6169):134-139.
    [76]廖国礼,周音达,吴超.尾矿区重金属污染浓度预测模型及其应用[J].中南大学学报:自然科学版,2004,35(6):1009-1013.
    [77]龙丽娟.PCB行业的清洁生产[J].印制电路信息,2005,11:24-26.
    [78]Chang E, Chiang P, Lu P, et al. Comparisons of metal leachability for various wastes by extraction and leaching methods[J]. Chemosphere,2001,45(1):91-99.
    [79]Spalvins E, Dubey B,Townsend T. Impact of electronic waste disposal on lead concentrations in landfill leachate[J]. Environmental science & technology,2008,42(19): 7452-7458.
    [80]Li Y, Richardson J B, Mark Bricka R, et al. Leaching of heavy metals from E-waste in simulated landfill columns[J]. Waste management,2009,29(7):2147-2150.
    [81]Xue M, Yang Y, Ruan J, et al. Assessment of noise and heavy metals (Cr, Cu, Cd, Pb) in the ambience of the production line for recycling waste printed circuit boards[J]. Environmental science & technology,2011,46(1):494-499.
    [82]Fang W, Yang Y,Xu Z. PM10 and PM2.5 and Health Risk Assessment of Heavy Metals in Typical Factory for Cathode Ray Tube Television Recycling[J]. Environmental science & technology,2013,47(21):12469-12476.
    [83]Ansems A, van Gijlswijk R,Huisman J. End of life control and management of heavy metals out of electronics.Electronics and the Environment,2002 IEEE International Symposium on.2002,vol. pp.169-173.
    [84]Gullett B K, Linak W P, Touati A, et al. Characterization of air emissions and residual ash from open burning of electronic wastes during simulated rudimentary recycling operations [J]. Journal of Material Cycles and Waste Management,2007,9(1):69-79.
    [85]中国环保部,生活垃圾焚烧污染标准(GB 18485-2001)http://kjs.mep.gov.cn.2002.
    [86]沈东升,朱荫湄.进口废电器拆解残余固体废物中污染物的溶出试验研究[J].环境科学学报,2001,21(3):382-384.
    [87]Jang Y-C,Townsend T G. Leaching of lead from computer printed wire boards and cathode ray tubes by municipal solid waste landfill leachates[J]. Environmental science & technology,2003,37(20):4778-4784.
    [88]罗勇,罗孝俊,杨中艺,等.电子废物不当处置的重金属污染及其环境风险评价I.电子废物焚烧迹地的重金属污染[J].生态毒理学报,2008,3(1):34-41.
    [89]罗勇,罗孝俊,杨中艺,等.电子废物不当处置的重金属污染及其环境风险评价II.分布于人居环境(村镇)内的电子废物拆解作坊及其附近农田的土壤重金属污染[J].生态毒理学报,2008,3(2):123-129.
    [90]罗勇,罗孝俊,杨中艺,等.电子废物不当处置的重金属污染及其环境风险评价Ⅳ.电子废物不当回收地区流域水体沉积物的重金属污染[J].生态毒理学报,2008,3(4):343-349.
    [91]罗勇,罗孝俊,杨中艺,等.电子废物不当处置的重金属污染及其环境风险评价III.电子废物酸解,焚烧活动对小流域地表水和井水的金属污染[J].生态毒理学报,2008,3(3):231-236.
    [92]U.S. EPA, An exposure assessment of ploybrominated diphenyl ethers. http://www.epa.gov.2010.
    [93]Bi X, Simoneit B R, Wang Z, et al. The major components of particles emitted during recycling of waste printed circuit boards in a typical e-waste workshop of South China[J]. Atmospheric Environment,2010,44(35):4440-4445.
    [94]陈多宏,李丽萍,毕新慧,等.典型电子垃圾拆解区大气中多溴联苯醚的污染[J].环境科学,2008,29(8):2105-2110.
    [95]Duan H, Li J, Liu Y, et al. Characterizing the emission of chlorinated/brominated dibenzo-p-dioxins and furans from low-temperature thermal processing of waste printed circuit board[J]. Environmental Pollution,2012,161:185-191.
    [96]An T, Zhang D, Li G, et al. On-site and off-site atmospheric PBDEs in an electronic dismantling workshop in south China:Gas-particle partitioning and human exposure assessment[J]. Environmental Pollution,2011,159(12):3529-3535.
    [97]Ma J, Addink R, Yun S, et al. Polybrominated dibenzo-p-dioxins/dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in eastern China[J]. Environmental science & technology,2009, 43(19):7350-7356.
    [98]Sjodin A, Carlsson H a, Thuresson K, et al. Flame retardants in indoor air at an electronics recycling plant and at other work environments[J]. Environmental science & technology,2001,35(3):448-454.
    [99]Chen D, Bi X, Zhao J, et al. Pollution characterization and diurnal variation of PBDEs in the atmosphere of an E-waste dismantling region[J]. Environmental Pollution,2009, 157(3):1051-1057.
    [100]Deng W, Zheng J, Bi X, et al. Distribution of PBDEs in air particles from an electronic waste recycling site compared with Guangzhou and Hong Kong, South China[J]. Environment International,2007,33(8):1063-1069.
    [101]Han W, Feng J, Gu Z, et al. Polybrominated diphenyl ethers in the atmosphere of Taizhou, a major e-waste dismantling area in China[J]. Bulletin of environmental contamination and toxicology,2009,83(6):783-788.
    [102]Leung A O, Luksemburg W J, Wong A S, et al. Spatial distribution of polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at Guiyu, an electronic waste recycling site in southeast China[J]. Environmental science & technology,2007,41(8):2730-2737.
    [103]Wong M, Wu S, Deng W, et al. Export of toxic chemicals-a review of the case of uncontrolled electronic-waste recycling[J]. Environmental Pollution,2007,149(2): 131-140.
    [104]Liu H, Zhou Q, Wang Y, et al. E-waste recycling induced polybrominated diphenyl ethers, polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzo-furans pollution in the ambient environment[J]. Environment International,2008,34(1):67-72.
    [105]Luo Q, Cai Z W,Wong M H. Polybrominated diphenyl ethers in fish and sediment from river polluted by electronic waste [J]. Science of the Total Environment,2007, 383(1):115-127.
    [106]Sjodin A, Thuresson K, Hagmar L, et al. Occupational exposure to polybrominated diphenyl ethers at dismantling of electronics-ambient air and human serum analysis[J]. Organohalogen Compounds,1999,43:447-452.
    [107]Jakobsson K, Thuresson K, Rylander L, et al. Exposure to polybrominated diphenyl ethers and tetrabromobisphenol A among computer technicians [J]. Chemosphere,2002, 46(5):709-716.
    [108]孟紫强著.环境毒理学[M].中国环境科学出版社,2000.
    [109]U.S. EPA, Method 1614:Brominated diphenyl ethers in water soil, sediment and tissue by HRGC/HRMS. http://www.epa.gov.2007.
    [110]U.S. EPA, Method 3052:Microwave assisted acid digestion of siliceous and organically based matrices, http://www.epa.gov.1996.
    [111]U.S. EPA, Method 3015A:Microwave assisted acid digestion of aqueous samples and extracts, http://www.epa.gov.1999.
    [112]IEC 62321:Electrotechnical products-Determination of levels of six regulated substances (lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls, polybrominated diphenyl ethers),2008.
    [113]Yang J, Lu B,Xu C. WEEE flow and mitigating measures in China[J]. Waste management,2008,28(9):1589-1597.
    [114]Li J, Lu H, Guo J, et al. Recycle technology for recovering resources and products from waste printed circuit boards[J]. Environmental science & technology,2007,41(6): 1995-2000.
    [115]Wang Y, Luo C, Li J, et al. Characterization of PBDEs in soils and vegetations near an e-waste recycling site in South China[J]. Environmental Pollution,2011,159(10): 2443-2448.
    [116]Mai B, Chen S, Luo X, et al. Distribution of polybrominated diphenyl ethers in sediments of the Pearl River Delta and adjacent South China Sea[J]. Environmental science & technology,2005,39(10):3521-3527.
    [117]Sum E Y. The recovery of metals from electronic scrap[J]. JOM,1991,43(4):53-61.
    [118]Ogunniyi I, Vermaak M,Groot D. Chemical composition and liberation characterization of printed circuit board comminution fines for beneficiation investigations[J]. Waste management,2009,29(7):2140-2146.
    [119]Zhao Y, Wen X, Li B, et al. Recovery of copper from waste printed circuit boards [J]. Minerals & Metallurgical Processing,2004,21(2):99-102.
    [120]Canal Marques A, Cabrera J-M,de Fraga Malfatti C. Printed circuit boards:A review on the perspective of sustainability[J]. Journal of Environmental Management,2013, 131:298-306.
    [121]中国工业和信息化部,电子信息产品中有毒有毒物质限量要求(SJ/T11363-2006.http://www.miit.gov.cn.2006.
    [122]Sakai S-i, Watanabe J, Honda Y, et al. Combustion of brominated flame retardants and behavior of its byproducts [J]. Chemosphere,2001,42(5):519-531.
    [123]Kajiwara N, Noma Y,Takigami H. Brominated and organophosphate flame retardants in selected consumer products on the Japanese market in 2008[J]. Journal of Hazardous Materials,2011,192(3):1250-1259.
    [124]Morf L S, Tremp J, Gloor R, et al. Brominated flame retardants in waste electrical and electronic equipment:substance flows in a recycling plant[J]. Environmental science & technology,2005,39(22):8691-8699.
    [125]Takigami H, Suzuki G, Hirai Y, et al. Transfer of brominated flame retardants from components into dust inside television cabinets[J]. Chemosphere,2008,73(2):161-169.
    [126]Zhou X, Guo J, Lin K, et al. Leaching characteristics of heavy metals and brominated flame retardants from waste printed circuit boards[J]. Journal of Hazardous Materials, 2012,246-247:96-102.
    [127]Li Y, Wang T, Hashi Y, et al. Determination of brominated flame retardants in electrical and electronic equipments with microwave-assisted extraction and gas chromatography-mass spectrometry[J]. Talanta,2009,78(4):1429-1435.
    [128]Schlummer M, Brandl F, Maurer A, et al. Analysis of flame retardant additives in polymer fractions of waste of electric and electronic equipment (WEEE) by means of HPLC-UV/MS and GPC-HPLC-UV[J]. Journal of Chromatography A,2005,1064(1): 39-51.
    [129]La Guardia M J, Hale R C,Harvey E. Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical fiame-retardant mixtures [J]. Environmental science & technology,2006,40(20): 6247-6254.
    [130]Alaee M, Arias P, Sjodin A, et al. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release[J]. Environment International,2003,29(6):683-689.
    [131]Chen S-J, Ma Y-J, Wang J, et al. Brominated flame retardants in children's toys: concentration, composition, and children's exposure and risk assessment[J]. Environmental science & technology,2009,43(11):4200-4206.
    [132]Chen S-J, Ma Y-J, Wang J, et al. Measurement and human exposure assessment of brominated flame retardants in household products from South China[J]. Journal of Hazardous Materials,2010,176(1):979-984.
    [133]黄帆.废弃家电及其回收拆解场地环境介质中多溴联苯醚的研究[D].上海:同济大学,2009.
    [134]Schlummer M, Gruber L, Maurer A, et al. Characterisation of polymer fractions from waste electrical and electronic equipment (WEEE) and implications for waste management[J]. Chemosphere,2007,67(9):1866-1876.
    [135]Tasaki T, Takasuga T, Osako M, et al. Substance flow analysis of brominated flame retardants and related compounds in waste TV sets in Japan[J]. Waste management,2004, 24(6):571-580.
    [136]Li J, Tian B, Liu T, et al. Status quo of e-waste management in mainland China[J]. Journal of Material Cycles and Waste Management,2006,8(1):13-20.
    [137]Jie B Q W H H,Yongfeng N. The status of technology and research of mechanical recycling of printed circuit board scrap [J]. Technigues and Equipment for Enviromental Pollution and Control,2001,2(1):84-89.
    [138]Zhang S, Forssberg E, Arvidson B, et al. Aluminum recovery from electronic scrap by High-Force(?) eddy-current separators [J]. Resources, Conservation and Recycling, 1998,23(4):225-241.
    [139]Yoo J-M, Jeong J, Yoo K, et al. Enrichment of the metallic components from waste printed circuit boards by a mechanical separation process using a stamp mill[J]. Waste management,2009,29(3):1132-1137.
    [140]Chen Y, Li J, Liu L, et al. Polybrominated diphenyl ethers fate in China:A review with an emphasis on environmental contamination levels, human exposure and regulation[J]. Journal of Environmental Management,2012,113:22-30.
    [141]Kemmlein S, Hahn O,Jann O. Emissions of organophosphate and brominated flame retardants from selected consumer products and building materials[J]. Atmospheric Environment,2003,37(39):5485-5493.
    [142]Sepulveda A, Schluep M, Renaud F G, et al. A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling:Examples from China and India[J]. Environmental Impact Assessment Review, 2010,30(1):28-41.
    [143]Thuresson K, Bergman A,Jakobsson K. Occupational exposure to commercial decabromodiphenyl ether in workers manufacturing or handling flame-retarded rubber[J]. Environmental science & technology,2005,39(7):1980-1986.
    [144]Wang D, Cai Z, Jiang G, et al. Determination of polybrominated diphenyl ethers in soil and sediment from an electronic waste recycling facility[J]. Chemosphere,2005, 60(6):810-816.
    [145]陈海斌,付连宇,罗春峰.PCB用微钻技术的趋势研究[J].印制电路信息,2008,8:34-37.
    [146]Huang K, Guo J,Xu Z. Recycling of waste printed circuit boards:A review of current technologies and treatment status in China[J]. Journal of Hazardous Materials,2009, 164(2):399-408.
    [147]Tukker A, Buist H, van Oers L, et al. Risks to health and environment of the use of lead in products in the EU[J]. Resources, Conservation and Recycling,2006,49(2): 89-109.
    [148]公众环境研究中心,IT品牌供应链重金属污染调研报告http://www.ipe.org.cn.2012.
    [149]中国环保部,电镀污染物排放标准(GB 21900-2008)http://kjs.mep.gov.cn.2008.
    [150]Jing C, Min L, XianHua L, et al. Primary research on health risk assessment of heavy metals in road dust of Shanghai [J]. China Environmental Science,2009,29(5):548-554.
    [151]Shi G, Chen Z, Xu S, et al. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China[J]. Environmental Pollution,2008,156(2):251-260.
    [152]中国环保部,环境空气质量标准(GB 3095-1996). http://kjs.mep.gov.cn.1996.
    [153]中国环保部,环境空气质量标准(GB 3095-2012).http://kjs.mep.gov.cn.2012.
    [154]Ragosta M, Caggiano R, D'Emilio M, et al. PM10 and heavy metal measurements in an industrial area of southern Italy[J], Atmospheric Research,2006,81(4):304-319.
    [155]余涛,程新彬,杨忠芳,等.辽宁省典型地区大气颗粒物重金属元素分布特征及对土地质量影响研究[J].地学前缘,2008,15(5):146-154.
    [156]Sellstrom U,Jansson B. Analysis of tetrabromobisphenol A in a product and environmental samples[J]. Chemosphere,1995,31(4):3085-3092.
    [157]Choi K-I, Lee S-H,Osako M. Leaching of brominated flame retardants from TV housing plastics in the presence of dissolved humic matter[J]. Chemosphere,2009,74(3): 460-466.
    [158]马前,胡耀铭.光致抗蚀剂乳化废水中有要物GC/MS分析[J].四川环境,2002,21(3):48-50.
    [159]Kim Y-J, Osako M,Sakai S-i. Leaching characteristics of polybrominated diphenyl ethers (PBDEs) from flame-retardant plastics[J]. Chemosphere,2006,65(3):506-513.
    [160]Hakk H,Letcher R J. Metabolism in the toxicokinetics and fate of brominated flame retardants-a review[J]. Environment International,2003,29(6):801-828.
    [161]Yang C, Meng X-Z, Chen L, et al. Polybrominated diphenyl ethers in sewage sludge from Shanghai, China:possible ecological risk applied to agricultural land[J]. Chemosphere,2011,85(3):418-423.
    [162]Peng X, Tang C, Yu Y, et al. Concentrations, transport, fate, and releases of polybrominated diphenyl ethers in sewage treatment plants in the Pearl River Delta, South China[J]. Environment International,2009,35(2):303-309.
    [163]Hwang I-K, Kang H-H, Lee I-S, et al. Assessment of characteristic distribution of PCDD/Fs and BFRs in sludge generated at municipal and industrial wastewater treatment plants[J]. Chemosphere,2012,88(7):888-894.
    [164]North K D. Tracking polybrominated diphenyl ether releases in a wastewater treatment plant effluent, Palo Alto, California[J]. Environmental science & technology, 2004,38(17):4484-4488.
    [165]Song M, Chu S, Letcher R J, et al. Fate, partitioning, and mass loading of polybrominated diphenyl ethers (PBDEs) during the treatment processing of municipal sewage[J]. Environmental science & technology,2006,40(20):6241-6246.
    [166]Bacaloni A, Callipo L, Corradini E, et al. Liquid chromatography-negative ion atmospheric pressure photoionization tandem mass spectrometry for the determination of brominated flame retardants in environmental water and industrial effluents [J]. Journal of Chromatography A,2009,1216(36):6400-6409.
    [167]Abdallah M A-E, Harrad S,Covaci A. Hexabromocyclododecanes and tetrabromobisphenol-A in indoor air and dust in Birmingham, UK:implications for human exposure[J]. Environmental science & technology,2008,42(18):6855-6861.
    [168]Takigami H, Suzuki G, Hirai Y, et al. Flame retardants in indoor dust and air of a hotel in Japan[J]. Environment International,2009,35(4):688-693.
    [169]Takigami H, Suzuki G, Hirai Y, et al. Brominated flame retardants and other polyhalogenated compounds in indoor air and dust from two houses in Japan[J]. Chemosphere,2009,76(2):270-277.
    [170]Ni H-G,Zeng H. HBCD and TBBPA in particulate phase of indoor air in Shenzhen, China[J]. Science of the Total Environment,2013, (458-460):15-19.
    [171]Covaci A, Voorspoels S, Abdallah M A-E, et al. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives [J]. Journal of Chromatography A,2009,1216(3):346-363.
    [172]Herat S. Environmental impacts and use of brominated flame retardants in electrical and electronic equipment[J]. The Environmentalist,2008,28(4):348-357.
    [173]Geens T, Roosens L, Neels H, et al. Assessment of human exposure to Bisphenol-A, Triclosan and Tetrabromobisphenol-A through indoor dust intake in Belgium[J]. Chemosphere,2009,76(6):755-760.
    [174]Rosenberg C, Hameila M, Tornaeus J, et al. Exposure to flame retardants in electronics recycling sites[J]. Annals of Occupational Hygiene,2011,55(6):658-665.
    [175]Johnson-Restrepo B,Kannan K. An assessment of sources and pathways of human exposure to polybrominated diphenyl ethers in the United States[J]. Chemosphere,2009, 76(4):542-548.
    [176]全国污染源普查.http://cpsc.mep.gov.cn.2013.
    [177]Tu Y-J, Chang C-K, You C-F, et al. Recycling of Cu powder from industrial sludge by combined acid leaching, chemical exchange and ferrite process [J]. Journal of Hazardous Materials,2010,181(1):981-985.
    [178]Brominated Science and Environmental Forum (BSEF), The Voluntary Emissions Control Action Programme (VECAP):European annual progress report. http://www.vecap.info.2011.
    [179]The Ministry of the Environment of Japan, http://www.env.go. jp.2005.
    [180]U.S. EPA, Exposure Factors Handbook Revised (EPA/600/R-09/052A). http://www.epa.gov.2011.
    [181]段小丽,著.暴露参数的研究方法及其在环境健康风险评价中的应用[M].科学出版社,2012.
    [182]中国卫生部,2007中国卫生统计年鉴http://www.moh.gov.cn.2007.
    [183]U.S. EPA, Risk assessment guidance for superfund volume I human health evaluation manual (Part A), http://www.epa.gov.1989.
    [184]王宗爽,武婷,段小丽,等.环境健康风险评价中我国居民呼吸速率暴露参数研究[J].环境科学研究,2009,10:1171-1175.
    [185]Thomsen C, Lundanes E,Becher G. Brominated flame retardants in plasma samples from three different occupational groups in Norway[J]. Journal of Environmental Monitoring,2001,3(4):366-370.
    [186]李丽娜.上海市多介质环境中持久性毒害污染物的健康风险评价[D].上海:华东师范大学,2007.
    [187]Ferreira-Baptista L,De Miguel E. Geochemistry and risk assessment of street dust in Luanda, Angola:a tropical urban environment[J]. Atmospheric Environment,2005, 39(25):4501-4512.
    [188]张仲仪.印制电路板产污环节分析和清洁生产[J].印制电路信息,2008,6:52-59.
    [189]张海龙,李祥平,齐剑英,等.生活垃圾焚烧处理设施周边环境重金属污染健康风险评价[J].农业环境科学学报,2013,32(8):1670-1676.
    [190]Leung A, Cai Z W,Wong M H. Environmental contamination from electronic waste recycling at Guiyu, southeast China[J]. Journal of Material Cycles and Waste Management,2006,8(1):21-33.
    [191]Dimitrakakis E, Janz A, Bilitewski B, et al. Small WEEE:determining recyclables and hazardous substances in plastics[J]. Journal of Hazardous Materials,2009,161(2): 913-919.
    [192]Tsydenova O,Bengtsson M. Chemical hazards associated with treatment of waste electrical and electronic equipment[J]. Waste management,2011,31(1):45-58.
    [193]Chancerel P, Meskers C E, Hageluken C, et al. Assessment of precious metal flows during preprocessing of waste electrical and electronic equipment[J]. Journal of Industrial Ecology,2009,13(5):791-810.
    [194]Leung A O, Duzgoren-Aydin N S, Cheung K, et al. Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China[J]. Environmental science & technology,2008,42(7):2674-2680.
    [195]Wen S, Yang F-X, Gong Y, et al. Elevated levels of urinary 8-hydroxy-2'-deoxyguanosine in male electrical and electronic equipment dismantling workers exposed to high concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans, polybrominated diphenyl ethers, and polychlorinated biphenyls[J]. Environmental science & technology,2008,42(11):4202-4207.
    [196]Wager P A, Schluep M, Muller E, et al. RoHS regulated substances in mixed plastics from waste electrical and electronic equipment[J]. Environmental science & technology, 2011,46(2):628-635.
    [197]Leung A O, Zheng J, Yu C K, et al. Polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in surface dust at an e-waste processing site in Southeast China[J]. Environmental science & technology,2011,45(13): 5775-5782.
    [198]Robinson B H. E-waste:an assessment of global production and environmental impacts[J]. Science of the Total Environment,2009,408(2):183-191.
    [199]Yu J, Williams E, Ju M, et al. Managing e-waste in China:Policies, pilot projects and alternative approaches[J]. Resources, Conservation and Recycling,2010,54(11): 991-999.
    [200]Lincoln J D, Ogunseitan O A, Shapiro A A, et al. Leaching assessments of hazardous materials in cellular telephones [J]. Environmental science & technology,2007,41(7): 2572-2578.
    [201]U.S. EPA, Method 1311:Toxicity characteristic leaching procedure. http://www.epa.gov.1990.
    [202]U.S. EPA, Method 1312:Synthetic precipitation leaching procedure. http://www.epa.gov.1994.
    [203]Hale R C, La Guardia M J, Harvey E, et al. Potential role of fire retardant-treated polyurethane foam as a source of brominated diphenyl ethers to the US environment[J]. Chemosphere,2002,46(5):729-735.
    [204]Guo J, Jiang Y, Hu X, et al. Volatile organic compounds and metal leaching from composite products made from fiberglass-resin portion of printed circuit board waste[J]. Environmental science & technology,2011,46(2):1028-1034.
    [205]Lim S-R, Kang D, Ogunseitan O A, et al. Potential environmental impacts of light-emitting diodes (LEDs):metallic resources, toxicity, and hazardous waste classification[J]. Environmental science & technology,2010,45(1):320-327.
    [206]中国环保部,固体废物浸出毒性浸出方法-醋酸缓冲溶液法(HJ/T 300-2007).http://www.moh.gov.cn.2007.
    [207]中国环保部,固体废物浸出毒性浸出方法-硫酸硝酸法(HJ/T 299-2007).http://www.moh.gov.cn.2007.
    [208]中国环保部,危险废物鉴别标准-浸出毒性标准(GB 5085.3-2007).http://www.moh.gov.cn.2007.
    [209]Odusanya D O, Okonkwo J O,Botha B. Polybrominated diphenyl ethers (PBDEs) in leachates from selected landfill sites in South Africa[J]. Waste Management,2009,29(1): 96-102.
    [210]Oliaei F, King P,Phillips L. Occurrence and concentrations of polybrominsted diphenyle ethers (PBDES) in minnesota environment[J].Organohalogen Compounds, 2002,58(185-188.
    [211]Osako M, Kim Y-J,Sakai S-i. Leaching of brominated flame retardants in leachate from landfills in Japan[J]. Chemosphere,2004,57(10):1571-1579.
    [212]Cousins I 著. Series anthropogenic compounds[M]. Springer,2003.
    [213]Opperhulzen A, Volde E W, Gobas F A, et al. Relationship between bioconcentration in fish and steric factors of hydrophobic chemicals[J]. Chemosphere,1985,14(11): 1871-1896.
    [214]Kuramochi H, Maeda K,Kawamoto K. Physicochemical properties of selected polybrominated diphenyl ethers and extension of the UNIFAC model to brominated aromatic compounds[J]. Chemosphere,2007,67(9):1858-1865.
    [215]Chi F-H,Amy G L. Transport of anthracene and benz(a)anthracene through iron-quartz and three aquifer materials in laboratory columns[J]. Chemosphere,2004, 55(4):515-524.
    [216]Kim S-B,Corapcioglu M Y. Contaminant transport in riverbank filtration in the presence of dissolved organic matter and bacteria:a kinetic approach[J]. Journal of Hydrology,2002,266(3):269-283.
    [217]Kim Y,Lee D. Solubility enhancement of PCDD/F in the presence of dissolved humic matter[J]. Journal of Hazardous Materials,2002,91(1):113-127.
    [218]Huang Q, Wang Q, Dong L, et al. The current situation of solid waste management in China[J]. Journal of Material Cycles and Waste Management,2006,8(1):63-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700