用户名: 密码: 验证码:
不锈钢Ni-P化学镀层性能及动力学理论的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不锈钢具有很多优异的性能,它在许多领域中都有良好的表现,尤其在建筑业和化工容器方面的使用,显示出重要的作用。但不锈钢的硬度较低,耐磨性较差,限制了其在应用方面的发展。研究不锈钢表面的处理方法以提高耐磨性问题,对于推进不锈钢的应用发展具有重大的意义。
     本文主要以奥氏体不锈钢(202)为研究对象,采用化学镀Ni-P技术提高不锈钢表面的耐磨性。通过正交试验确定制备厚镀层的优化工艺,最佳化学镀工艺参数为:硫酸镍20g/L,次亚磷酸钠22.7g/L,醋酸钠10g/L,氨基乙酸8g/L,丁二酸7g/L柠檬酸钠15g/L, pH值4.6和温度88℃。并且通过SEM、XRD对镀层表面进行物相和形貌分析,结构表明所制备的Ni-P镀层为非晶态高磷镀层,平均P%含量为9%以上。
     通过对202不锈钢化学镀单镀层的镀覆动力学机理进行研究分析,发现随着次磷酸钠、醋酸钠、氨基乙酸、丁二酸和PH值的增大,镀速有逐渐增大的趋势,而随着柠檬酸钠浓度的增大则使镀速减慢。以此为依据,分析动力学机理确定动力学方程为:
     在高磷优化工艺制备单镀层的基础上,通过对单镀层表面活化处理和镀覆中增加补液两种方法来制备厚镀层,通过采用XRD对镀层表面进行的物相和形貌分析可知,增加补液方法制备的厚镀层表面光洁,而且孢子尺寸均匀细小,制备的镀层厚度达到100.44μm,P含量达到11.83%,晶化温度为360℃。通过对厚镀层表面进行时效处理,可知厚镀层的硬度随热处理温度的增大呈现出先增大后减小的变化趋势,而镀层的磨损量则表现为先减小后增大的变化趋势,在热处理温度达到500℃时,镀层的硬度和磨损量分别达到了其最值,此时硬度为最大值1086.42HV,磨损量为最小值43x10-4g。对于镀层的磨损机理在不同热处理温度状态下略有不同,当温度较低时,以粘着磨损为主,伴有少量的磨料磨损,当温度达到500℃时,镀层的磨损主要为磨料磨损。
     相对于单镀层而言,厚镀层由于为多层结构,后面镀层对前一镀层有“封口”的作用,所以耐蚀性得到了一定的提高;对于厚镀层,在400℃时,镀层的耐蚀性最佳,此时有大量的Ni3P相析出,镀层中晶粒细小,而且由于P的扩散作用,使镀层中Ni、Ni3P分布更均匀,降低合金镍相中磷含量,提高腐蚀电位,最终提高了耐蚀性。
     对于Ni-P-SiC复合镀,通过对比分析超声、高剪切、超声十高剪切三种分散工艺,发现超声+高剪切分散方法可以使SiC粉体的分散效果最佳。最佳分散效果在剪切时间25min,剪切转速17000r/min,超声时间45min,超声频率35kHz,超声功率1000W时获得,此时平均粒度为1.61μm。
     通过采用化学镀Ni-P工艺对分散的SiC表面进行包覆,包覆效果较好。对Ni-P-SiC复合镀层进行时效处理时,在400℃开始发生晶化,到500℃以后,镀层主要由Ni、Ni3P组成。当镀层加热到400℃时,镀层的力学性能达到最佳值,此时硬度为1584HV,磨损增量为38×10-4g。通过对复合镀层表面的时效处理可知,热处理温度可以明显改变Ni-P-SiC复合镀层的磨损形式,当温度低于300℃时,镀层以黏着磨损为主,伴有少量的磨料磨损;当温度高于500℃时,镀层以磨料磨损为主,伴有少量黏着磨损,当温度为400℃时,则主要为黏着磨损。
Stainless steel has many distinct properties in such many fields as architectureindustry and chemical containers, which make the steel play a key role in modern society.Unfortunately, the low hardness and the poor anti-wear property of stainless steel obstructits application. Therefore, it is very significant for exploring the application by differentsurface processing of stainless steel in order to improve its anti-corrosion&anti-wearproperties.
     In this paper,202was taken as research object, with electroless Ni-P technologyregard as the technique to improve the surface anti-corrosion&anti-wear properties. Bymeans of orthogonal experiment, the optional process parameters of the prepared thickfilms was determined as follows: NiSO4·6H2O,20g/L; NaH2PO2-H2O,22.7g/L;CH3COONa,10g/L; C2H5NO2,8g/L; C4H6O4,7g/L; C6H5Na3O7.2H2O,15g/L; PH value,4.6, and temperature,88oC. Moreover, the phases and morphologies analysis, based onSEM and XRD, reveal that, the Ni-P coating surface is the amorphous high-phosphorusone, with the average content of P above9%.
     The dynamic mechanism of electroless single coating for202was investigated bymeans of optional technique. With increasing content of NaH2PO2, CH3COONa, C2H5NO2,HOOCCH2CH2COOH, and PH value, the coating speed is gradually enhanced. While,with increasing concentration of C6H5Na3O7.2H2O, the speed is yet lowered. Thecorresponding dynamic equation is deduced as follows:lg1.05lg H PO220.83lg L0.29lg H0.81lg A0.806lg S10942lg S28.56。
     Based on the aforementioned single coating prepared by high-phosphorus optionaltechnique, the thick coating was prepared by surface active treatment for single coating andrehydration in plating successfully. By means of orthogonal experiment, the optional process parameters of the prepared thick films was determined. The analysis of SEM andXRD on thick coating shows, the thick coating prepared by rehydration displays smoothsurface, with more small and uniform crystal grains as well as thickness of coating,100.44μm. The concentration of P is determined as11.83%. Furthermore, the crystallizationtemperature of the coating is about360oC, respectively. From the ageing treatment on thethick coating, the hardness is firstly promoted, and then lowered, with increasing annealingtemperatures. At the optimal annealing temperature,500oC, the maximal values ofhardness and wear loss are obtained simultaneously, i.e. hardness,1086.42HV, wear loss,43×10-4g. Upon different annealing temperatures, the wear mechanism of coating isdifferent. At low temperature, adhesive wear is dominant, with a trace of abrasive wear.While at above500oC, the abrasive wear is dominant.
     Different from single coating, the thick one has better wearing property due to theexistence of multi-layer structure. That is, the later coating can serve as sealing the formerone, which indicates better anti-wear property. For thick coating, at400oC, the optionalanti-wear property is present, which can be explained by the fact, i.e., a great deal of Ni3Pphase is precipitated, with smaller grain size. Also, the diffusion of P leads to uniformdistribution of Ni and Ni3P phase, which can lower the percentage of P in nickel alloyphase, raise corrosion potential, and then improve the anti-wear property.
     The three dispersing techniques, i.e., ultrasonic, high shear, and ultrasonic&highshear ones, are employed to test the dispersing effect of SiC in Ni-P-SiC composite plating.The results reveal that the ultrasonic&high shear dispersing technique is the best. Theoptimal dispersing effect is achieved on these conditions: shearing time,25min; shearingspeed, ultrasonic time,45min; ultrasonic frequency,35kHz; ultrasonic power,1000W.Based on the parameters, the mean particle size of SiC in in Ni-P-SiC composite plating is1.61μm.
     Upon these conditions, electroless Ni-P technology to coat dispersing SiC surface isthe best. Also, the aging treatment was conducted on the Ni-P-SiC composite plating. Atabout400oC, the crystallization occurs. At above500oC, the composite plating is mainly composed of Ni and Ni3P. When the plating is heated at about400oC, the mechanicalproperties, i.e. i.e. hardness,1584HV, wear loss,38×10-4g, are optimal. From the theprocess of aging treatment, the annealing temperatures can alter the wear mode ofNi-P-SiC composite plating. That is, when the annealing temperature is below300oC, thewear mode is dominantly adhesive wear, together with a little of abrasive one. However,when the annealing temperature is above500oC, the abrasive one is dominant, with a littleof adhesive one. At400oC, the wear mode is the adhesive one.
引文
[1]陆世英.不锈钢概论[M].合肥:中国科学技术出版社,2007.
    [2]肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社,2006.
    [3]迟泽浩一郎.不锈钢耐蚀钢的发展[M].北京:冶金工业出版社,2007.
    [4]埃斯科.米耶蒂宁,奇希.泰瓦兰提.不锈钢与建筑[M].天津:天津大学出版社,2004.
    [5] И.Д.雷巴先科.不锈钢化工设备制造工艺学[M].北京:化学工业出版社,2009.
    [6]王正樵.腐蚀与防护全书[M].北京:化学工业出版社,1991.
    [7]须永寿夫.不锈钢的损坏及其防护-典型实例[M].北京:机械工业出版社,2008.
    [8] A.约翰.塞德赖克斯.不锈钢的腐蚀[M].北京:机械工业出版社,1986.
    [9]陈德和.不锈钢的性能与组织[M].北京:机械工业出版社,1997.
    [10]陆世英.不锈钢[M].北京:原子能出版社,1995.
    [11] L.柯洛姆比.不锈钢与热强钢[M].北京:中国工业出版社,1999.
    [12]戴达煌,周克崧.现代材料表面技术科学[M].北京:冶金工业出版社,2010.
    [13]陈天玉.不锈钢表面处理技术[M].北京:化学工业出版社,2004
    [14]韩修训,阎鹏勋.两种物理气相沉积氮化钛涂层的结构及摩擦性能研究[J].摩擦学学报,2002,22(3):175-178.
    [15] R iedel W. Electroless Nickel Plating[J].ASM International Metal Park,1991,13(10):36-40.
    [16]谢飞,何家文.奥氏体不锈钢离子渗氮-PECVD TiN复合处理层组织与性能特性研究[J].江苏石油化工学院学报,2011,21(4):27-30.
    [17] Yamauchi N. Friction and wear of DLC films on304austenitic stainless steel in corrosive solutions[J]. Surface and Coatings Technology,2003,12(9):174-175.
    [18] Sudarshan T S..范玉殿译.表面改性技术工程师指南[M].北京:清华大学出版社,2011.
    [19] Lin C J,Duh J G. The predominant operation and alternative controllability in thesquraewavecurrent pulse process for Sus304stainless steel[J].Surface and Coating Technology,1994,70(3):79﹣85.
    [20]胡文彬,刘磊,仵亚婷.难镀基材的化学镀镍技术[M].北京:化学工业出版社,2004.
    [21]崔忠圻.金属学与热处理[M].北京:机械工业出版社,1988.
    [22]戴达煌,周克崧.现代材料表面技术科学[M].北京:冶金工业出版社,2004.
    [23]韩修训,阎鹏勋.多层涂层的摩擦学研究进展[J].机械工程材料,2002,26(5):1-5.
    [24]赵晓峰.化学气相沉积可控制备碳纳米管及其复合材料[D]:(硕士学位论文).辽宁:大连理工大学,2010.
    [25]谢飞,何家文.氮化-气相沉积硬质薄膜复合处理技术与应用[J].现代制造工程,2010,7(2)23-26.
    [26] Mallory G O.Electroless nickel deposition in an ultrasonic fiele[J]. Surface&CoatingsTechnology,2007,72(11):64-67.
    [27] Choudhury A. Roy. Microstructure and tribological behaviour of nano-structured metal matrixcomposite boride coatings synthesized by combined laser and solgel technology [J].Surface&Coating Technology,2008,202(23):2817-2829.
    [28]张春红,张宁.奥氏体不锈钢C、N离子注入表面改性的研究[J].煤矿机械,2012,11(7):28-30.
    [29]田修波. AISI304钢表面低电压等离子体基离子注入层摩擦磨损性能研究[J].摩擦学学报,2000,20(2):81-84.
    [30] Tek Z, ztarhan S S. Characterization of Ti+N and Zr ion implanted316L stainless steel [J].Surface&Coatings Technology,2007,201(56):303-307..
    [31]丁阳喜,周立志.激光表面处理技术的现状及发展[J].材料热处理,2007,36(6):69-72.
    [32]姚寿山,李戈扬,胡文彬.表面科学与技术[M],北京:机械工业出版社,2005.
    [33]姚建华,张伟.激光熔覆纳米碳化钨涂层组织与性[J].应用激光,2005,25(5):293-295.
    [34] Tassin C,Laroudie F,Ports M,et a1.Improvement of the wear resistance of316L stainless steel bylaser surface alloying[J].Surface and Coatings Technology,1996,80(1):207-210.
    [35] Tassin C,Laroudie F,Ports M,et al.Carbide-reinforced coatings on AISI316Lstainless steel bylaser surface alloying[J].Surface and Coatings Technology,1995,76(2):450-455.
    [36] Viswanathan A,Sastikumar D,gajarajen P,et a1. Laser irradiation of AISI316L stainless steelcoated with Si3N4and Ti[J].Optics&laser Technology,2011,39(8):1504-1513.
    [37]周华茂,王晓虹.17-4PH不锈钢离子渗氮工艺[J].金属热处理,2003,28(6):32-35.
    [38] Maehara Y,Ohmori Y,Murayama J,et al. Effects of alloying elements on-phase precipitation in-γ duplex phase stainless steels[J].Metal Science,2011,17(11):541-547.
    [39] Heras E, De Las. Duplex surface treatment of an AISI316Lstainless steel microstructure andtribological behavior [J]. Surface&Coating Technology.2008,202(345):2945-2954.
    [40]闫志琴,刘燕萍.不锈钢离子渗碳耐磨性的研究[J].表面技术,2007,36(1):33-36.
    [41]朱发文,张乐福.奥氏体不锈钢AL-6XN在超临界水中的腐蚀[J].腐蚀与防护,2010,31(8):595-599.
    [42]潘继岗,樊自拴.采用两种喷涂技术制备铁基合金涂的摩擦磨损特性研究[J].摩擦学学报,2005,25(5):412-415.
    [43]左景伊,金志强.在Cl-体系中加入NO3-或NO3-对奥氏体不锈钢裂纹缝内化学状态的影响[J].中国腐蚀与防护学报,2010,8(2):46-49.
    [44]王欧建.电镀工艺学[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [45]王飙.电镀稀土铬提高水轮机的抗空蚀磨损能力[J].中国腐蚀与防护学报,2003,23(1):34-37.
    [46] Stefanov P,Atanasova G,Stoychev D. Electrochemical deposition of CeO on ZrO and Al2O3thinfilms formed on stainless steel [J]. Surface&Coatings Technology.2004,154(12):446-449.
    [47]高岩,郑志军.不锈钢化学镀Ni-P/Ni-W-P合金镀层的研究[J].材料保护,2005,38(3):35-37.
    [48] Tsail Y Y. Thermal stability andmechanical properties of Ni-W-P electroless Deposits [J]. Surface&Coatings Technology,2001,14(6):502-507.
    [49] Michal G M,Ernst F,Kahn H,et al. Carbon supersaturation due to paraequilibrium carburization:Stainless steelswith greatly improvedmechanical properties [J]. ActaMaterialia,2010,54(6):1597-1606.
    [50] Lei M K,Zhu X M. Plasma-based low-energy iron implantation of austenitic stainless steel forimprovement in wear and corrosion resistance [J]. Surface&Coatings Technology,2005,19(3):8-22.
    [51]周继敏,宋永吉.高酸高氯原油水中曼尼希碱对316L不锈钢的缓蚀作用[J].材料保护,2010,4(8):34-36.
    [52]张军平,张秋禹,颜红侠等.饱和CO2环境下噻唑衍生物的缓蚀性能和电化学特征[J].材料保护,2004,13(11),43-46.
    [53] Chen Y,Sridharan K,Allen T R. Corrosion of candidate austenitic stainless steels for supercriticalwater reactors [J]. Metal Finishing,1998,98(5):165-171.
    [54]蒋素琴,徐红光.化学镀Ni-P合金—新型的汽车零件表面处理技术[J].工艺材料,2002,12(3):34-35.
    [55] Sun Y,Bell T. Sliding wear characteristics of low temperature plasma nitrided316austeniticstainless steel [J]. Wear,2011,218(1):34-42.
    [56] Gao X,Wu X Q,Zhang Z E,et al. Characterization of oxide films grown on316L stainless steelexposed to H2O2-containing supercritical water [J]. Journal of Su-percritical Fluids,2007,14(2):157-163.
    [57]蔡晓兰,张永奇,贺子凯.化学镀镍磷络合剂对磷含量的影响[J].表面技术,2003,32(2):28-30.
    [58]闫洪编.现代化学镀镍和复合镀新技术[M].北京:国防工业出版社,1999.
    [59]李素芳,李孝钺,陈宗璋.酸性化学镀镍工艺研究[J].电镀与涂饰,2003,22(2):15-17.
    [60]王福生,许芸芸,宋兵魁.化学镀Ni-P合金工艺的研究[J].天津化工,2004,18(5):1-3.
    [61] Jackson B J.Low phosphorus electroless nickel coating technology[J].Transactions of the Instituteof Metal Finishing,2010,68(3):75-83.
    [62] Duncan R. The effect of heat treatment upon the hardness and abrasion resistance of electrolessnickel coatings [J]. Metal Finishing,1990,88(3):71-81.
    [63]林福严.磨损理论与抗磨技术[M].北京:科学出版社,1993.
    [64] Yamauchi N. Friction and wear of DLC films on304austenitic stainless steel in corrosivesolutions[J].Surface&Coatings Technology,2003,17(4):465-469.
    [65]张朝阳,魏锡文,张海东等.Ni﹣P化学镀的机理及其研究方法[J].中国有色金属学报,2001,11(1):199﹣201.
    [66]周荣廷.化学镀镍的原理与工艺[M].北京:国防工业出版社,1995.
    [67] J. Kuzmik,in: G.O. Mallory,J.B. Hajdu (Eds.).Electroless Plating Fundamentals andApplications[J]. Metal Finishing,1990,78(8):199-203.
    [68]王芳,俞宏英,孙冬柏等.高耐磨化学复合镀层的研究[J].装备环境工程,2007,4(3):88-90.
    [69]周婉秋,杨光,张红.化学镀Ni-P合金工艺[J].沈阳师范学院学报,2011,19(3):45-51.
    [70] Ger M D,Hou K H,Wang L M. The friction and wear of Ni-P-PTFE composite deposits underwater lubrication[J]. Material Chemistry and Physics,2002,77(3):755-764.
    [71]姜晓霞,沈伟.化学镀理论与实践[M].北京:国防工业出版社,2000.
    [72]何东亚.影响化学镀镍磷合金沉积速度的几个问题[J].腐蚀与防护,2002,23(7):312-315.
    [73]吴蒙华.超声波对纳米N+TiN复合镀层的影响[J].功能材料,2008,4(39):690-693.
    [74]李昕,杨昌英,周俊婷等.化学镀镍配方的优化及镀镍过程机理的研究[J].化学与生物工程,2005,12(3):31-33.
    [75]傅健影,韩树郁,高维丽.Ni-P合金化学镀组分的确定[J].哈尔滨科学技术大学学报,2010,18(4):44-46.
    [76]宋宏峰,李忠厚.铸铁件的镍-磷合金化学镀工艺及性能研究[J].兵器材料科学与工程,2006,29(1):42-45.
    [77] Hu C C, Bai A. Influences physicochemical of the phosphorus content onproperties ofnickel-phosphorus deposits[J].Mater Chem Phys,2002,77(9):215-225.
    [78]储凯,傅建,谢明立. Ni-P合金化学镀层高温耐磨性研究[J].金属热处理,1999,15(2):20-22.
    [79]徐波.化学镀Ni-P合金的性能研究[J].云南冶金,2000,29(3):36-38.
    [80]黄林国.Ni-P化学镀层的冲击磨粒磨损性能研究[J].金属热处理,2006,31(8):67-71.
    [81] A.D.沙卡尔.金属的磨损[M].石家庄:河北人民出版社,1992.
    [82]全永昕.摩擦磨损原理[M],杭州:浙江大学出版社,1988.
    [83]陈立佳,李德高,邵桂春等.酸性化学镀Ni-P合金[J].沈阳工业大学学报,1996,18(2):49-54.
    [84] Duncan R N.Crrosion resistance of high phosphorus electroless nickel coatings [J].Plating&Surface Finishing,1986,73(7):52-56.
    [85] Balaraju J N, Sankara T S N, Narayanan S.K.,et al.Electroless Ni-P composite coatings[J].Journal of applied Electrochemistry,2003,33(9):807-816.
    [86] YamauchiN,Okamoto A,Tukahara H,et al.Friction andwear of DLC films on304austeniticstainless steel in corrosive solutions[J]. Surface&Coatings Technology,2003,17(4):465-469.
    [87]吴昊.不锈钢化学镀镍[J].电镀与精饰,2001,23(6):19-20.
    [88]揭晓华,谢光荣,卢国辉.4Cr13不锈钢活塞环化学镀镍磷的试验研究[J].热加工工艺,2002,67(2):38-39.
    [89]郝龙,穆浩,易田等.不同合金钢材料化学镀Ni-P合金[J].腐蚀科学与防护技术,2008,20(5):381-383.
    [90]高岩,郑志军,朱敏等.不锈钢化学镀Ni-P\Ni-W-P合金镀层的研究[J].材料保护,2005,38(3):35-37.
    [91]王政君,赵永武.化学镀髙磷Ni-P镀层的摩擦磨损性能[J].江南大学学报(自然科学版),2011,5(5):565-572.
    [92]程秀,揭晓华,蔡莲淑等.Ni-P-SiC(纳米)化学复合镀层的组织与性能[J].材料工程,2006,67(1):43-56.
    [93] Leon O A,Staia M H,Hintermann H E.Wear mechanism of Ni-P-BN(h) composite autocatalyticcoatings[J]. Surface&Coatings Technology,2005,67(200):1825-1830.
    [94] Leon O A,Staia M H,Hintermann H E.Deposition of Ni-P-BN(h) composite autocatalyticcoatings [J]. Surface&Coatings Technology,1998,10(8):461-465.
    [95]籍国宝.摩擦磨损原理[M].北京:农业出版社,2009.
    [96] Tulsi SS. Electroless Nickel-PTFE composite coatings[J].TransIMF,2011,61(1):1-4.
    [97] Leon O A,Staia M H,Hintermann H E. Influence of the heat treatment on the tribological behaviorof a Ni-P-BN(h) autocatalytic composite coating[J]. Surface&Coatings Technology,1999,12(14):641-645.
    [98] Rongcan Z,Jiang Y Q,Liang Y,et al. Dispersion behaviour of laser-synthesized nanometric SiCpowders in aqueous medium with ammonium polyacrylate[J].Ceramics International,2002,22(28):847-853.
    [99] Sun J,Gao L. Dispersing SiC powder and improving its rheological behaviour[J].Journal of theEuropean Ceramic Society,2001,5(21):2447-2451.
    [100] Nabeen K,Shrestha,Dambar B H.Composite plating of Ni–P–Al2O3in two steps and its anti-wearperformance[J].Surface&Coatings Technology,2004,23(183):247-253.
    [101]蔡莲淑,程秀,揭晓华等. Ni-P-SiC(纳米)化学复合镀工艺的研究[J].表面技术,2003,32(5):38-45.
    [102] Novakovic J. Preparation and tribological properties of Ni-P electroless composite coatingcontaining potassium titanate whiskers[J].Applied Surface Science,2007,40(57):856-863.
    [103] Zhao Q, Liu Y, Abel E W. Surface free energies of electroless Ni–P based compositecoatings[J].Applied Surface Science,2005,240(25):441-451.
    [104] Masayoshi N, Osamut. Friction and Wear Characteristics of Electroless[J].Materia Chemistry andPhysics,2006,74(3):755-764.
    [105] Oh I H, Lee J Y, Han J K,et al. Microstructural characterization of Al2O3–Ni compositesprepared by electroless deposition[J].Surface&Coatings Technology,2005,67(200):39-45.
    [106] Tulsi SS. Electroless Ni-P-PTFE Composite Coatings[J].Plating and Surface Finishing,1994,81(1):48-49.
    [107]高岩,郑志军.316L不锈钢上化学镀Ni-(W)-P合金镀层的工艺研究[J].电镀与精饰,2007,12(3):144-147.
    [108] Chang Y Y,Wang D U.Corrosion behavior of electroless nickel-coated AISI304stainless steelenhanced by titanium ion implantation[J].Surface&Coatings Technology,2005,19(201):2187-2191.
    [109]何奖爱.材料磨损与耐磨材料[M].沈阳:东北大学出版社,2001.
    [110]刘定福.化学镀Ni-P合金耐蚀性的影响因素[J].电镀与环保,1999,56(3):19-22.
    [111]魏真,刘锦云,杜春平等.用正交试验方法优化Ni-P-SiC化学复合镀工艺[J].电镀与涂饰,2007,26(5):20-23.
    [112]张允诚,胡如南,向荣.电镀手册[M].北京:国防工业出版社,2010.
    [113]王玉、郭金彪.电沉积非晶态镍磷镀层的结构及晶化过程[J].材料热处理学报,2009,30(1):20-23.
    [114]卫英慧,陆路,许并社.电子束照射下钼纳米微粒的形成[J].材料科学与工艺,2000,8(1):44-46.
    [115]赵忠俭,陈立范. Ni-P合金化学镀层的组织结构及性能[J].沈阳工业大学学报,1999,21(5):23-26.
    [116]王蕾,张静浩.耐磨材料及其应用[M].湖北:湖北科学技术出版社,2004.
    [117] Leon O A,Staia M H,Hintermann H E.High temperature wear of an electroless Ni-P-BN(h)composite coating[J].Surface&Coatings Technology,2003,16(3):578-584.
    [118]关凯书,梁安波,吕宝君.磷含量对镍磷化学镀层结构及表面形貌的影响[J].机械工程材料,2000,24(2):20~27.
    [119] Baskaran I, Sankara T.S.N..Effect of accelerators and stabilizers on the formation andcharacteristics of electroless Ni–P deposit[J].Materials Chemistry and Physics.2006,9(13):117–126.
    [120] Lee C.K..Corrosion and wear-corrosion resistance properties of electroless Ni–P coatings onGFRP composite in wind turbine blades[J].Surface&Coatings Technology,2008,16(5):468–474.
    [121]中国腐蚀与防护学会《金属防腐蚀手册》编写组.金属防腐蚀手册[M].上海:上海科学技术出版社,1989.
    [122]高荣杰.双层Ni-P化学镀工艺及镀层在NaCl溶液中耐蚀性能的研究[J].腐蚀科学与防护技术,2007,19(6):23-26.
    [123]华戟云,邵红红.不锈钢球阀化学镀Ni-P合金镀层研究[J].电镀与涂饰,2005,24(11):19-22.
    [124] Brenner A, Couch D E, Williams E K.Elect rede position of alloys of phosphorus with nickel orcobalt s[J].Surface&Coatings Technology,2010,44(7):109~119.
    [125]赵永华,张兆国.Ni-P纳米SiC化学复合镀超声波分散工艺[J].兰州理工大学学报,2011,9(2):102-105.
    [126]鹿海军,梁国正.剪切分散工艺制备环氧树脂/粘土纳米复合材料的结构与力学性能研究[J].航空材料学报,2010,25(3):11-15.
    [127]邵光洁.Ni-P和Ni-P-SiC镀层的电沉积及其组织性能[D]:(博士学位论文).河北:燕山大学,2002.
    [128]俞世俊,宋力昕.化学镀Ni-P-SiC复合镀层的研究[J].无机材料学报,2004,19(3):647-652.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700