用户名: 密码: 验证码:
微波无源器件在液晶聚合物基板上的设计、制作和表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,传统的无线局域网已经不能满足用户对高速无线数据传输和多媒体数据宽带传输的需求。超宽带技术(UWB,Ultra-Wideband)和60 GHz技术由于其超高速的数据传输能力(前者最高480 Mbps,后者可以达到几个Gbps),成为第四代无线通信技术的代表,引发了学术界和工业界的研究热潮。与此同时,高速、高频和宽带系统的趋势也刺激了微波/毫米波系统中集成技术以及封装基板的发展。目前可用于微波/毫米波系统的封装材料要么价格昂贵,要么高频性能不够优异。因此,开发性能优异,可满足各种要求的高频封装基板已成为当务之急。液晶聚合物基板由于其优异的电性能、热性能、物理性能、机械性能以及化学性能,已经引起了业界的广泛关注。然而,液晶聚合物还存在一些缺点,如与金属弱的粘结力,通孔的工艺问题等。
     为了评估液晶聚合物基板的电性能,本论文结合超宽带技术和60 GHz技术以及这种新型介质材料——液晶聚合物(LCP,Liquid Crystal Polymer)基板,展开了液晶聚合物基板的应用研究,通过在液晶聚合物基板上设计、制作和表征了几种可工作至毫米波段的无源器件,验证了该材料作为一种低值、高性能基板在毫米波系统中的可应用性。本文主要进行了以下几部分工作:
     首先,研究了覆铜挠性液晶聚合物基板的制作以及性能表征,在对液晶聚合物基板的介电以及物理性能表征基础上,针对液晶聚合物与金属铜之间弱的结合力问题,采用等离子体刻蚀方法对液晶聚合物薄膜的表面进行了预处理,并在覆铜之前添加了金属钛粘附层,提高了液晶聚合物与铜层的粘结力。
     其次,提出了一种新型的双模环形超宽带滤波器结构,并推导出了双模环形谐振器谐振频率的公式。通过一个非等线宽的双模矩形谐振器来调节滤波器的输入零点的位置进而控制滤波器的带宽,同时输入、输出端口与双模谐振器之间采用新型间隙耦合结构实现了超宽带滤波特性。采用新型双模间隙耦合谐振结构的思路,设计了一个可以在22 GHz~29 GHz频带工作的准毫米波超宽带带通滤波器。该滤波器具有结构紧凑、低损耗、频率选择性好、宽阻带和易于加工等优点,可用于汽车防撞雷达系统应用。
     接着,又设计了两种可应用于60 GHz无线通讯系统的宽带带通滤波器:一种是基于传统的平行耦合线结构,可工作在57 GHz~64 GHz频带;另一种仍然采用新型双模间隙耦合谐振结构,可工作在50 GHz~70 GHz频带。两种滤波器都具有优异的特性以及紧密的结构。最后,通过分析椭圆单极天线辐射贴片的电流分布,在液晶聚合物基板上提出了带孔的椭圆单极天线模型。该天线主要由带孔的椭圆单极贴片,梯形金属地板和渐变的共面波导馈电组成,不但具有平面印刷结构和较小的电尺寸,而且具有极宽的阻抗带宽和稳定的方向图特性,可应用于超宽带系统中。
     在本文研究中,通过采用传统平面半导体工艺,包括表面处理、溅射镀膜、光学曝光和化学蚀刻过程,将这几种微波无源器件制作在两种覆铜液晶聚合物基板上,一种是层压法制成的覆铜LCP基板,一种是电镀法制成的LCP基板,并采用网络分析仪对加工的滤波器和天线进行了测试。实验结果表明,对于在电镀法制成的LCP基板上的滤波器和天线,试验与仿真结果都吻合得很好,进一步证实了覆铜LCP基板在超宽带以及60 GHz毫米波系统中的应用。
Nowadays, there is a great demand for wireless communication systems with ultra-high data rates and multimedia with higher bandwidth. Ultra-Wide Band (UWB) and 60 GHz technology have become the representation of the fourth generation of wireless communication standards (4G) due to their ultra-high data rates (the former is 480 MHz, the later is up to several GHz), which has inspired the research upsurge in both industry and academy. At the same time, the move towards higher frequencies,higher data rates and wider band system has stimulated the development of both integration techniques and substrate materials for millimeter (mm)-wave applications. Therefore, it is urgent affairs to develop a new substrate technology with excellent performance and meeting various demands. Identified as advanced candidate materials for flexible mm-wave substrates’purposes and due to a unique combination of superior features and performance, Liquid Crystal Polymers (LCPs) have attracted considerable attention in commercial wireless applications. Like other materials, LCPs also show some disadvantages such as poor adhesion to Copper (Cu), problems in via processing, etc.
     In order to evaluate LCP’s electrical performance, the design, fabrication and characterization of passive components operating at frequencies extending into the mm-wave regime are performed to determine the feasibility of LCP as a low-cost and high-performance substrate solution for mm-wave application. In this thesis, combining UWB and 60 GHz technology, a novel compact microstrip UWB bandpass filter, an UWB printed monopole antenna and two 60 GHz bandpass filters are presented on LCP substrates. The main contents of the dissertation include the following four parts:
     Firstly, LCP substrate combined/laminated with Copper (Cu) is prepared in order to improve the surface roughness of the LCP substrate, and the surface is pre-treated by means of oxygen plasma etching. In addition, a thin adhesion layer of Titanium (Ti) is applied prior to the sputter deposition of Cu to improve the adhesion between the Cu and the LCP material.
     Secondly, based on the dual-mode ring resonator theory, an UWB bandpass filters, working on 22 GHz~29 GHz is proposed. The proposed UWB bandpass filter includes a full dual-mode rectangular-ring resonator at the center, which controls the bandwidth of the passband and two novel parallel-coupled feed structures between input/output ports and the ring resonator, for coupling purposes with the resonator. The designed filter is compact, low-loss, easy to fabricate, and exhibits sharp attenuations and wide-stopbands, which can be used in vehicular radar systems.
     Thirdly, two 60 GHz bandpass filters are reported on LCP substrates, one is a planar microstrip bandpass filter with ultra-fine conductor linewidth and gap, which could work on 57 GHz~64 GHz band based on the parallel-coupled line structure, another one is wideband bandpass filter working on 50 GHz~70 GHz band based on dual-mode ring resonator structure.
     Finally, a hollowed UWB printed monopole antenna is also presented on a LCP substrate. It consists of a hollowed elliptical monopole, two trapeziform ground planes and a tapered CPW (Co-Planar Waveguide) feeder, which provides this antenna extremely wide bandwidth and compact size.
     By using standard processing methods i.e. surface pretreatment, sputter deposition, photolithography and wet etching, all of these microwave passive devices are fabricated on both laminated and direct metalized LCP substrates. The comparison of simulated and measured results of both developed filters and antennas is also shown and discussed. The fact that both filters and antennas on the direct metalized LCP substrates show good results, verifies that LCP materials are potentially promising substrate material for microwave/mm-wave applications.
引文
【1】. Matsuzawa, A., RF-SoC - expectations and required conditions [J]. IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 1, 2002, pp. 245-253
    【2】. Taylor, S., Intel Corporation, on-campus presentation. Apr. 2005
    【3】. Tummala, R. R., and Madisetti, V. K., System on Chip or System on Package [J]. IEEE Design & Test of Computers, Vol. 16, No. 2, 1999, pp. 48-56
    【4】. Tummala, R. R., SOP: What Is It and Why? A New Microsystem-Integration Technology Paradigm-Moore’s Law for System Integration of Miniaturized Convergent Systems of the Next Decade [J]. IEEE Transactions on Advanced Packaging, Vol. 27, No. 2, 2004, pp. 241-249
    【5】. Tummala, R. R., Microelectronics Packaging Handbook [M]. McGraw Hill, 2001
    【6】. http://www.prc.gatech.edu, 2003
    【7】. Lim, K., et al., RF-SOP for wireless communications [J]. IEEE Microwave Magazine, Vol. 3, No. 1, 2002, pp. 88-99
    【8】.田民波.电子封装工程[M].北京:清华大学出版社, 2003
    【9】.田民波,林金堵,祝大同.高密度封装基板[M].北京:清华大学出版社, 2003
    【10】. Michael, G. P., Agarwal, R., et al., Electronic Packaging [M]. Materials and their properties, Chapter 2.3, CRC, 1998
    【11】. Pecht, M., Handbook of Electronic Package Design [M]. Marcel Dekker, Inc., New York, 1991
    【12】. Buchner, R., Barthel, J., and Stauber, J., The dielectric relaxation of water between 0°C and 35 °C [J]. Chemical Physics Letters, Vol. 306, No. 1-2, 1999, pp. 57-63
    【13】.朱晶.浅析新材料在高密度电子封装上的应用及发展前景[J].印制电路信息, 2005, 1: 10-13
    【14】.郑小红,胡明,周国柱.新型电子封装材料的研究现状及展望[J].佳木斯大学学报(自然科学版)2005, 23(3):460-464
    【15】.张臣,沈能珏.电子封装材料现状与发展新材料产业[J]. 2003, 3:5-11
    【16】. Gray, F. L., Thermal Expansion Properties, Electronic Materials Handbook [M]. Vol. 1, Ed. M. L. Minges, ASM International, Materials Park, OH; 1972, pp. 611-629
    【17】. Mumby, S. J., An Overview of Laminate Materials with Enhanced Dielectric Properties [J]. Journal of Electronic Materials, Vol. 18, No. 2, 1989, pp. 241-250
    【18】. Taconic microwave materials website. Various materials data sheets [Online]. Date accessed: Jul. 2005. Available: http://www.taconic-add.com/
    【19】. Kulke, R., Rittweger, M., Uhlig, P., and Gunner, C., LTCC - multilayer ceramic for wireless and sensor applications [J]. English translation from Produktion von Leiterplatten und Systemen (PLUS), IMST GmbH, Dec. 2001
    【20】. Culbertson, E. C., A new laminate material for high performance PCBs: liquid crystal polymer copper clad films [C]. Proceedings of the 45th Electronic Computer Technology Conference, Las Vegas, USA, 1995, pp. 520-523
    【21】. http://nobelprize.org/physics/educational/liquid_crystals/history/
    【22】. Weiss, R. A., and Ober, C. K., Liquid Crystalline Polymers [M]. American Chemical Society, Washington, DC, ISBN 0-8412-1849-8, 1990
    【23】. Ciferi, A., Krigbaum, W. R., and Meyer, R. B., Polymer Liquid Crystals [M]. Academic Press, San Diego, 1982
    【24】. Chung, T. S., Calundann, G. W., and East, A. J., Liquid crystal polymers and their applications [M]. published in Handbook of Polymer Science and Technology, Vol. 2, edited by N. P. Cheremisinoff, Marcel Dekker, New York, 1989, pp. 625-675
    【25】. Chapoy, L. L., Recent Advances in Liquid Crystal Polymers [M]. Elsevier, New York, 1985
    【26】. McCrum, CN. G., Buckley, C. P., and Bucknall, C. B., Principles of Polymer Engineering 2nd Edition [M]. Oxford Science Publications, ISBN 0-19-856527-5, 1997, pp. 49-73
    【27】. Donald, A. M., and Windle, A. H., Liquid Crystalline Polymers [M]. Cambridge University Press, Cambridge, UK, 1992
    【28】. Osborn, K. R., and Jenkins, W. A., Plastic Films Technology and Packaging Applications [M]. Technomic Publishing Co., Inc., Lancaster, PA, 1992.
    【29】. Farrell, B., and Lawrence, M. S., The processing of liquid crystalline polymer printed circuits [C]. Proceedings of the IEEE Electronic Components and Technology Conference, San Diego, USA, 2002, pp. 667-671
    【30】. Thompson, D., Characterization and design of liquid crystal polymer (LCP) based multilayer RF components and packages. PhD thesis, Georgia Institute of Technology, 2006
    【31】. Inoue, H., Fukutake, S., and Ohata, H., Liquid crystal polymer film heat resistance and high dimensional stability [C]. Proceedings of the Pan Pacific Microelectronics Symposium, Kauai, Hawaii, 2001, pp. 273-278
    【32】. Hiraishi, K., Sabev, P., Jacob, T., Liquid Crystal Polymer (LCP) Circuit Material. Nippon Mektron, ltd., Productronica 2005.
    【33】. Higgins III, L. M., Hermetic and optoelectronic packaging concepts using multiplayer and active polymer systems [J]. Advancing Microelectronics, Vol. 30, No. 4, 2003, pp. 6-13
    【34】. Jayaraj, K., and Noll, T. E., Controlled thermal expansion PCBs [J]. Printed Circuit Fabrication, Vol. 19, No. 2, 1996, pp. 24-41
    【35】. Jayaraj, K., Noll, T. E., and Blizard, K., Controlled thermal expansion printed wiring boards based on liquid crystal polymer dielectrics [J]. Circuit World, Vol. 22, No. 2, 1996, pp. 25-30
    【36】. Jayaraj, K., Noll, T. E., and Singh, D. R., RF characterization of a low cost multichip packaging technology for monolithic microwave and millimeter wave integrated circuits [C]. Proceedings of the URSI International Signals, Systems, and Electronics Symposium, San Francisco, USA, 1995, pp. 443-446
    【37】. Zou, G., Gronqvist, H., Starski, J. P., and Liu, J., Characterization of liquid crystal polymer for high frequency system-in-a-package applications [J]. IEEE Transactions on Advanced Packaging, Vol. 25, 2002, pp. 503-508
    【38】. Farrell, B., and Lawrence, M. S., The processing of liquid crystalline polymer printed circuits [C]. Proceedings of the IEEE Electronic Components and Technology Conference, San Diego, USA, 2002, pp. 667-671
    【39】. Thompson, D. C., Tantot, O., Jallageas, H., Ponchak, G. E., Tentzeris, M. M., and Papapolymerou, J., Characterization of liquid crystal polymer (LCP) material and transmission lines on lcp substrates from 30-110 ghz [J]. IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 2004, pp. 1343-1351
    【40】. Murphy, C., Rogers Corporation, private communication. 2004
    【41】.高野祥司.应用液晶聚合物的挠性印制板[J].电子技术, 2003, 6
    【42】.杨邦朝,顾永莲.新型挠性印制电路板基材[J].挠性印制板, 2004, 10: 39-43
    【43】. Chung, T. S., Thermotropic Liquid Crystal Polymer: Thin Film Poly Chara Blends [M], Chapter 11, CRC, 2001,
    【44】. Yang, R., and Hayden, T. F., Foldable Flex and Thinned Silicon Multichip Packaging Technology [M]. Chapter 11, edited by John Balde, 2004
    【45】. Okamoto, S., Newly Developed LCP Film Fabricated by Solvent-Casting Method [C]. Proceedings of the 2007 International Symposium on High Density Packaging and Microsystem Integration (HDP′07), Shanghai, China, 2005, pp. 309-321
    【46】. Zhang, T., Johnson, W., Farrell, B., and Lawrence, M. S., The processing and assembly of liquid crystalline polymer printed circuits [C]. Proceedings of the 2nd International IEEE Polymers and Adhesives in Microelectronics and Photonics Conference, Denver, USA, 2002, pp. 1-9
    【47】. Suga, T., Takahashi, A., Saijo, K., and Oosawa, S., New fabrication technology of polymer/metal lamination and its application in electronic packaging [C]. Proceedings of the IEEE 1st International. Polymers and Adhesives in Microelectronics and Photonics Conference, Potsdam, Germany, 2001, pp. 29-34
    【48】. Bogatin, E., Liquid Crystal Polymers and Packaging [M]. Semiconductor International, July 1st, 2002
    【49】. Brownlee, K., Bhattacharya, S., Shinotani, K., Wong, C. P., and Tummala, R., Liquid crystal polymers (LCP) for high performance SOP applications [C]. Proceedings of the 8th International Advanced Packaging, Materials Symposium, Georgia, USA, 2002, pp. 249-253
    【50】. Kivilahti, J., Liu, J., Morris, J. E., Suga, T., and Wong, C. P., Panel-size component integration (PCI) with molded liquid crystal polymer (LCP) substrates [C]. Proceedings of the IEEE Electronic Components and Technology Conference, San Diego, USA, 2002, pp. 955-961
    【51】. Chen, L., Crnic, M., Lai, Z. H., and Liu, J., Process development and adhesion behavior of electroless copper on liquid crystal polymer (LCP) for electronic packaging application [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 25, No.4, 2002, pp. 273-278
    【52】. Duo, X. Z., Zheng, L. R., Tenhunen, H., Chen, L., Zou, G., and Liu, J., Design and implement of a 5 GHz RF receiver for front-end based system-on-package module with embedded chip technology [C]. Proceedings of Electrical Performance of Electronic Packaging Conference, NJ, USA, 2003, pp. 51-54
    【53】. Tentzeris, M. M., Laskar, J., Papapolymerou, J., Pinel, S., Palazzari, V., Li, R., DeJean, G., Lee, J. H., 3-D-Integrated RF and millimeter-wave functions and modules using liquid crystal polymer(LCP) system-on-package technology [J]. IEEE Transactions on Advanced Packaging, Vol. 27, No. 2, 2004, pp. 332-340
    【54】. DeJean, G., Bairavasubramanian, R., Thompson, D., Ponchak, G. E., Tentzeris, M. M., and Papapolymerou, J., Liquid crystal polymer (LCP): A new organic material for the development of multilayer dual-frequency/dual-polarization flexible antenna arrays [J]. IEEE Antennas and Wireless Propagation Letters, Vol. 4, 2005, pp. 22-25
    【55】. Thompson, D., Tentzeris, M. M., and Papapolymerou, J., Packaging of MMICs in multilayer LCP substrates [J]. IEEE Microwave and Wireless Components Letters. Vol. 16, No. 7, 2006, pp.410-412
    【56】. Bairavasubramanian, R., Development of Microwave/Millimeter-Wave Antennas and Passive Components on Multilayer Liquid Cristal Polymer (LCP) Technology, PhD thesis, Georgia Institute of Technology, 2007
    【57】. Zhang, X., Zhang, Q., Zou, G., Chen, L., Chen, Z. N., Liu, J., Development of SOP module technology based on LCP substrate for high frequency electronics applications [C]. Proceedings of the 1st Electronics System-Integration Technology Conference (ESTC’01), Dresden, Germany, 2006, pp. 118-125
    【58】. Yang, L., Tentzeris, M. M., 3D multilayer integration and packaging on organic/paper low-cost substrates for RF and wireless applications [C]. Proceedings of the International Symposium on Signals, Systems and Electronics Conference, Orlando, USA, 2007, pp. 267-270
    【59】. Quendo, C., Rius, E., Person, C., Favennec, J. F., Clavet, Y., Manchec, A., Bairavasubramanian, R., Laskar, J., Wide band, high rejection and miniaturized fifth order bandpass filter on LCP low cost organic substrate [C]. IEEE MTT-S International Microwave Symposium Digest, Califonia, USA, 2005, pp. 2203-2205
    【60】. Bairavasubramanian, R., Pinel, S., Papapolymerou, J., Laskar, J., Quendo, C., Rius, E., Manchec, A., Person, C., Dual-band filters for WLAN applications on liquid crystal polymer technology [C]. IEEE MTT-S International Microwave Symposium Digest, Califonia, USA, 2005, pp. 533-536
    【61】. Mukherjee, S., Mutnury, B., Dalmia, S., Swaminathan, M., Layout-level synthesis of RF inductors and filters in LCP substrates for Wi-Fi applications [J]. IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 6, 2005, pp. 2196-2209
    【62】. Pinel, S., Bairavasubramanian, R., Laskar, J., Papapolymerou, J., Compact planar and vialess composite low-pass filters using folded stepped-impedance resonator on liquid-crystal-polymer substrate [J]. IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5, 2005, pp. 1707-1712
    【63】. Bairavasubramanian, R., Thompson, D., DeJean, G., Ponchak, G. E., Tentzeris, M. M., and Papapolymerou, J., Development of mm-wave dual-frequency multilayer antenna arrays on liquid crystal polymer (LCP) substrate [C]. IEEE AP-S International Antennas and Propagation Symposium Digest, Washington DC, USA, 2005, pp. 393-396.
    【64】. Govind, V., Monajemi, P., Carastro, L., Lapushin, S., Russell, C., Dalmia, S., Vickers, J., White, G., Design of novel highly integrated passive devices for digital broadcasting satellite / 802.11 home networking solution in liquid crystal polymer (LCP) based organic substrates [C]. IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 2006, pp. 1157-1160
    【65】. Kingsley, N., Ponchak, G. E., and Papapolymerou, J., Reconfigurable RF MEMS Phased Array Antenna Integrated Within a liquid crystal polymer (LCP) System-on-Package [J]. IEEE Transactions on Antennas and Propagation, Vol. 56. No. 1, 2008, pp. 108-118
    【66】. Hao, Z. C., Hong, J. S., Alotaibi, S. K., Parry, J. P., Hand, D. P., Ultra-wideband bandpass filter with multiple notch-bands on multilayer liquid crystal polymer substrate [J]. IET Microwaves, Antennas and Propagation, Vol. 3, No. 5, 2009, pp. 749-756
    【67】. Vyas, R., Rida, A., Bhattacharya, S., and Tentzeris, M. M., Liquid crystal polymer (LCP): The ultimate solution for low-cost RF flexible electronics and antennas [C]. Proceedings of IEEE International Symposium on Antennas and Propagation, Honolulu, HI, USA, 2007, pp. 1729-1732
    【68】. Bhattacharya, S. K., Tentzeris, M. M., Yang, L., Basat, S., Rida, A., Flexible LCP and paper-based substrates with embedded actives, passives, and RFIDs [C]. Proceedings of 6th International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics, Tokyo, Japan, 2007, pp. 159-166
    【69】. Zhang, T., Hou, Z. W., Johnson, R. W., Castillo, L. D. and Blalock, B. J., Flexible Electronics: Thin Silicon Die on Flexible Substrates [J]. IEEE Transactions on Electronics Packaging Manufacturing, Vol. 32, No. 4, 2009, pp. 291-300
    【70】. Zhang, Q., Nyborg, L., Jelvestam, U., Lai, Z. H., Cheng, Z. N., Liu, J., Adhesion Study of Copper Layer Deposited onto Liquid Crystalline Polymer for Electronic Packaging [C]. Proceedings of the International Conference on Electronics Packaging (ICEP 2006), Tokyo, Japan, April 19-21, 2006, pp. 83-89
    【71】.王国全.聚合物改性[M].中国轻工业出版社. 2002
    【72】. GE, J., Eberhardt, M. P. K., Kivilahti, J. K., Surface Modification of a Liquid-Crystalline Polymer for Copper Metallization [J]. Journal of Polymer Science: Part B: Polymer Physics, Vol. 41, 2003, pp. 623-636
    【73】. Wang, B., Eberhardt, W., Kuck, H., Adhesion of PVD layers on liquid crystal polymer pretreated by oxygen-containing plasma [J]. Vacuum 79, 2005, pp. 124-128
    【74】. Wang, Z., Li, H., Shodiev, H., Suni, I. I., Electrochem Solid State Letters 7, C67, 2004
    【75】. Chang, C. Y., Sze, S. M., Editors, In ULSI technology, McGraw-Hill, New York, 1996.
    【76】. Biederman, H., RF sputtering of polymers and its potential application [J]. Vacuum 59, 2000, pp. 594-599
    【77】. Okolo, B., Lamparter, P., Welzel, U., et a1., The effect of deposition parameters and substrate surface condition on texture, morphology and stress in magnetron-sputter-deposited Cu thin films [J]. Thin Solid Films,Vol. 474, No. 1-2, 2005
    【78】. Miura, S., Honma, H., SurfCoat Technolgy 91, 2003, pp. 169-170
    【79】. Chang, K., Microwave ring circuits and antennas [M], Chapters. 2 and 3, Wiley, New York, 1996
    【80】. Ross, G., A time domain criterion for the design of wideband radiation elements [J]. IEEE Transactions on Antennas and Propagation, Vol. 16, No. 3, 1968, pp. 355-356
    【81】. Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, First note and Order, Federal Communications Commission, ET-Docket 98-153, 2002
    【82】. Aiello, G. R. and Rogerson, G. D., Ultra-wideband wireless systems [J]. IEEE Microwave Magazine, Vol. 4, 2003, pp. 36-47
    【83】. Yang, L. and Giannakis, G. B., Ultra-wideband communications: an idea whose time has come [J]. IEEE Signal Processing Magazine, Vol. 21, 2004, pp. 26-54
    【84】. International Telecommunication Union, Radiocommunication Study Groups, Framework for the introduction of devices using ultra-wideband technology. Document 1/85(Rev.1)-E, 09, 2005
    【85】. Irahhauten, Z., Nikookar, H., and Janssen, G. J. M., An overview of ultra wide band indoor channel measurements and modeling [J]. IEEE Microwave and Wireless Components Letters, Vol. 14, 2004, pp. 386-388
    【86】. Wolff, I., Microstrip bandpass filter using degenerate modes of a microstrip ring resonator [J]. Electronics Letters, Vol.8, No. 12, 1972, pp.302-303
    【87】. Hsieh, L. H., Chang, K., Compact dual-mode elliptic-function bandpass filter using a single ring resonator with one coupling gap [J]. Electronics Letters, Vol. 36, No.19, 2000, pp.1626-1627
    【88】. Hsieh L. H., and Chang K., Compact, low insertion loss, sharp rejection wideband bandpass filters using dual-mode ring resonators with tuning stubs [J]. Electronics Letters, Vol.37, No.22, 2001, pp.1345-1347
    【89】. Hsieh L. H. and Chang K., Compact, low insertion-loss, sharp-rejection, and wide-band microstrip bandpass filters [J]. IEEE Transactions on Microwave Theory and Techniques, Vol.51, No.4, 2003, pp.1241-1246
    【90】. Ishida, H., and Araki, K., A design of tunable UWB filters [C]. 2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies Digest, Kyoto, Japan, 2004, pp.424-428
    【91】. Ishida, H., and Araki, K., Design and analysis of UWB BPF with ring filter [J]. Electronics and Communications in Japan, Part 2, Vol. 88, No. 6, 2005, pp.1-8
    【92】. Ishida, H., and Araki, K., Design and analysis of UWB bandpass filter with ring filter [C]. IEEE Transaction MTT-S International Microwave Symposium Digest, Vol.3, 2004, pp.1307-1310
    【93】. Hsieh, L. H. and Chang, K., Simple analysis of the frequency modes for microstrip ring resonators of any general shape and correction of an error in the literature [J]. Microwave and Optical Technology Letters, Vol.38, No.3, 2003, pp. 209-213
    【94】. Liu, J. C., Lu, P. C., Shie, C. H., Cheng, C. S. and Yao, L., Dual-mode double-ring resonators for microstrip band-pass-filter applications [J]. IEEE Transactions on Antennas and Propagation, Vol.151, No.5, 2004, pp.430- 434
    【95】. Chuang, M. L., Miniaturized ring coupler of arbitrary reduced size [J]. IEEE Microwave and Wireless Components Letters, Vol. 15, No.1, 2005, pp.16-18.
    【96】. Row, J., Dual-frequency circularly polarized annular-ring microstrip antenna [J]. Electronics Letters, Vol. 40, No. 3, 2004, pp. 153-154
    【97】. Stephan K., Camilleri N., and Itoh, T., A quasi-optical polarization-duplexed balanced mixer for millimeter-wave applications [J]. IEEE Transactions on Microwave Theory and Techniques, Vol. 31, No.2, 1983, pp. 164-170
    【98】. Gardner, P., Paul, D. and Tan, K., Microwave voltage tuned microstrip ring resonator oscillator [J]. Electronics Letters, Vol.30, No.21, 1994, pp.1770-1771
    【99】. Hsieh, L. and Chang, K., High efficiency piezoelectric transducer tuned feed-back microstrip ring resonator oscillators operation at high resonant frequencies [J]. IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No.4, 2003, pp. 1141-1145
    【100】. Gorur, A., Description of coupling between degenerate modes of a dual-mode microstrip loop resonator using a novel perturbation arrangement and its dual-mode bandpass filter applications [J]. IEEE Transactions on Microwave Theory and Techniques, Vol.52, No.2, 2004, pp.671-677
    【101】. Kundu, A. C. and Awai, I., Control of attenuation pole frequency of a dual-mode microstrip ring resonator bandpass filter [J]. IEEE Transactions on Microwave Theory and Techniques, Vol.49, No.6, 2001, pp.1113-1117
    【102】. Hsieh, L. H., Chang, K., Dual-mode elliptic-function bandpass filter using one single patch resonator without coupling gaps [J]. Electronics Letters, Vol. 36, No.24, 2000, pp.2022-2023
    【103】. Cai, P., Ma, Z. W., Guan, X. H., Yang, X. X., Kobayashi, Y., Anada T., and Hagiwara, G., A compact UWB bandpass filter using two-Section open-circuited stubs to realize transmission zeros [C]. 2005 Asia-Pacific Microwave Conference Digest, Suzhou, China, 2005, pp.3356-3359
    【104】. Cai, P., Ma, Z. W., Guan, X. H., Zheng, G. X., and Anada, T., A novel sub-millimeter-wave UWB filter [C]. The Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics, Shanghai, China. 2006, pp.240-240
    【105】. Cai, P., Ma, Z. W., Guan, X. H., Kobayashi, Y., Anada T., and Hagiwara G., Novel compact microstrip dual-Mode ring resonator wideband bandpass filter with significantly improved stopband [J]. IEICE Transactions on Electronics, Vol.E89-C, No.12, 2006, pp.1858-1864
    【106】. Cai, P., Ma, Z. W., Guan, X. H., Zheng, G. X., Anada, T., and Hagiwara G., A compact and low-loss sub-millimeter-wave ultra-wideband bandpass filter [J]. Microwave and Optical Technology Letters, Vol.49, No.2, 2007, pp. 481-484
    【107】. Kundu, A. C. and Awai, I., Control of attenuation pole frequency of a dual-mode microstrip ring resonator bandpass filter [J]. IEEE Transactions on Microwave Theory and Techniques, Vol.49, No.6, 2001, pp.1113-1117
    【108】. Zhu, L., Bu, H. and Wu, K., Aperture compensation technique for innovative design of ultra-broadband microstrip bandpass filter [C]. IEEE Transactions MTT-S International Microwave Symposium Digest, Boston, USA, Vol.1, 2000, pp.315-318
    【109】. Wang H., and Zhu, L., Aperture-backed microstrip line multiple-mode resonator for design of a novel UWB bandpass filter [C]. 2005 Asia-Pacific Microwave Conference Digest, Suzhou, China. 2005, pp. 2276-2279
    【110】. Zhu, L., Menzel, W., Wu, K. and Boegelsack, F., Theoretical characterization and experimental verification of a novel compact broadband microstrip bandpass filter [C]. Proceedings of APMC, Taipei, Taiwan. 2001, pp. 625-628
    【111】. Menzel, W., Zhu, L., Wu K., and Boegelsack, F., On the design of novel compact broad-band planar filters [J]. IEEE Transactions on Microwave Theory and Techniques, Vol.51, No.2, 2003, pp.364-370
    【112】. Zhu, L., Sun, S. and Menzel, W., Ultra-wideband (UWB) bandpass filters using multiple-mode resonator [J]. IEEE Microwave and Wireless Components Letters, Vol.15, No.11, 2005, pp. 796-798
    【113】. El-Kareh, B., Fundamentals of Semiconductor Processing Technologies [M]. Boston, 1995
    【114】. Campbell, S., The science and Engineering of Microlectronic Fabrication [M]. New York, 1996
    【115】. Federal Communications Commission, Amendment of Parts 2, 15 and 97 of the Commission's Rules to Permit Use of Radio Frequencies Above 40 GHz for New Radio Applications. FCC 95-499, ET Docket No. 94-124, RM-8308, Dec. 15, 1995
    【116】. Smulders, P., Exploiting the 60 GHz Band for Local Wireless Multimedia Access: Prospects and Future directions [J]. IEEE Communications Magazine, Vol. 2, No. 1, 2002, pp. 140-147
    【117】. Smulders, P. F. M., 60 GHz radio: prospects and future directions [C]. Proceedings of IEEE Benelux Chapter on Communications and Vehicular Technology Symposium, Eindhoven, 2003
    【118】. Yang, L. L., 60 GHz: Opportunity for Gigabit WPAN and WLAN Convergence [J]. ACM SIGCOMM Computer Communication Review, Vol. 39, No. 1, 2009, pp. 56-61
    【119】.甘本祓,吴万春,现代微波滤波器的结构与设计[M].科学出版社,,1973:198-253
    【120】.李嗣范,微波原理与设计[M].人民邮电出版社,1982:306-455
    【121】. Pozar, D. M., Microwave engineering [M]. New York: John Wiley & Sons, 1998
    【122】. Cohn, S. B., Parallel-coupled transmission-line resonator filters [J]. IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-6, No. 4, 1958, pp. 223-231
    【123】. Hong, J. S. and Lancaster, M. J., Microstrip filters for RF/microwave applications [M]. New York: John Wiley & Sons, 2001
    【124】. Gupta, K. C., Hall, P. S., Analysis and design of integrated circuit-antenna modules [M]. New York, NY: John Wiley & Sons, Inc., 2000
    【125】. Taylor, J. D.. Ultra-Wideband Radar Technology [M]. CRC Press, 2001
    【126】.林昌禄,聂在平等,天线工程手册[M].北京:电子工业出版社,2002
    【127】. Schantz, H., A brief history of UWB antennas [J]. Aerospace and Electronic Systems Magazine, Vol.19, No. 4, 2004, pp. 22-26
    【128】. Rumsey, V., Frequency Independent Antennas [M]. New York: Academic Press, 1966.
    【129】. Dubost, G., and Zisler, S., Antennas a Large Bande [M]. New York: Masson, 1976, pp. 128-129
    【130】. Agrawall, N. P., Kumar, G., and Ray, K. P., Wide-band planar monopole antennas [J]. IEEE Transactions on Antennas Propagations, Vol. 46, No. 2, 1998, pp. 294-295
    【131】. Evans, J. A. and Ammann, M. J., Planar trapezoidal and pentagonal monopoles with impedance bandwidths in excess of 10:1 [C]. IEEE AP-S International Symposium, Orlando, FL, Vol.3, 1999, pp. 1558-1561
    【132】. Abbosh, A. M., Bialkowski, M. E., Design of Ultrawideband Planar Monopole Antennas of Circular and Elliptical Shape [J]. IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 2008, pp. 17-23
    【133】. Johnson, J. M. and Yahya, R. S., The tab monopole [J]. IEEE Transactions on Antennas and Propagation, Vol. 45, No. 1, 1997, pp. 187-188
    【134】. Chen, W. S., Wu, S. C. and Yang, K. N., A study of the printed heart monopole antenna for IEEE 802.16a/UWB applications [C]. IEEE AP-S International Symposium, Albuquerque, Mew Mexico, 2006, pp. 1685-1688
    【135】. Kim, J. P., and Yoon, T. O., et al., Design of an ultra wide-band printed monopole antenna using FDTD and genetic algorithm [J]. IEEE Microwave and Wireless Components Letters, Vol. 15, No. 6, 2005, pp. 395-397
    【136】. Kiminami, K., Hirata, A., et al., Double-sided printed bow-tie antenna for UWB communications [J]. IEEE Antennas and Wireless Propagation Letters, Vol. 3, 2004, pp.152-153
    【137】. Liang, J. and Guo, L., CPW-fed circular disc monopole antenna for UWB applications [C]. IEEE International Workshop on Antenna Technology, Small Antennas and Novel Metamaterials, Singapore, 2005, pp. 505-508
    【138】. Lee, J. W., Cho, C. S. and Kim, J., Planar half-disk antenna structures for ultra-wideband communications [J]. IEEE AP-S International Symposium, Monterey, CA, Vol. 3, 2005, pp. 2508-2509
    【139】. Chan, K. C. L., Chan, Y., and Xu, Z., A planar elliptical monopole antenna for UWB applications [C]. Wireless Communications and Applied Computational Electro-magnetics, IEEE/ACES International Conference, Honolulu, HI, USA, 2005, pp. 182-185
    【140】. Suh, S. Y. and Stutzman, W., et al., A Novel CPW-fed disc antenna [J]. IEEE AP-S International Symposium, Monterey, CA, Vol. 3, July 2005, pp. 2919-2922.
    【141】. Niu, J. W., and Zhong, S. S., A CPW-fed broadband slot antenna with linear taper [J]. Microwave and Optical Technology Letters, Vol. 41, No. 3, 2004, pp. 218-221
    【142】. Ray, K. P., and Ranga, Y., Ultra-wideband printed modified triangular monopole antenna [J]. Electronics Letters, Vol. 42, No. 19, 2006, pp. 1081-1082
    【143】. Chang, D. C., Liu, M. Y. and Lin, C. H., A CPW-fed U type monopole antenna for UWB applications [J]. IEEE AP-S International Symposium, Washington DC, USA, Vol. 2A, 2005, pp. 512 -515
    【144】. Bao, X. L. and Ammann, M. J., Investigation on UWB Printed Monopole Antenna with Rectangular Slitted Groundplane [J]. Microwave and Optical Technology Letters, Vol. 49, No. 7, 2007, pp. 1585-1587
    【145】. Dissanayake, T., Esselle, K. P., Correlation-Based Pattern Stability Analysis and a Figure of Merit for UWB Antennas [J]. IEEE Transactions on Antennas and Propagation, Vol. 54, No. 11, 2006, pp. 3184-3191
    【146】. McLean, J., Foltz, H., Sutton, R., Conditions for Direction-Independent Distortion in UWB Antennas [J]. IEEE Transactions on Antennas and Propagation, Vol. 54, No. 11, 2006, pp. 3178-3183
    【147】. McLean, J. S., Foltz, H., Sutton, R., Pattern Descriptors for UWB Antennas [J]. IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 2005, pp. 553-559
    【148】. Liang, J. and Guo, L., CPW-fed circular disc monopole antenna for UWB applications [C]. IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, Singapore, 2005, pp. 505-508
    【149】. Liang, J., Chiau, C. C., et al., CPW-fed circular ring monopole antenna [C]. IEEE Antennas and Propagation society International Symposium, Washington DC, Vol. 2A, 2005, pp. 500-503
    【150】. Padhi, S. K., and Zagriatski, S., et al., Investigations into printed monopole antennas for Ultra-Wideband applications [C]. IEEE AP-S International Symposium, Washington DC, Vol.2A, 2005, pp. 651-654.
    【151】. Chung, K., Yun, T. and Choi, J., Wideband CPW-fed monopole antenna with parasitic elements and slots [J]. Electronics Letters, Vol. 40, No. 17, 2004, pp. 1038-1040
    【152】. Liang, X. L., Zhong, S. S., Wang, W., and Yao, F. W., Printed annular monopole antenna for ultra-wideband applications [J]. Electronics Letters, Vol. 42, No. 2, 2006, pp. 71-72
    【153】. Liang, X. L., Zhong, S. S. and Wang, W., Tapered CPW-fed printed monopole antenna [J]. Microwave and Optical Technology Letters, Vol. 48, No. 7, 2006, pp. 1242 -1244
    【154】. http://en.wikipedia.org/wiki/Discone_antenna
    【155】. Kandoian, A. G., Sichak, W., and Felsenheld, G. A., High gain with discone antennas [C]. Proceedings of Nacl. Electronics Conference, Vol. 3, 1947, pp. 318-328
    【156】.王元坤,李玉权,线天线的宽频带技术[M].西安电子科技大学出版社,1995, pp. 26-32
    【157】. Wong, K. L., Wu, C. H., and Su, S. W., Ultrawide-Band Square Planar Metal-Plate Monopole Antenna with a Trident-Shaped Feeding Strip [J]. IEEE Transactions on Antennas and Propagation, Vol. 53, No. 4, 2005, pp. 1262-1269
    【158】. Zhong, S. S., Liang, X. L., and Wang, W., Compact elliptical monopole antenna with impedance bandwidth in excess of 21:1 [J]. IEEE Transactions on Antennas and Propagation, Vol. 55, 2007, pp. 3080-3085
    【159】.张敏,CST微波工作室用户手册[M].电子科技大学出版社,2004
    【160】. Yan, X. R., Zhong, S. S., and Wang, G. Y., Compact Printed Monopole Antenna with 24:1 Impedance Bandwidth [J]. Microwave and Optical Technology Letters, Vol. 49, No. 11, 2007, pp. 2883-2886

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700