用户名: 密码: 验证码:
竹重组材/OSB复合材料工艺研究与性能预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竹重组材,是将竹材重新组织并加以强化成型的一种竹质新材料,具有原料利用率高、强度高、材质均匀、加工性能好等优点。十年来,我国以毛竹为主要原料的竹重组材产业发展迅猛,产品逐步应用于建筑、工程、结构等高附加值领域。我国杨木等速生木材资源丰富,是制造胶合板、纤维板和刨花板的优等原料,应用十分广泛。本文提出以竹重组材和OSB(定向刨花板)为复合单元制造竹重组材/OSB复合材料的理念,探讨复合材料的设计、工艺、性能和应用,具有良好的发展前景。在毛竹和重组后竹材的基本物理力学性能基础上,比较了两者在微观构造和性能上的差异,研究了毛竹重组材和杨木OSB结构特性和表面性能,基于产业化前景的考虑,从工艺条件和生产成本两方面,分别对热压和冷压生产过程进行分析,研究适合毛竹重组材和杨木OSB材料特性的胶合工艺以及复合形式对复合材性能的影响。在确定竹重组材与OSB复合工艺的基础上,利用经典层合板理论,分别建立了竹木层合板的弹性模量以及静曲强度的预测模型,编制了基于VB的竹木层合板弯曲性能预测程序。采用有限元方法,对竹木层合板弯曲行为进行分析以及厚度优化设计,得出了基于有限元分析的竹木层合材料弯曲性能的预测方法,并用竹重组材/OSB集装箱底板的实例验证。论文的主要研究结论如下:
     (1)竹材的纤维体积分数Vy沿径向由青向黄侧梯度减小,重组后竹材内部结构发生变化,靠近髓环侧的韧皮纤维变得致密,大部分区域的Vy值在50%上下,但是临近髓环区域的Vy值维持不变。
     (2)炭化处理对于算数平均偏差(Ra)、微观不平度十点高度(Rz)及轮廓最大高度(Rmax)这三种指标的影响均不显著。随着砂纸目数的增大,砂光后竹重组材表面越光滑,算数平均偏差(Ra)、微观不平度十点高度(Rz)及轮廓最大高度(Rmax)值越小。刨切后表面(BS-B)与100目砂纸砂光后的粗糙度(BS-100)比较接近。总的来说,竹重组材纵纹粗糙度参数远小于横纹,同种测量条件下,前者值不到后者的一半。目数越小砂纸砂光处理的竹重组材表面水接触角相对越小。
     (3)利用PUR胶冷压制备竹重组材/OSB复合材料,较优的工艺参数为时间1.5min/mm;单面涂胶量200g/m2;压力1.2MPa。
     (4)对于竹重组材/OSB复合材料,适当增加竹质材料厚度或者纵横组坯,可使复合材整体获得更高的刚度值。铺层方向的变化(纵横组坯),可以改善复合材的尺寸稳定性。对于给定厚度的竹重组材,增加层数并不显著地影响复合材整体的强度值和刚度值。背衬无纺布(纸)可明显降低复合材的尺寸稳定性。
     (5)在最终产品性能方面,与竹重组材复合,可显著地提升OSB的抗弯性能。位于表层的竹材很好地避免了应力集中引起的结构破坏,验证了三层夹层结构(强-弱-强)是一种合理的结构组合。有限元模型可以较精确地预测层合板弹性区域内的刚度值,且三维模型比二维模型更为精确;但对于强度预测来说,更精准的预测需要进一步改善模型。
     (6)利用Altair Optistruct结构分析和优化工具,优化后的厚度能满足工程应用的安全需要,该优化方法在工程实际中验证是可行的。对于竹重组材/木质定向刨花板/竹重组材三层结构的层合板类人造板而言,采用优化后的铺层结构对比由传统公式计算出的铺层结构,在木质材料不变的情况下,竹材使用量节省三分之一。
Bamboo scrimber is reorganized and reinforced by raw bamboo which is a kind of newbamboo composite. Its advantages include high utilization rate of raw materials, high strength,uniform texture, good processing performance. For a decade, china’s MOSO bamboo scrimberindustry being develop rapidly, products have been used in the field of construction,engineering, strcture etc, gradually. Meanwhile, the poplar, a important fast-growing timberresources in china, is a wonderful substitute resource to manufacture plywood, fiberboard, andparticleboard. In this paper, the idea of bamboo scrimber and OSB composite was proposed,that laminated by bamboo scrimber and OSB has been proved have a broad prospects fordevelopment, and the design construction, process, performance and application of thiscomposite were discussed. Based on the physical and mechanical properties of MOSO naturalbamboo and bamboo scrimber, the differences of micro structure and performance betweenthem were studied. The structure features and surface properties of bamboo scrimber andpoplar OSB were also studied. Based on considerations of industrialization prospect, the hotand cold pressing production processes were analyzed in aspects of process conditions andproduction cost, respectively. The combination technology and the effect of laminate form oncomposite properties were studied and the optimal factors were decided. The classicallaminated plate theory was used to established the MOR and MOE models of bamboo-woodlaminate, and the VB program was coded. The Finite element method (FEM) was used toanalysis and optimize the bending behaviors of bamboo-wood laminate, the prediction methodbased on FEM was finally obtained and the example of bamboo-wood laminate container floorwas used to tested. The main conclusions of this paper are following:
     (1) Vyis the fiber volume fraction of bamboo composite. The Vyvalue along the radialgradient decreases from outer to inner side. The internal construction was changed afterreforming, the bast fibers become dense near pith ring side, whose Vyvalue around50%in most area, and the value remain constant near the pith ring. After reforming, most of theparenchyma of the pores, the vessels between vascular bundlesand sieve tubes weredisappeared, the circular shape of the vascular bundle also changed to elliptic and theparenchyma were largely removed by rolling process. The density and evenness of wholestructure were improved because of PF adhesive cured as the substrate. Overall, The basicproperties of bamboo scrimber increased with the increased of density, and the magnitude ofbamboo modulus is higher than strength’s. The radial shrinkage rate greater than tangential’sand the bulk shrinkage rate of bamboo scrimber (48%compressive rate) is greater than naturalbamboo.
     (2) Due to the heating volatilization rate differences and the effects of extraction,carbonized process make the surface of bamboo scrimber become rough. The influence ofarithmetic average deviation (Ra) and the point height of irregularities (Rz) and maximumheight of profile (Rmax) were not significant. With the mesh of sand paper increase, sandedbamboo scrimber surface more smooth and Ra, Rzand Rmaxvalues smaller. The roughnessvalues of surface treated by sliced and100mesh sandpaper are near. In general, thelongitudinal roughness values is far less than transverse grain, the former is half of the latterunder the same measure condition. For UF, PF, EPI, PUR and water, the change rate on theouter surface and contact angle are smaller than the inner’s, the wettability of bamboo joint isweak.
     (3) Compare to PF heat-press process, the advantages of PUR cold-press process includefree pollution, low cost, low energy consumption and higher efficiency. For annual productionof1million m2of3-layers bamboo scrimber and OSB composite manufacture, the unit cost ofthe cold-press process lower12.52yuan than PF heat-press process. The optimum processconditions are1.5min/mm of press time,200g/m2of single gule content and1.2MPa of press.
     (4) To make the composite obtained higher stiffness, appropriate increase thickness andcriss-cross lay seen to be the optional way. The change of layer direction could improve thedimensional stability. For a given thickness of bamboo layer, the increase of layer does not influence the properties of composite, significantly. Add of nonwoven fabrics decrease thedimensional stability of composite significantly.
     (5) In terms of the end product performance, laminating with bamboo scrimber, is a kindof rational way to improve the bending properties. It is proven that the bamboo is a promisingreinforced material. The bamboo located in the surface to support the stress concentration ofthe structure, to verify the three layers of laminated structure (strong-weak-strong) is a kindof rational structure combination. The FE model can accurately predict the stiffness of laminate,and3-D model is proven more accurate than the2-D model. For strength prediction, the furtherimproved model is need.
     (6) The Altair Optistruct structure analysis and optimization tool are proven feasible,optimized thickness can meet the security needs of the engineering application. For3-layeredbamboo scrimber and OSB composite, compare with traditional structure, the optimized layerstructure save a third of bamboo usage.
引文
安秉华.刨花板行业面临的挑战与发展趋势.林业经济,2011,7:76-80
    鲍甫成,刘盛全.人工林场树材性与生长轮年龄和生长速度关系的模型.林业科学,1999,(1):77-82
    鲍甫成,吕建雄.木材渗透性可控制原理的研究.林业科学,1992,28(4):336-342
    鲍甫成,傅峰.人工林杨木材性对单板层积材强度的贡献率.林业科学,1999,35(2):87-94
    鲍逸培.竹木复合集装箱底板开发与研究.建筑人造板,1997,(3):13-16
    程传煊.表面物理化学.北京:科学出版社,1999,111-153
    陈靖.中国现行基本经济制度下的产业政策特征研究.上海:复旦大学博士论文,2003
    崔举庆,吴春,金菊婉,等.竹刨花防腐处理对酚醛树脂固化的影响.东北林业大学学报,2012,40(12):108-117
    川井秀一.竹材层积高性能复合材料的开发研究.京都大学.京都大学科学研究成果报告书,1996
    程瑞香,顾继友.落叶松、桦木和柞木木材表面的润湿性能.东北林业大学学报,2002,30(3):29-31
    程瑞香,张齐生.无纺布强化刨切微薄竹生产中应注意的几个问题.林产工业,2004,31(6):40-42
    陈伟,宋维明.我国木质林产品产业内贸易现状分析.林业经济,2010
    程秀才,张晓冬,张齐生,等.浸渍塑化竹材弯曲性能的研究.竹子研究汇刊,2008,27(4):41-47
    陈晓东,孙永平,郭志平,等.基于有限元的单向玻璃纤维环氧树脂复合材料纵向模量有效预测方法.纤维复合材料,2008,33(5):21-24
    陈绪和.人造板工业发展态势.木材工业,2005,(1):7-15
    陈绪和,郝颖.国际人造板工业发展趋势.中国人造板,2006,(1):5-9
    陈岳仑,王进武.工程结构才概述.广东林业科技,1997,13(2):45-48
    丁定安,孙晓东,李阳.原竹对剖连丝展开片材加工与竹木复合层积材制造技术.中南林业科技大学学报,2010,30(8):100-103
    杜春贵,李延军,刘志坤.刨切薄竹贴面中密度纤维板工艺研究.木材工业,2005,19(3):16-19
    戴棣,乔新.复合材料层合板的非同步固化翘曲变形分析.南京航空航天大学学报,2000,42(1):63-68
    方括,张青,闫国华.应用ANSYS的复合材料层合板静强度预测.玻璃钢/复合材料,2011(1):11-18
    房桂干,谢国恩,李萍.10种速生材制化学机械浆适应性综合评估的研究.林产化学与工业,2001(2):21-28
    范毛仔,许若璇,杨爱和.碎单板竹片平行胶合材的研究.木材工业,1995,9(1):13-15
    傅万四.竹材是我国制造OSB的一种潜在原料.林产工业,2007,(2):14-48
    范振富,高瑞龙,王杰铃.香椿人工林和天然林木材纤维形态和化学成分比较研究.亚热带植物科学,2003,32(3):35-37
    樊振国,吴章康. GFRP/MDF复合板力学性能预测与分析.南京林业大学学报,2010,34(6):161-163
    国家林业局.全国竹产业发展规划(2013~2020),2013.6,
    高黎,王正,任一萍.热压工艺曲线对竹篾胶合板性能的影响.木材加工机械,2012,5:22-25
    龚蒙.木材性质和利用.南京林业大学硕士论文,1990
    关明杰.竹木复合材料湿热效应研究.南京林业大学博士论文,2006
    关明杰,张齐生.竹材湿热效应的动态热机械分析.南京林业大学学报,2006,30(5):65-68
    关明杰,朱一辛,张晓冬,等.湿热条件对木竹复合胶合板弯曲性能的影响.南京林业大学学报,2005,29(6):106-108
    宫入裕夫.复合材料与生物功能.纤维复合材料,1998,(4):61-65
    郭秀君.出口退税政策调整对林产品出口企业的影响及对策分析——以竹制品出口企业为例.北京林业大学学报(社会科学版),2009,8(4):74-77
    郝福荣,孙科,管海辉,等.发挥杨树资源优势,加速林业产业发展.防护林科技,2012,5:91-93
    贺宏奎,李效东,常建民,等.速生杨密实材主要力学性能的检测.西北农林科技大学学报,2008,36(7):155-164
    黄立新,李双蓓,周小军,刘勇.基于ABAQUS的各向异性复合材料梁的分析研究.广西大学学报,2007,32(2):176-181
    洪清泉,易俊杰. HyperWorks复合材料仿真优化技术及应用.航空制造技术,2012,3:56-58
    洪清泉,邬旭辉.基于Altair Optistruct的复合材料优化技术.航空制造技术,2008,22:102-105
    蒋长顺,谢扩军,许海峰,等.封装中的界面热应力分析.电子与封装,2006,6(8):23-26
    蒋持平.预测纤维复合材料有效模量的分级模型.复合材料学报,1998,15(2):1-8
    江国栋,王庭慰.水性聚氨酯胶研究及应用.中国胶粘剂,2002,11(6):50-54
    冀克俭,邓卫华,张银生,等.新型酚醛树脂固化过程的表征研究.工程塑料应用,2003,31(4):44-47
    季庆娟,刘胜平.酚醛树脂固化动力学研究.热固性树脂,2006,21(5):10-12
    江泽慧.世界竹藤.沈阳:辽宁科学技术出版社,2002
    江泽慧.加速推进我国竹产业发展.林业经济,2002,(1):9-12
    江泽慧.以科学发展观为知道加快中国竹产业发展进程.绿色中国,2005,(24):5-8
    江泽慧,孙正军,任海青.先进生物质复合材料在风电叶片中的应用.复合材料学报,2006,26(26):127-129
    江泽慧,王戈,费本华,等.竹木复合材料的研究及发展.林业科学研究,2002,15(6):712-718
    江泽慧,于文吉,余养伦.竹材表面润性研究.竹子研究汇刊,2005,24(4):31-38
    刘波,陈志勇,殷亚方,等.两项竹材物理力学性质试验方法标准的比较.木材工业,2008,22(4):26-29
    李本贵.内应力释放对刨花板尺寸稳定性的影响分析.中南林学院学报,2006,26(3):78-81
    陆冬贞,孙杰.我国聚氨酯胶粘剂的发展现状及趋势.聚氨酯工业,2006,21(4):1-5
    李欢,路明.基于Optistruct的压缩机支架优化设计.汽车工程师,2013,5:29-35
    刘杰,李建林,胡海浪,等.基于有限元分析的岩质边坡稳定性模糊评判方法研究.岩石力学与工程学报,2007,26(1):3438-3444
    骆嘉言,林金国,李大岔,等.香椿人工林和天然林木材材性的比较研究.西北林学院学报,2003,18(2):77-79
    李君,姚学锋,刘应华,等.复合材料T型整体化结构固化翘曲变形模拟.复合材料学报,2009,26(1):156-161
    李凯夫,高振忠.刨花板热应力的研究.华南农业大学学报,2001,22(1):81-84
    李玲,李大纲,徐平,等.竹木复合层合板疲劳与循环蠕变的累积损伤研究.第十一届全国包装工程学术会议论文专栏,1-3
    李玲,李大纲,徐平,等.竹木复合材料托盘力学性能的研究.包装工程,2005,26(3):8-9
    李鹏,胡传双,李凯夫,等.尾巨桉单板/金属网复合层积材弯曲刚度模型的构建.华南农业大学学报,2008,29(3):96-100
    李琴,华锡奇,戚连忠.竹重组材发展前景展望.竹子研究汇刊,2001,20(1):76-80
    李琴,华锡奇,许晓婉.我国竹材人造板开发现状与研究方向.浙江林业科技,2000,20(3):79-85
    刘庆,侯献军.基于HyperMesh/Optistruct的汽车零部件结构拓扑优化设计.装备制造技术,2008,10:42-45
    李淑君,陶毓博,李坚,等.用TG-DSC-FTIR联用技术研究酚醛树脂的热解行为.东北林业大学学报,2007,35(6):33-42
    卢晓宁,陈宇聪,陈颖.速生杨木单板顺纹弹性模量预测模型.南京林业大学学报,2002,26(3):9-13
    卢晓宁,黄河浪,杜以诚.速生杨木单板横纹弹性模量预测模型.南京林业大学学报,2003,27:221-24
    卢晓宁,王志强,杜以诚,等.速生杨木单板面内剪切模量预测模型.南京林业大学学报,2006,30(1):93-94
    罗晓沛,侯炳辉.系统分析员教程.北京:清华大学出版社,2003
    刘元.热处理对水与木材接触角的影响.中南林学院学报,1993,13(2):136-140
    吕毅,吕国志,吕胜利.细观力学方法预测单向复合材料的宏观弹性模量.西北工业大学学报,2006,24(6):787-790
    李延军,杜春贵,鲍滨福,等.大幅面刨切薄竹的生产工艺.木材工业,2003,30(3):36-39
    李延军,杜春贵,刘志坤,等.刨切薄竹的发展前景与生产技术.林产工业,2008,10:42-45
    李延军,孙会,林勇,等.刨切微薄竹贴面胶合板加工工艺研究.浙江林业科技,2007,27(4):54-56
    李延军,于利,董升忠,等.刨切薄竹贴面刨花板加工工艺研究.竹子研究汇刊,2011,30(1):41-43
    黎祖交.中国林业发展的大趋势.林业经济,2003,(11):26-30
    刘志坤,胡娜娜.竹木复合积成材生产工艺研究.林产工业,2007,34(5):26-29
    李志仁.中国纤维板与刨花板设备的现状及发展.国际木业,2006,(11):22-25
    梅长彤.组坯结构与人造板性能关系的基础研究.南京林业大学,2004
    马红霞.毛竹/杉木层积复合材料胶合界面胶合性能及其影响因素研究.北京:中国林业科学研究院,2009
    马贞,唐立华.浅析榫结构的应用及优化方式.中南林业科技大学学报(社会科学版),2012,6(2):176-178
    那斌,卢晓宁.胶合板弹性特性预测.建筑人造板,2002(1):31-33
    那斌,卢晓宁,A. PIZZl.结构用高含水率木材的胶合研究概况.木材工业,2009,23(5):31-33
    秦特夫,阎昊鹏.木材酯化和接枝共聚处理对木材表面自由能影响的研究.林业科学,2001,37(2):97-100
    日本农林标准JASAMD-2003,结构用层积材
    任丽敏,王逢瑚,张利,等.薄竹贴面稻草板的制备与性能分析.功能材料,2013,7(44):1048-1058
    孙丰文.竹木复合集装箱底板静曲强度的预测模型.南京林业大学学报,2006,30(5):10-13
    沈观林.复合材料力学.北京:清华大学出版社,2006
    宋明鑫,王石建,高婧,等.单板热压后密度模型研究.南京林业大学学报,2012,36(4):112-114
    单炜,李玉顺.竹材在建筑结构中的应用前景分析.森林工程,2008,24(2):62-65
    宋永春,徐输.建筑业项目成本管理方法探析.知识经济,2010(18):87-87
    孙永平,郭志平,陈晓东,等.单向玻璃纤维复合材料纵向弹性模量有效预测方法的研究.高科技纤维与应用,2008,33(5):21-24
    孙照斌,杨雪慧,张立宾.木塑材料夹芯复合胶合板工艺的初步研究.木材加工机械,2012,23(5):5-8
    孙正军,程强,江泽慧.竹质工程材料的制造方法与性能.复合材料学报,2008,25(1):80-83
    史忠良.产业经济学.北京:经济管理出版社,1998
    唐勇,张翔,杨冰.阻燃型无甲醛双组分水性聚氨酯木材胶黏剂的研究.林产化学与工业,2008,2(3):35-38
    唐永裕.竹材利用现状及开发方向探讨.竹子研究汇刊,2001,20(3):36-43
    唐永裕.竹材资源的工业性开发利用.竹子研究汇刊,1997,16(2):26-33
    王超,梁钒,黄玉东.胶粘剂固化行为对性能的影响.中国胶粘剂,2005,14(10):14-16
    王春敏.纤维束的弹性性能.纤维复合材料,2006,22(3):32-34
    王方华,吕巍.企业战略管理.上海:复旦大学出版社,1997
    王戈.毛竹/杉木层积复合材料及其性能.中国林业科学研究院博士论文,2003
    汪厚冰,柴亚南,迟坚,等.复合材料界面剪切强度试验方法研究.结构强度研究,2012(3):9-13
    王海田,叶春香.单组分PUR胶生产实木复合地板的成本分析.木材工业,2008,22(1):31-33
    王海田,叶春香.单组分聚氨酯胶生产多层复合地板工艺分析.木材工业,2007,21(1):42-44
    王海英,左俊平,孙忠民,等.基于有限元分析的堵板厚度设计.控制工程,2012,19(5):780-782
    王恺,张奕.积极开发木质复合材料,优化木材资源高效利用.木材工业,1990,4(1):10-20
    王恺,管宁.生态建设与木材工业.中国林业,2001,(05A):10-12
    汪奎宏,李琴,高小辉.竹类资源利用现状及深度开发.竹子研究汇刊,2000,19(4):72-75
    王满.提升中国人造板产业国际竞争力的七个策略.中国绿色时报,2008,(6):9-12
    王满,孙志刚,陈圣林.把脉中国人造板产业竞争力.中国林业产业,2008,(6):19-22
    吴平.精心做好竹产业这篇大文章.中国经济时报,2010-09-27,(005)
    王培元,施建平.国家八五科技攻关项目短周期工业材制造刨花板适应性研究.世界林业研究,1996,6(专集):1-104
    王泉中,张晓冬,周雪华.湿效应对竹木复合材料刚度性能的影响.浙江林学院学报,2010,27(4):591-594
    王淑娟,鹿振友,徐曼琼,等.单板层积材热效应的表征.北京林业大学学报,2002,24(3):10-13
    王思群,华毓坤,董士琴.竹木复合定向刨花板强度性能研究.木材工业,1991,5(3):6-9
    魏万姝,覃道春.不同竹龄慈竹重组材强度和天然耐久性比较.南京林业大学学报,2011,35(6):111-115
    吴章康,张宏健,黄素永,等.竹木复合中密度纤维板工艺条件的研究.木材工业,2000,14(3):7-10
    吴智慧.高频介质加热技术在木材工业中的应用.世界林业研究,1994,7(6):30-36
    王志强,郭飞燕,卢晓宁,等.速生树种胶合板弯曲弹性性能优化设计.南京林业大学学报,2009,33(1):30-32
    王志强,季雪平,卢晓宁,等.强化复合地板刚度预测.浙江林学院学报,2010,27(5):646-650
    王志强,卢晓宁,陈虞平.经典层合板刚度模型在胶合板中的应用.南京林业大学学报,2007,31(3):8-12
    王志强,卢晓宁,肖忠平.胶合板湿变形预测模型.南京林业大学学报,2010,34(1):101-103
    王志强,卢晓宁,朱月虎,等.不对称人造板的结构设计.南京林业大学学报,2006,30(3):23-26
    吴志文,梁佳,谢双喜.黔北地区6种竹材不同部位纤维特征研究.竹子研究汇刊,2012,31(2):28-32
    许斌. OSB-单板复合集装箱底板刚度模型及工艺研究.南京林业大学博士论文,2008
    许斌,蒋身学.竹木复合层积材横纹静摩擦系数的研究.林业科技开发,2000,14(6):22-23
    许飞,杨俊,弓云昭.基于相关性对搅拌摩擦焊接头特征值的确定.结构强度研究,2012(3):14-20
    徐曼琼,姚学锋,王戈,等.竹材层合板弯曲破坏机理的实验研究.实验力学,2004,19(3):347-352
    徐咏兰,华毓坤.不同结构杨木单板层积材的蠕变和抗弯性能.木材工业,2002,16(6):10-12
    许玉荣,陈建桥,罗成,等.复合材料层合板基于遗传算法的可靠性优化设计.机械科学与技术,2004,23(11):1344-1347
    杨峰,宋莎莎,费本华,等.我国重组竹产业面临的挑战与机遇.林业经济,2013,(8):28-32
    杨峰,汪谟清,费本华,等.基于Altair Optistruct的建筑层合板的厚度优化设计.林产工业,2014,2:23-29
    杨峰,宋莎莎,费本华,等.组坯形式对竹重组材/OSB复合材料性能的影响.木材加工机械,2014,1:18-24
    尤凤翔,吕福和.复合材料层合板力学性质分析及角铺设层优化设计.噪声与震动控制,2009,4:138-143
    虞华强.竹材材性研究概述.世界竹藤通讯,2003,1(4):5-9
    虞华强,费本华,任海清,等.毛竹顺纹抗拉性质的变异及与气干密度的关系.林业科学,2006,42(3):72-76
    虞华强,江泽慧,任海青,等.竹篾层压板的力学性质及耐老化性能研究.木材加工机械,2006,(3):1-4
    虞华强,袁东,费本华,等.竹木复合地板变形有限元模拟.建筑材料学报,2011,14(6):793-797
    俞汉清.表面粗糙度及测量.北京:中国标准出版社,1985
    岳孔,卢晓宁,黄河浪,等.两种常温固化木材胶粘剂胶接强度分析.林业科技开发,2007,21(2):54-57
    岳孔,卢晓宁,刘伟庆.速生杨木PF浸渍增强机理及力学性能可靠性分析.南京林业大学学报,2010,34(4):49-51
    叶克林,熊满珍.中国胶合板生产和贸易的现状和展望.木材工业,2006,(3):12-15
    姚利宏.毛竹/杉木层积复合材料胶合界面理化性质研究.内蒙古农业大学博士论文,2010
    叶良明,叶建华.竹重组材板材研究——去青不去青的比较.竹子研究汇刊,1996,15(1):58-65
    余养伦,于文吉,张方文.厚胶合板弹性模量预测模型.北京林业大学学报,2009(1):130-133
    禹立民,赵仁杰,腾召华.覆塑竹帘胶合板的制造工艺及使用特性.建筑技术,1996,(3):834-835
    于文吉.竹材表面性能及力学性能变异规律的研究.中国林业科学研究院博士论文,2001
    于文吉.我国竹重组材产业发展现状与趋势分析.木材工业,2012,26(1):11-14
    于文吉.我国高性能竹基纤维复合材料的研发进展.木材工业,2011,25(1):6-8
    于文吉,余养伦,江泽慧.竹材表面胶合性能.竹子研究汇刊,2006,25(1):22-28
    于文吉,余养伦,周月.小径竹重组结构材性能影响因子的研究.林产工业,2006,33(6):24-28
    伊廷会.酚醛树脂高性能化改性研究进展.热固性树脂,2001,16(4):29-33
    于子绚.竹束单板层积材制造工艺及应用性能研究.中国林业科学研究院博士论文,2012
    张彬渊.竹重组材——可持续发展的家具优质新材料.家具,2008,(3):64-66
    赵宝忱,韩士杰,苏润洲.影响木材表面自由基的几个因素.林业科学,1995,31(1):56-59
    张宏健,尹秀明,邱荣强,等.胶合板胶合效果评价方法探讨.木材工业,17(5):4-7
    张俊珍,任海青,钟永,等.重组竹抗压与抗拉力学性能的分析.南京林业大学学报,2012,36(4):107-111
    张黎明,冉玉晶,吕安,等.基于VB的动态菜单的设计与应用.北京工业大学学报,2005,31(5):452-259
    张龙志. Visual Basic6.0实用数据库编程.合肥:中国科学技术大学出版社,1999
    张培新,李亚智.受面内载荷的层压复合材料的层间应力分析.机械强度,2006,28(2):224228
    张强,赵艳杰.复合材料拉挤成型过程中温度和固化度的数值模拟研究.纤维复合材料,2007,24(2):17-20
    庄启程,黄永南,柳桂续.刨切薄竹用竹方软化新技术.林产工业,2003,30(5):38-41
    张求慧,李琦,孙晓.利用废旧木材制备高强定向刨花板.林产工业,2013,(5):44-47
    张齐生.中国竹材工业化利用.北京:中国林业出版社,1995
    张齐生.当前发展我国竹材工业的几点思考.竹子研究汇刊,2000,19(3):16-19
    张齐生.竹材胶合板的研究I——竹材的软化与展平.南京林业大学学报,1988,(4):15-22
    张齐生,孙丰文.竹木复合集装箱底板的研究.林业科学,1997,33(6):546-554
    张齐生,孙丰文,等.竹/木复合集装箱底板使用性能的研究.南京林业大学学报,1997,21(1):30-33
    张齐生,张丰文.竹木复合结构是合理利用竹材资源的有效途径.林产工业,1995,(6):4-6
    赵若飞,周晓东.纤维增强聚合物基复合材料界面残余热应力研究.玻璃钢/复合材料,2000,(4):25-28
    赵仁杰,喻云水.竹材人造板工艺.北京:林业出版社,2002
    赵仁杰,刘得桃,张建辉.中国竹帘胶合板模板的科技创新历程.世界竹藤通讯,2003,1(4):26-30
    赵仁杰,刘得桃,赵星.资源节约型高性能竹木复合板的研制.林产工业,2006,3(1):54-58
    张士元. OSB在我国的发展前景分析.木材工业,2007,21(4):32-35
    泽田丰,川井秀一,佐佐木光.以竹子为原料开发木质人造板(2).日本林学会研发要,1989,39:195-202
    张晓冬,程秀才,班磊.竹木复合层合板老化性能试验.林业科技开发,2010,24(3):18-21
    张晓冬,程秀才,朱一辛.毛竹不同高度径向弯曲性能的变化.南京林业大学学报,2006,30(6):44-46
    张晓冬,李君,王泉中,等.木竹复合层合板力学性能预测与分析.南京林业大学学报,2005,29(6):103-105
    张洋.麦秸表面的润湿性能.木材工业,2001,15(2):6-8
    赵扬,任利利,母德强,等.基于Optistruct的龙门加工中心多目标优化设计.长春工业大学学报,2011,32(4):323-329
    朱一辛,程丽美,关明杰.竹木复合板水平剪切强度的研究.西北林学院学报,2006,21(6):180-182
    朱一辛,关明杰,饶文彬,等.木竹重组材抗弯性能的研究.南京林业大学学报(自然科学版),2004,28(4):59-61
    朱一辛,蒋身学.汽车车厢底板用竹木复合板的研制.木材工业,1996,(3):4-7
    张志达,吕光辉,吴红军,等.林业科技创新的有效机制——关于木竹产业技术创新战略联盟的调研.林业经济,2012,(9):17-21
    郑忠福.覆膜竹帘竹胶板模板存在的主要质量问题及解决方法.林产工业,2011,38(3):25-28
    Abdel M M, Crocombe A D, Beevers A, et al. Coupled stressdiffusion analysis for durability study inadhesively bonded joints. International Journal of Adhesion and Adhesives,2002,22(1):61-73
    Apalak M K, Gunes R. On non-linear thermal stresses in an adhesively bonded single lap joint. Computersand Structures,2002,80(1):85-98
    Bai X S, Lee A W C, Thompson L L, Rosowsky D V. Finite element analysis of MOSO bamboo-reinforcedsouthern pine OSB composite beams. Wood and Fiber Science.1999,31(4):403-415
    Bambang S, Atsushl M, Hayashi T. Production technology of superior strength timber (SST) from bamboo.The3th Pacific Rim Bio-Based Composite Symposium, Kyoto, Japan,1996
    Barbuta C, Blanchet P, Cloutier A. OSB as substrate for engineered wood flooring. Holzalsroh-undWerkstoff,2012,70(1):1001-1011
    Blackketter D M, Upadhyaya D, King T R. Micromechanics prediction of the transverse tensile strength ofcarbon fiber/epoxy composites: The influence of the matrix and interface. Polymer composites,1993,14(5):437-446
    Bodig J. Wetability related to gluabilities of five Philippine mahoganies. Forestry Product Journal,1962,12(6):265-270
    Brady D E, Kamke F A. Effects of hot-pressing parameters on resin penetration. Foresty Products Journal,1988,38(11-12):63-68
    Bucki M, Perré P. Physical formulation and numerical modeling of high frequency heating of wood. Dryingtechnology,2003,21(7):1151-1172
    Cave I D. The longitudinal Young’s Modulus of PinusRadiata. Wood Science and Technology,1969,3:44-48
    Cheng H, Ma J, Zhao Z, et al. Hydrothermal preparation of uniform nanosize rutile and anatase particles.Chemistry of Materials,1995,7(4):663-671
    Chui Y H, Schneider M H, Zhang H J. Effects of resin impregnation and process parameters on someproperties of poplar LVL. Forest products journal,1994,44(7-8):74-78
    Collett B M. A review of surface and interfacial adhesions in wood science and related fields. Wood Scienceand Technology,1972,6:1-4
    Curry D A, Knott J F. Effects of microstructure on cleavage fracture stress in steel. Metal Science,1978,12(11):511-514
    Davis G.The performance of adhesive systems for structural timbers. International journal of adhesion andadhesives,1997,17(3):247-255
    Drzal L T, Rich M J, Lloyd P F. Adhesion of graphite fibers to epoxy matricesI: The role of fiber surfacetreatment. The Journal of Adhesion,1983,16(1):1-30
    Folias E S. On the prediction of failure at a fiber/matrix interface in a composite subjected to a transversetensile load. Journal of composite materials,1991,25(7):869-886
    Frederick A, Lee J N. Adhesive penetration in wood-a review. Wood and fiber science,2007,39(2):205-220
    Ghavami A, Abedian A, M Mondali. Finite difference solution of steady state creep deformations in a shortfiber composite in presence of fiber/matrix debonding. Materials and Design,2010,31(5):2616-2624
    Gindl W H S. Cell-wall hardness and Young's modulus of melamine-modified spruce wood bynano-indentation. Composites Part A,2002,33(8):1141-1145
    Gindl W, A Sretenovic, A Vincenti, et al. Direct measurement of strain distribution along a wood bond line.Part2: Effects of adhesive penetration on strain distribution. Holzforschung,2005,59(3):307-310
    Gindl W, Müller U. Shear strain distribution in PRF and PUR bonded3–ply wood sheets by means ofelecronic laser speckle interferometry. Wood Science and Technology,2006,40(5):351-357
    Gindl W, Scheber T, Jeronimidis G. The interphase in phenol–formaldehyde and polymeric methylenedi-phenyl-diisocyanate glue lines in wood. International Journal of Adhesion and Adhesives,2004,24(4):279-286
    Gray V R. The wettiability of wood. Forest ProductJournal.1998,46(6):95-97
    Griffiths J R, D R J Owen. An elastic-plastic stress analysis for a notched bar in plane strain bending. Journalof the Mechanics and Physics of Solids,1971,19(6):419-431
    Groom L, Elder S C. Effect of refining pressure and resin viscosity on resin flow.distribution and penetrationof MDF fibers. The7th Pacific Rim Bio-based Composites Symposium, Nanjing. China,2004
    Harold A S, John B C. SEM examination of subsurface damage of wood after abrasive and knife planning.Wood science and Technology,1982,14(3):106-109
    Hse C Y. Properties of phenolic adhesives as related to bond quality in southern pine plywood. ForestProducts Journal,1971,21(1):44-52
    Hsueh C H. Young’s modulus of unidirectional discontinuous-fiber composite. Composite Science andTechnology,2000,60(14):2670-2678
    Hua L, Flodin P, Rinnhult T. Celluose fiber-polyester composites with reduced water sensitivity Surfaceanalysis. Polymer Composite,1987,(8):203-207
    Huang Y H, Fei B H, Yu Y, Zhao R J. Effect of modification with Phenol Formaldehyde resin on themechanical properties of wood from Chinese fir. Bioresources.2013,8(1):272-282
    Hunter I R. Bamboo resources, uses and trade: the future. Journal of Bamboo and Rattan,2003,2(4):429-439
    Hunter I R. Bamboo solution to problems. Journal of Bamboo and Rattan,2001,1(2):101-107
    Jakal L. Effect of the penetration of adhesive on the strength of adhesive. Faipar,1984,34(2):59-60
    Jiang S X, Zhang Q S, Jiang S H. On Structure, production, and market of bamboo-based panels in China.Journal of Forestry Research,2002,13(2):151-156
    Jiang Z H. Bamboo and Rattan in the World Beijing: ChinaForestry Publishing House,2008
    Kajita S, Yamaura T, Kobayashi A. Dynamic walking control of a biped robot along a potential energyconserving orbit. Robotics and Automation,1992,8(4):431-438
    Kawasaki T, Zhang M, Wang Q, et al. Elastic moduli and stiffness optimization in four-point bending ofwood-based sandwich panel for use as structural insulated walls and floors. Journal of wood science,2006,52:302-310
    Kingston N. On the life cycle of Brachylecithumorfi Kingston and Freeman,1959(Trematoda:Dicrocoeliidae), from the liver of the ruffed grouse, Bonasaumbellus L. Infections in the vertebrate andmolluscan hosts. Canadian journal of zoology,1965,43(5):745-764
    Lee A W C, Bai X S, Bangi A P. Flexural properties of bamboo-reinforced southern pine OSB beam. ForestyProducts Journal,1997,47(6):74-78
    Li S H, Fu S Y, Zhou B L. Reformed bamboo and reformed bamboo/aluminium composite (Part I):Manufacturing technique, structure and static properties. Journal of Materials Science,1994,11(3):115-120.
    Marra A A. Technology of wood bonding:principles in practice. VanNostrandReinhold, New York,1992
    Matsuda T. Manufacture of medium density fiberboard from Malaysian fast growing tree species andbamboo. Bulletin of FFPRI, Ibaraki,1995,369-373
    Mirshi R, Dziurka D. The effect of ambient conditions on dimensional stability of OSB/4. Wood Research,2013,58(1):214-218
    Miura M, Kaga H, Sakurai A, et al. Rapid pyrolysis of wood block by microwave heating. Journal ofAnalytical and Applied Pyrolysis,2004,71(1):187-199
    Mondali M, Abedian A, Ghavami A. A new analytical shear-lag based model for prediction of the steadystate creep deformations of some short fiber composites. Materials and Design,2009,30(4):1075-1084
    Nishino T, Nakamura K, Nakamae K. Stress transfer in high performance polyethylene fiber reinforcedepoxy resin composite analyzed by X-ray diffraction: In the direction parallel to the fiber axis. JapanSociety of Materials Science, Journal,1998,47(10):1083-1087
    Nugroho N, Ando N. Development of structural composite products made from bamboo Ⅰ: fundamentalproperties of bamboo zephyr board. Journal of Wood Science and technology,2000,46:68-74
    Orozco C E, Gan H. Viscoplastic response of multiphase composites using a strain-compatiblevolume-averaging method. Composites Part B: Engineering,2002,33(4):301-313
    Pagano N J, Tandon G P.2-D Damage Model for Unidirectional Composites Under Transverse Tensionand/or Shear. Mechanics of Composite Materials and Structures,1994,1(2):119-155
    Paudel K S, Maximlobovikov. Bamboo housing: market potential for low-income groups. Journal ofBamboo and Rattan,2003,2(4):381-396
    Rattanadecho P. The simulation of microwave heating of wood using a rectangular wave guide: Influence offrequency and sample size. Chemical Engineering Science,2006,61(14):4798-4811
    Schlosmann G C, Zurdo G. Potential model of the modulus of elasticity in flexure for plywood. WoodScience and Technology,1995,29:137-143
    Serrano E, Enquist B. Contact-free measurement and non-linear finite element analyses of strain distributionalong wood adhesive bonds. Holzforschung,2005,59(6):641-646
    Shi Q, Ian N, Jarl B R. Estimation of the surface energyand acid-based properties of wood by means ofwettingmethod. Holzforchung,1998,52:269-272
    Shi Q. Dynamic adhesive wettability of wood. Wood and fiber science,2001,33(1):58-68
    Singh A P, Anderson C R, Warnes J M, et al. The effect of planning on the microscopic structure of Pinusradiate wood cells in relation to penetration of PVA glue. olza lsRohund Werkstoff,2002,60(5):333-341
    Subyakto, Bambang S, Sandra A A. Cultivation and utilization of bamboo in Indonesia. Journal of BambooResearch,1997,16(2):1-7
    Tong Y, Suchsland O. Application of finite element analysis to panel warping. HolzalsRoh-und Werkstoff.1993,51:55-57
    Troughton G E, Chow S Z. Evidence for covalent bongding between melamine-formaldehyde glue andwood.Part I. Bond degradation. Wood Science and Technology,1968,21:29-33
    Troughton G E. Accelerated aging of glue-wood bonds. Wood science and Technology,1969,(1):172-176
    Vázquez G. Effect of veneer side wettability on bonding quality of Eucalyptus globules.2003
    Wallstrem L, Lindberg K A H. The diffusion,size and location of added silver grains in the cell walls ofSwedish pine. Pinussylvestris.Wood Science and Technology,2000,34:403–415
    Wellons J D. Wettability and gluability of Douglas-fir veneer. Forest Products Journal,1980,30(7):53-55
    White M S. Influence of Resin Penetration on the Fracture Toughness of Wood-adhesive Bonds.VirginiaPolytechnic Institute and State University,1975
    Xu B, Chen S G, Zhang Q S. Elasticity modulus of oriented strand board made for the core of compositecontainer flooring. Journal of Nanjing Forestry University,2008,32(6):89-92
    Xu B, Chen S G, Zhang Q S. Elasticity modulus of oriented strand board made for the core of compositecontainer flooring. Journal of Nanjing Forestry University,2008,32(6):89-92
    Xu H, Chiaki T, Tetsuya N. Mechanical properties of plywood reinforced by bamboo and jute. ForestProducts Journal,1998,48(1):81-85
    Xue B, Hu Y C. Mechanical properties analysis and reliability assessment of laminated veneer lumber (LVL)having different patterns of assembly. Bioresources,2012,7(2):1617-1632
    Yan H Y, Zhang M G, Huang D H. First principles study of elastic and thermodynamic properties oforthorhombic OSB under high pressure. Solid state Science,2013,11(3):1211-1218
    Yeo J, Ryu J, Lee B K, et al. Theoretical and experimental characterization of wettability of various nanolensarrayed polymer surfaces replicated with nanodimpled aluminum mold insert. MicrosystemTechnologies,2010,16(8-9):1425-1430
    Yu W K, Chung K F, Chan S L. Axial buckling of bamboo columns in bamboo scaffolds. EngineeringStructures,2005,(27):61-73
    Zhang M, Kawai S, Sasaki H. Manufacture and properties of composite fiberboard2, Fabrication of boardmanufacturing and properties of bamboo/wood composite fiberboard. MokuzaiGakkaishi,1995,41(10):903-910
    Zhou X B, D Hosson. Reactive wetting of liquid metals on ceramic substrates. ActaMaterialia,1996,44(2):421-426

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700