用户名: 密码: 验证码:
滤波微波器件的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息工程的飞速发展,无线通信已经成为本世纪最为热门的技术之一。各种新型无线通信系统的不断涌现,极大地刺激了微波有源和无源器件尤其是滤波器技术的快速发展。本文主要对无线通信中具有滤波特性的新型器件展开了研究与设计。首先,针对传统滤波器的快速优化技术,提出了基于多项式拟合的参数提取方法,并改进了传统空间映射方法,使之更适用于微波滤波器的设计。利用本文的优化方法,深入研究了现代无线通信中的多种射频/微波滤波器件,包括:多通带滤波器、多工滤波器、平衡滤波器、巴伦滤波器、平衡到不平衡双工器、滤波器天线以及基于滤波器的压控振荡器。
     本文的工作主要包括以下几个方面:
     1.系统的研究了传统广义切比雪夫滤波器的综合方法。在提出基于多项式拟合的滤波器参数提取法的同时,还给出了改进的渐进空间映射滤波器优化方法。为了证明参数提取的正确性及有效性,对比了多个滤波器的实测数据和提取数据,两者吻合良好;为了验证优化方法的正确性,给出了三款滤波器的设计实例,每款滤波器通过若干步的迭代都逼近了最优结果。
     2.详细地分析、研究了阶梯阻抗谐振器(SIR),短路枝节加载谐振器以及新型环形谐振器的谐振特性,绘制了相应的设计图。给出了多通带滤波器的设计流程,基于本文分析的谐振器分别设计了高带外抑制的双通带滤波器、共腔双通带滤波器以及高阶三通带滤波器。
     3.系统研究了多工滤波器技术,给出了多头线多工器的综合策略,为了验证综合结果的正确性,分别设计了高带外抑制的双工器和五工器。深入研究双枝节加载谐振器的特性,利用该谐振器和SIR等多模谐振器设计了高性能双工器和多工器。提出了基于地面缺陷阶梯阻抗谐振器(DSIR)的新型多工器拓扑结构,给出了设计流程,设计了四工器。
     4.提出了基于交指线谐振器的平衡滤波器设计方法,并设计了高共模抑制的平衡滤波器。给出了巴伦滤波器的综合方法,设计了微带线巴伦滤波器,同时也设计了基于平衡滤波器的高性能巴伦滤波器。利用交指线谐振器以及平衡滤波器转化巴伦滤波器的方法,设计了小型化不平衡到平衡双工器以及平衡到不平衡双工器。
     5.给出了滤波天线的设计流程,利用群时延调谐方法设计了微带线滤波器天线。详细研究了复数品质因数的物理意义,提取了滤波器的复品质因数,在复品质因数峰值对应的频率处设计了低相位噪声振荡器。利用平行耦合线滤波器及可调滤波器,分别设计了低相位噪声的振荡器和压控振荡器,测试和仿真结果的一致性验证了本文方法的正确性。
With the phenomenal development in the information engineering, wirelesscommunication has become one of the most popular technologies in this century.Various new wireless communication systems emerge ceaselessly, which havepromoted a tremendous advance in microwave active and passive devices especially formicrowave filter technology. The research work presented in this dissertation focuses onthe design of microwave filtering components. Firstly, a new filter parametersextraction method is proposed in this dissertation, which is based on polynomial fittingand is introduced in order to improve traditional microwave filter simulationoptimization. A modified space mapping algorithm is also presented to accelerate theconvergence process, because the traditional space mapping algorithm is actually notsuitable for microwe filter design.Depending on the efficient optimization method, somekinds of novel filtering components are researched and designed.These new devicesinclude: multi-band filters, multiplexers, balanced filters, balun filters, balanced tounbalanced duplexer, unbalancd to balanced duplexer, filter antenna and oscillatorswhich are designed by utilizing filters. The major work is concluded as following:
     1. The traditional generalized Chebyshev filter synthesis approach is systematicallystudied as the whole work’s origin. After a new polynomial fitting parametersextraction method is successfully achieved, a modified aggressive space mappingmethod is proposed to overcome the shortcomings that traditional ASM takes along time in parameter extraction process with inconsistent results. Design examlesabout dual-mode filter, microstrip filter and coaxial cavity filter have been proposedto verify the validity of the algorithm.
     2. The resonance characteristics of the stepped impedance resonators (SIR), short stubloaded resonator (SLR) and square ring loaded resonator (SRLR) are analyzed indetail.The design graphs regarding these resonators are plotted. The designprocedure of microwave dual band filter is also introduced later. Based on theproposed theory, several high performance multiband filters are designed andfabricated.The good agreements between the simulated and measured results verifythe proposed methods.
     3. Multiplexer optimization synthesis method is studied in detail. To illustrate themultiplexer design procesure a high out-of-band suppression duplexer and fivechannels multiplexer are synthesized and designed. The resonance characteristic ofthe dual stubs loaded resonator is analyzed in detail.Based on the mutilmode resonator, common mode duplexer and triplexer are designed to illustrat theusefully common mode multiplexer design methods.Addtionally, a new multiplxerstructure is proposed by applying defected stepped impedance resonators (DSIR).This new structure features simpler design and more flexible operating frequencychoice compared with the traditional design method.
     4. The traditional microstrip balanced bandpass filter (BPF) usually has thedisadvanteges such as large size or low common-mode suppression, so a verycompact interdigital coupled resonator, which has the characteristic of strongsuppression to common-mode signals at differential-mode operation frequencyband,is analyzed. By using the novel resonator, a balanced BPF with goodperformance and miniaturization can be achieved. Balun filter is an import balancedcircuit in micriwove communication chain, so two design methods are proposed.One is based on synthesized method and the other one is realized by transforming abalanced filter to be a balun filter. Two design examples are introduced to explainthe idea. Finally, novel and compact balanced to unbalanced duplexer andunbalancd to balanced duplexer are designed to further enhance the balancedcircuits’application in communication system.
     5. A printed monopole filter antenna is designed by utilizing filter antenna synthesisapproach which is proposed in this thesis. Time domain tuning methord is appliedto guarantee the antenna to perform not only a radiator but also the last resonator ofthe filter. On the overall performance, the filter antenna's reflection coefficient andgain curve are almost the same as the filter return loss and insertion loss.Lowphase-noise microwave oscillators and wideband voltage-controlled oscillator(VCO) based on microstrip bandpass filters are also proposed. For this type ofoscillator, the passband filter is embedded into the feedback loop to treat as afrequency stabilization element. Instead of designing the oscillator at the groupdelay peak frequency of the filter to achieve a good phase-noise performance,thepeak frequency of the complex quality factor is adopted for oscillator design. Theoscillator designed at the complex quality factor peak frequency improves thephase-noise about10dB as compared with that realized at the group delay peakfrequency. Moreover, by attaching a varactor on each resonator of the comblinefilter, the oscillator can be extended to a wideband VCO.
引文
[1] A.A.Oliner, Historical Perspectives on Microwave Field Theory, IEEE Trans.Microwave Theory and Techniques,1984,32(9):1022-1045.
    [2]黄金和,刘锦明,胡南山,21世纪微波无线通信技术展望,上海:全国第七届微波集成电路及工艺学术会议,1998.
    [3]颜永庆,移动通信发展的回顾与展望,江苏通信技术,2005,21(4):14-19.
    [4]樊振芳,无线通信的发展与未来,中国科技信息,2005,51:45-51.
    [5]高峻,唐晋生,微波滤波器的回顾与展望,应用与设计,2005,11:70-72.
    [6] M.Makimoto,S.Yamashita著,赵宏锦译,无线通信中的微波谐振器与滤波器,北京:国防工业出版社,2002.
    [7] R. J. Cameron, General coupling matrix synthesis methods for Chebychev filteringfunction, IEEE Trans. Microw. Theory Tech., Apr.1999,47(4), pp.433-442.
    [8] S. Amari, Synthesis of cross-coupled resonator filters using an analyticalgradient-based optimization technique, IEEE Trans. IEEE Trans. Microwave TheoryTech., Sep.2000,48(9), pp.1559-1564.
    [9] S. Amari, Direcy synthesis of folded symmetric resonator filters with source-loadcoupling, IEEE Microwave Wireless Compon. Lett., June.2001,11(6), pp.264-266.
    [10] R. Levy and Peter Petre, Design of CT and CQ filters using approximation andoptimization, IEEE Trans. Microwave Theory Tech., Dec.2001,49(12), pp.2350-2355.
    [11] G. Macchiarella, Accurate synthesis of inline prototype filters using cascadedtriplet and quadruplet sections, IEEE Trans. Microwave Theory Tech., July.2002,50(7), pp.1779-1783.
    [12] R. J. Cameron, A. R. Harish and C. J. Radcliffe, Synthesis of advancedmicrowave filters without diagonal cross-couplings, IEEE Trans. Microwave TheoryTech., Dec.2002,50(12), pp.2862-2871.
    [13] R. J. Cameron, Advanced coupling matrix synthesis techniques for microwavefilters, IEEE Trans. Microwave Theory Tech., Jan.2003,51(1), pp.1-10.
    [14] J. Brian Thomas, Cross-coupling in coaxial cavity filters-A tutorial overview,IEEE Trans. Microwave Theory Tech., April.2003,51(4), pp.1368-1376.
    [15]R. J. Cameron, J.C. Faugere, F. Seyfert, Coupling matrix synthesis for a new classof microwave filter configuration, IEEE MTT-S Int. Microwave Symp. Dig., June2005, pp.119-122.
    [16]http://www.ansoft.com
    [17]M. Dishal, Alignment and adjustment procedure of synchronously tuned multipleresonant circuit filters, Proc. IRE,1951,39(11),1448-1455.
    [18]H. A. Wheeler, tuning of waveguide filters by perturbing of individual sections,in Proc. Symp. Modern Advances in Microwave Technology,1954,343-353.
    [19]J. W. Bandler, R. M. Biernacki, S. H. Chen, P. A. Grobelny, and R. H. Hemmers,Space mapping technique for electromagnetic optimization, IEEE Trans. MicrowaveTheory Tech.,1994,42(12),2536-2544.
    [20]L. C. Tsai and C. W. Huse,“Dual-band bandpass filters using equal-lengthcoupled-serial-shunted lines and Z-transform techniques,” IEEE Trans. MicrowaveTheory Tech., Apr.2004, vol.52, no.4, pp.1111-1117.
    [21] C. Y. Chen, C. Y. Hsu, and H. R. Chuang,“Design of miniature planar dual-bandfilter using dual-feeding structures and embedded resonators,” IEEE Microw. Wirel.Compon. Lett., Dec.2006, vol.16, no.12, pp.669-671.
    [22] C. Y. Chen and C. Y. Hsu,“A simple and effective method for microstripdual-band filters design,” IEEE Microw. Wirel. Compon. Lett., May.2006,vol.16,no.3, pp.246-248.
    [23]G.L.Matthaei, L.Young, E.M.T.Jones, Microwave filters, Impedance-matchingnetworks and coupling structures, New York:McGraw-Hill,1964.
    [24]S.B.Cohn, Direct Coupled Cavity Filters, Proc. IRE,1957,45(2):187-196.
    [25]L. Young, Direct-coupled cavity filters for wide and narrow bandwidths, IEEETrans. on Microwave Theory and Techniques,1963,11(5):162-178.
    [26]R.Levy, Theory of Direct-Coupled Cavity Filters, IEEE Trans. Microw. Theory andTech.,1967,15(6):340-348.
    [27]H. J. Orchard, Filter Design by Iterrated Analysis, IEEE Trans. Circuit Systems,1985,32(11):1089-1096.
    [28]A.E.Atia, A.E.Williamsand R.W.Newcomb, Narrow-band multiple-coupled cavitysynthesis. IEEE Trans.on Circuits and Systems,1974,21(5):649-655.
    [29]R.J.Cameron, General Coupling Matric Synthesis Methods for Chebyshev FilteringFunction, IEEE Trans. Microw. Theory and Tech.,1999,47(4):433-442.
    [30]S.Amari, Synthesis of Cross-Coupled Resonator Filters Using an AnalyticalGradient-Based Optimization Technique, IEEE Trans. Microw. Theory and Tech.,2000,48(9):1559-1564.
    [31]S. Amari, U. Rosenberg, J. Bornemann, Adaptive Synthesis and Design ofResonator Filters With Source/Load-Multiresonator Coupling, IEEE Trans. Microw.Theory and Tech.,2002,50(8):1969-1978.
    [32]J. W. Bandler, R. M. Biernacki, S. H. Chen, P. A. Grobelny, and R. H. Hemmers,Space mapping technique for electromagnetic optimization, IEEE Trans. MicrowaveTheory Tech.,1994,42(12):2536-2544.
    [33]J. W. Bandler, R. M. Biernacki, S. H. Chen, R. H. Hemmers, and K. Madsen,Electromagnetic optimization exploiting aggressive space mapping, IEEE Trans.Microwave Theory Tech.,1995,43(12):2874-2882.
    [34]M. H. Bakr, J.W. Bandler, R.M. Biernacki, S. H. Chen, and K. Madsen. A trustregion aggressive space mapping algorithm for EM optimization,IEEE Trans.Microw. Theory and Tech.,1998,46(12):2412–2425.
    [35]M. H. Bakr, J. W. Bandler, N. K. Georgieva, and K. Madsen. A hybrid aggressivespace-mapping algorithm for EM optimization. IEEE Trans. Microw. Theory andTech.,1999,47(12):2440–2449.
    [36]J. W. Bandler, M. A. Ismail, J. E. Rayas-Sánchez, and Q. J. Zhang. Neuromodelingof microwave circuits exploiting space mapping technology. IEEE Trans.Microwave Theory Tech.,1999,47(12):2417–2427.
    [37]J. W. Bandler, M. A. Ismail, J. E. Rayas-Sánchez, and Q. J. Zhang. Neural inversespace mapping (NISM) optimization for EM-based microwave design. Int. J. RFMicrowave Computer-Aided Eng,2003,13(1):136–147.
    [38]J.W. Bandler, Q. S. Cheng, N. K. Nikolova, and M. A. Ismail. Implicit spacemapping optimization exploiting preassigned parameters, IEEE Trans. MicrowaveTheory Tech,2004,52(2):378–385.
    [39]K.L.Wu,Y.J.Zhao,J.Wang, M.K.K.Cheng, An effective dynamic coarse model foroptimization design of LTCC RF circuits with aggressive space mapping, IEEETrans. Microwave Theory Tech.,2003,52(2):393-402.
    [40]G. Macchiarella and S. Tamiazzo, Design techniques for dual-passband filters,IEEE Trans. Microwave Theory Tech., Nov.2005, vol.53, no.11, pp.3265-3271.
    [41] Giuseppe Macchiarella, Stefano Tamiazzo, Design Techniques for Dual-PassbandFilters, IEEE Trans. Microwave Theory Tech.,2005,53(11),3265-3271.
    [42] R. J.Cameron, M. Yu and Y. Wang, Direct-coupled microwave filters with singleand dual stopbands, IEEE Trans. Microw. Theory and Tech.,2005,53(11):3288-3279.
    [43] X. Guan, Z. Ma, P. Cai, Y. Kobayashi, T. Anada, and G. Hagiwara, Synthesis ofdual-band bandpass filters using successive frequency transformations and circuitconversions, IEEE Microw. Wireless Compon. Lett.,2006,16(3),110–112.
    [44] R. Levy, Generalized rational function approximation in finite intervals usingZolotarev functions, IEEE Trans. Microw. Theory Tech.,1970,18(12),1052–1064.
    [45] H. C. Bell, Zolotarev bandpass filters, in IEEE MTT-S Int. Microwave Symp. Dig.,Phoenix, AZ, May2001, pp.1495–1498.
    [46] J. Lee, M. S. Uhm, and I. B. Yom, A dual-passband filter of canonical structurefor satellite applications, IEEE Microw.Wireless Compon. Lett.,2004,14(6),271–273.
    [47] S. Holme, Multiple passband filters for satellite applications, in Proc.20th AIAAInt. Communications Satellite Systems Conf. and Exhibit, Montreal, QC, Canada,May2002, pp.1993–1996.
    [48]S Sun and L Zhu, Compact dual-band microstrip bandpass filter without externalfeeds, IEEE Microw. Wireless Compon. Lett.,2005,15(10),644–646.
    [49] S. Fu, B. Wu, J. Chen, S. J. Sun, C. H. Liang,“Novel Second-Order Dual-ModeDual-Band Filters Using Capacitance Loaded Square Loop Resonator”, IEEE Trans.Microwave Theory Tech.,2012,60(3),447-483.
    [50] J. T. Kuo, T. H. Yeh and C. C. Yeh, Design of microstrip bandpass filter with adual-passband response, IEEE Trans. Microw. Theory Tech.,2005,53(4),1331–1337.
    [51] Y. P. Zhang and M. Sun, Dual-band microstrip bandpass filter usingstepped-impedance resonators with new coupling schemes, IEEE Trans. Microw.Theory Tech.,2006,54,(10), pp.3779–3885.
    [52] X. Y. Zhang, J. X. Chen and X. Quan, Dual-band bandpass filter usingstub-loaded resonators, IEEE Microw. Wirel. Compon. Lett.,2007,17,(8),583–585.
    [53] P. Mondal and M. K. Mandal, Design of dual-band bandpass filters usingstub-loaded open-loop resonators, IEEE Trans. Microw. Theory Tech.,2008,56,(1),150–155.
    [54] H. M. Lee, C. R. Chen, C. C. Tsai and C. M. Tsai, Dual-band coupling and feedstructure for microstrip filter design, in IEEE MTT-S Int. Microw. Symp. Dig.,2004,3,1971–1974.
    [55] M. L. Chuang, Concurrent dual band filter using single set of microstrip open-loopresonators, Electron. Lett.,2005,41,1013–1014.
    [56] J. T. Kuo and H. S. Cheng, Design of quasi-elliptic function filters with adual-passband response, IEEE Microw.Wireless Compon. Lett.,2004,14,472–474
    [57] M. Q Zhou, X.-H Tang and F Xiao, Compact Dual Band Bandpass Filter UsingNovel E-Type Resonators With Controllable Bandwidths, IEEE Microw.WirelessCompon. Lett.,2008,18(12),779-781.
    [58] C. H Lee, C. I. G Hsu and H.K Jhuang, Design of a new Tri-band microstrip BPFusing combined quarter-wavelength SIRs, IEEE Microw. Wire. Compon. Lett.,2006,16,(11),594–596.
    [59] C. I. G. Hsu, C. H Lee, and Y. H. Hsieh, Tri-band bandpass filter with sharppassband skirts designed using tri-section SIRs, IEEE Microw. Wirel. Compon.Lett.,2008,18,(1),19–21.
    [60] Q. X. Chu and X. M. Lin, Advanced triple-band bandpass filter using tri-sectionSIR, Electron. Lett.,2008,44,(4),295–296.
    [61]C. Quendo, E. Rius, A. Manchec, Y. Clavet, B. Potelon, J. Favennec and C. Person,Planar tri-band filter based on dual behavior resonator (DBR), in Proc.35th Eur.Microw. Conf., Oct.2005,269–272.
    [62] H. Zhang and K. J. Chen, A tri-section stepped-impedance resonator forcross-coupled bandpass filters, IEEE Microw. Wireless Compon. Lett.,2005,15(6),401–403.
    [63] D. Packiaraj, M. Ramesh and A. T. Kalghatgi, Design of a tri-section folded SIRfilter, IEEE Microw. Wireless Compon. Lett.,2006,16(5),317–319.
    [64] C. M. Tsai, S.Y. Lee, and C.C. Tsai, Performance of a planar filter using a0feedstructure, IEEE Trans. Microw. Theory Tech.,2002,50(10),2362–2367.
    [65] C. F. Chen, T. Y. Huang and R.-B Wu, Design of dual-and triplepassband filtersusing alternately cascaded multiband resonators’, IEEE Trans. Microw. TheoryTech.,2006,54,(9),3550–3558.
    [66] B. J. Chen, T. M. Shen and R. B. Wu, Design of Tri-Band Filters WithImproved Band Allocation,IEEE Trans. Microw. Theory Tech.,2009,57(7),1790-1797.
    [67] C. Y. Chen and C.-Y Hsu, A simple and effective method for microstrip dual-bandfilters design, IEEE Microw. Wireless Compon. Lett.,2006,16(5),246–248.
    [68] F. C. Chen and Q. X. Chu, Design of Compact Tri-Band Bandpass Filters UsingAssembled Resonators, IEEE Trans. Microw. Theory Tech.,2009,57(1),165-171.
    [69] M. H Weng, H. W. Wu, K Shu, J. R. Chen, R. Y. Yang and Y. K. Su, A noveltriple-band bandpass filter using Multilayer-based substrates for WiMAX, EuropeanMicrowave Conference, Oct.2007,325–328.
    [70]G. Macchiarella, S.Tamiazzo, Novel Approach to the Synthesis of MicrowaveDiplexers, IEEE Trans. Microw. Theory and Tech.,2006,54(12):4281-4290.
    [71]G.L.Matthaei, L.Young, E.M.T.Jones, Microwave filters, Impedance-matchingnetworks and coupling structures, New York:McGraw-Hill,1964.
    [72]吴万春,甘本祓,现代微波滤波器的结构与设计,北京:科学出版社,1973.
    [73]C. H. Wu, C. H. Wang, C. H. Chen. Novel Balanced Coupled-Line BandpassFilters With Common-Mode Noise Suppression [J]. IEEE Trans.Microwave TheoryTech.,2007,55(2):287–295.
    [74]C. H. Wu, C. H. Wang, C. H. Chen. Stopband-Extended Balanced Bandpass FilterUsing Coupled Stepped-Impedance Resonators[J]. IEEE Microw. Wirel. Compon.Lett.,2007,17(7):507–509.
    [75]J. Shi, Q. Xue. Balanced Bandpass Filters Using Center-Loaded Half-WavelengthResonators[J]. IEEE Trans.Microwave Theory Tech.,2010.58(4):970-977.
    [76]J. Shi, Q. Xue. Dual-Band and Wide-Stopband Single-Band Balanced BandpassFilters With High Selectivity and Common-Mode Suppression[J]. IEEETrans.Microwave Theory Tech.,2010.58(8):2204-2212.
    [77]Ching-Her Lee, Hsu, C.-I.G., Chih-Chan Hsu. Balanced Dual-Band BPF WithStub-Loaded SIRs for Common-Mode Suppression [J]. IEEE Microw. Wirel.Compon. Lett.,2010,20(2):70–72.
    [78]J. Shi, Q. Xue. Novel Balanced Dual-Band Bandpass Filter Using CoupledStepped-Impedance Resonators [J]. IEEE Microw. Wirel. Compon. Lett.,2010,20(1):19–21.
    [79]Y. C. Leong, K. S. Ang, and C. H. Lee,“A derivation of a class of3-port balunsfrom symmetrical4-port networks,” in IEEE MTT-S Int. Microw. Symp. Dig.,2002,pp.1165–1168.
    [80]K. S. Ang, Y. C. Leong, and C. H. Lee,“Analysis and design ofminiaturizedlumped-distributed impedance-transforming baluns,”IEEE Trans. Microw. TheoryTech., vol.51, no.3, pp.1009–1017,Mar.2003.
    [81]R. Kravchenko, K. Markov, D. Orlenko, G. Sevskiy, and P. Heide,“Implementation of a miniaturized lumped-distributed balun in balanced filtering forwireless applications,” in Proc. Eur. Microw. Conf.,2005, pp.1303–1306.
    [82]M. C. Park, B. H. Lee, and D. S. Park,“A laminated balance filter using LTCCtechnology,” in Proc. Asia–Pacific Microw. Conf.,2005, pp.4–7.
    [83]A. Sadeghfam, H. Heuermann, and H. Boehm,“Ultra compact multimode filterwith novel rat-race inductor,” in Proc. Eur. Microw. Conf.,2005, pp.1315–1318.
    [84]L. K. Yeung and K. L. Wu,“An LTCC balanced-to-unbalanced extracted-polebandpass filter with complex load,” IEEE Trans. Microw.Theory Tech., vol.54, no.4, pp.1512–1518, Apr.2006.
    [85]S. Sakhnenko, K. Markov, D. Orlenko, A. Yatsenko, B. Vorotnikov, G.Sevskiy,and P. Heide,“LTCC balanced filter based on a transformer type balun for WLAN802.11a application,” in Proc. Eur. Microw. Conf.,2007, pp.434–437.
    [86]Liu J, Gong S, Xu Y, et al. Compact printed ultra-wideband monopole antenna withdual band-notched characteristics. Electronics Letters.2008,44(12):710-711.
    [87]Huang C Y, Huang S A, Yang C F. Band-notched ultra-wideband circular slotantenna with inverted C-shaped parasitic strip. Electronics Letters.2008,44(15):891-892.
    [88]Zayniyev D, Budimir D. An integrated antenna-filter with harmonic rejection.3rdEuropean Conference on Antennas and Propagation, EuCAP2009, March23,2009-March27,2009.2009:393-394.
    [89]Oda S, Sakaguchi S, Kanaya H, et al. Electrically small superconducting antennaswith bandpass filters.2007:878-881.
    [90] Froppier B, Mahe Y, Cruz E M, et al. Integration of a filtering function in anelectromagnetic horn. Microwave Conference,2003.33rd European.2003:939-942.
    [91] Bailey M C. A stacked patch antenna design with strict bandpass filtercharacteristics [radiometer applications]. Antennas and Propagation SocietyInternational Symposium,2004. IEEE.2004:1599-1602.
    [92]Ma B, Chousseaud A, Toutain S. A novel method for filtering antenna design. AsiaPacific Microwave Conference2009, APMC2009, December7,2009-December10,2009.2009:2660-2663.
    [93]Ning Y, Caloz C, Ke W. Co-designed CPS UWB filter-antenna system.2007IEEEAntennas and Propagation Society International Symposium,9-15June2007.2008:1433-1436.
    [94]Shaker G, Safavi-Naeini S, Sangary N. Filter integrated antennas: concept andproposed design methodology.2009IEEE Radio and Wireless Symposium,18-22Jan.2009.2009:23-26.
    [95]L. Dussopt, D. Guillois, and G. M. Rebeiz,“A low phase noise silicon9GHz VCOand18GHz push-push oscillator,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun.2002, vol.2, pp.695–698.
    [96]Y.-T. Lee, J. Lee, and S. Nam,“High-active resonators using amplifiers and theirapplications to low phase-noise free-running and voltage-controlled oscillators,”IEEE Trans. Microw. Theory Tech., vol.52, no.11, pp.2621–2626, Nov.2004.
    [97]J. Jung, C. S. Cho, J. W. Lee, J. Kim, and T. H. Kim,“A low phase noisemicrowave oscillator using split ring resonators,” in Proc.36th Eur. Microw. Conf.,Manchester, U.K.,2006, pp.95–98.
    [98]Y.-T. Lee, J.-S. Lim, C.-S. Kim, D. Ahn, and S. Nam,“A compact-size microstripspiral resonator and its application to microwave oscillator,” IEEE Microw.Wireless Compon. Lett., vol.12, no.10, pp.375–377, Oct.2002.
    [99]L.-H. Hsieh and K. Chang,“High-efficiency piezoelectric-transducer tunedfeedback microstrip ring-resonator oscillators operating at high resonantfrequencies,” IEEE Trans. Microw. Theory Tech., vol.51, pp.1141–1145, Apr.2003.
    [100] J. Choi, M.-H. Chen, and A. Mortazawi,“An-band low phase noise oscillatoremploying a four-pole elliptic-response microstrip bandpass filter,” in IEEE MTT-SInt. Microw. Symp. Dig., Jun.2007, pp.1529–1532.
    [101] J. Choi, M. Nick, and A. Mortazawi,“Low phase-noise planar oscillatorsemploying elliptic-response bandpass filters,” IEEE Trans. Microw. Theory Tech.,vol.57, no.8, pp.1959–1965, Aug.2009.
    [102] J. Choi and C. Seo,“Microstrip square open-loop multiple split-ring resonator forlow-phase-noise VCO,” IEEE Trans. Microw. Theory Tech., vol.56, no.12, pp.3245–3252, Dec.2008.
    [103] C.-L. Chang and C.-H. Tseng,“Design of low phase-noise oscillator andvoltage-controlled oscillator using microstrip trisection bandpass filter,” IEEEMicrow. Wireless Compon. Lett., vol.21, no.11, pp.622–624, Nov.2011.
    [104] M. Nick and A. Mortazawi,“Low phase-noise planar oscillators based onlow-noise active resonators,” IEEE Trans. Microw. Theory Tech., vol.58, no.5, pp.1133–1139, May2010.
    [105] A. E. Atia and A. E. Williams, Narrow-bandpass waveguide filter, IEEE Trans.Microwave Theory Tech.,1972,20(4),258-265
    [106] R.J.Cameron,J.C.Faugere,E Seyfert,Coupling matrix synthesis for a newclass of microwave filter configuration, IEEE MTT-S Int.Microwave Symp.Dig.,2005,119—122.
    [107] S.Tamiazzo and G. Macehiarella, An analytical technique for the synthesis ofcascaded N-tuplets cross-coupled resonators microwave filters using matrixrotations,IEEE Trans.Microwave.Theory Tech.,2005,53(5),1693—169.
    [108] G. Macehiarella, Synthesis of Prototype Filters With Triplet Sections StartingFrom Source and Load, IEEE Microw. Wireless Compon. Lett.,2002,12(2),42-44.
    [109] R. N. Gaijaweera, L. F. Lind,Coupling Matrix Extraction for Cascaded TripletTopology, IEEE Trans.Microwave.Theory Tech.2004,vol,52(3),768—772.
    [110] Macehiarella, A powerful tool for the synthesis of prototype filters with arbitrarytopology,IEEE MTT-S Int.Microwave Symp.Dig.2003,8—13.
    [111] A. Lamecki, P. Kozakowski, M. Mrozowski, Fast synthesis of coupled resonatorfilters, IEEE Microw. Wireless Compon. Lett.,2004,14(4),174-176.
    [112] P. Kozakowski, A. Lamecki, P. Sypek and M. Mrozowski, Eigenvalue approachto synthesis of prototype filters with source/load coupling, IEEE Microw. WirelessCompon. Lett.,2005,15(2),98-100.
    [113] Macchiarella G. Extraction of Unloaded Q and Coupling Matrix FromMeasurements on Filters With Large Losses. IEEE Microwave and WirelessComponents Letters,2010,20(6),307–309.
    [114] García T K, Sarkar M, Salazar P. Generation of accurate rational models of lossysystems using the Cauchy method.IEEE Microwave and Wireless ComponentsLetters,2004,14(5),490-492.
    [115] Macchiarella G, Traina D..A formulation of the Cauchy method suitable for thesynthesis of lossless circuit models of microwave filters from lossymeasurements.IEEE Microwave and Wireless Components Letters,2006.20(16),.243-245.
    [116]韩应宾,赵永久,路宏敏.微波滤波器的耦合矩阵诊断调试法[J].西安电子科技大学学报,2008,35(4):703-706.
    [117] H. Hsu, H.Yao, K. A. Zaki, and A.E.Atia. Computer-aided diagnosis and tuningof cascaded coupled resonators filters. IEEE Trans.Microwave Theory Tech.,2002,50(4):1137-1145.
    [118] Vahid Miraftab and Raafat R. Mansour. Computer-aided Tuning of MicrowaveFilters Using Fuzzy Logic.IEEE Trans.Microwave Theory Tech.,2002,50(12):2781-2788.
    [119] W. Meng K.-L. Wu. Analytical Diagnosis and Tuning of NarrowbandMulticoupled Resonator Filters[J]. IEEE Trans.Microwave Theory Tech.,2006,54(10):3765-3771.
    [120] J.S. Hong and M.J. Lancaster, Microstrip Filters for RF/MicrowaveApplications[M].New York:Wiley,2001.
    [121]陈宝林.最优化理论与算法[M].第二版.北京:清华大学出版社,2007:281-328.
    [122]龚纯,王正林.精通MATLAB最优化计算[M].第一版.北京:电子工业出版社,2009:175-200.
    [123] B Wu, C. H. Liang, Q Li, and P. Y. Qin, Novel Dual-Band Filter IncorporatingDefected SIR and Microstrip SIR, IEEE Microw. Wirel. Compon. Lett.,2008,18(6),392–394.
    [124] B. Wu, C. H. Liang, Q. Li, and P. Y. Qin, Novel Dual-Band Filter IncorporatingDefected SIR and Microstrip SIR, IEEE Microw. Wirel. Compon. Lett.,2008,18(6),392–394.
    [125] Y.-S. Lin, C.-C. Liu, K.-M. Li, and C.-H. Chen, Design of an LTCC tri-bandtransceiver module for GPRS mobile applications, IEEE Trans. Microwave TheoryTech. Vol.52,2718–2724,2004.
    [126] J. L. Jimenez Martin, V. Gonzalez-Posadas, J. E. Gonzalez-Garcia, F. J.Arques-Orobon, L. E. Garcia-Munoz, and D. Segovia-Vargas," Dual Band HighEfficiency Class Ce Power Amplifier Based on CRLH Diplexer," Progress InElectromagnetics Research, Vol.97,217-240,2009.
    [127] M. Zewani and I. C. Hunter,“Design of ring-manifold microwavemultiplexers,”in IEEE MTT-S Int. Dig., San Francisco, CA, Jun.2006,689–692.
    [128] P.-H. Deng, N.-I. Lai, S.-K. Jeng, and C. H. Chen,“Design of matching circuitsfor microstrip triplexers based on stepped-impedance resonators,” IEEE Trans.Microw. Theory Tech., Vol.54,4185–4192,2006.
    [129] J. Shi, J. X. Chen, and Z. H. Bao,"Diplexers based on microstip line resonatorswith loaded elements," Progress In Electromagnetics Research,Vol.115,423-439,2011.
    [130] Yao, W. H., A. E. Abdelmonem, J. F. Liang, X. P. Liang, K. A. Zaki, and A.Martin,"Wide-band waveguide and ridge waveguide T-junctions for diplexerapplications," IEEE Trans. Microw. Theory Tech., Vol.41,2166-2173,1993.
    [131] Han, S., X.-L.Wang, Y. Fan and Z. Yang "The generalized Chebyshev substrateintegrated waveguide diplexer," Progress In Electromagnetics Research, Vol.73,29-38,2007.
    [132] Chen, X.-W., W.-M. Zhang, and C.-H. Yao,"Design of microstrip diplexer withwide band-stop," International Conference on Microwave and Millimeter WaveTechnology,1-3,2007.
    [133] R.-Y. Yang, C.-M. Hsiung, C.-Y. Hung, and C.-C. Lin," Design of a high bandisolation diplexer for GPS and WLAN system using modified Stepped-ImpedanceResonators," Progress In Electromagnetics Research, Vol.107,101-114,2010.
    [134] He, Z. R., X. Q. Lin, and Y. Fan,"Improved stepped-impedance resonator (SIR)bandpass filter on Ka-band," Journal of Electromagnetic Waves and Applications,Vol.23,1181-1190,2009.
    [135] Yang, M. H., J. Xu, Q. Zhao, and X. Sun,"Wide stopband and miniaturizedlowpass filters using SIRs-loaded hairpin resonators," Journal of ElectromagneticWaves and Applications, Vol.23,2385-2396,2009.
    [136] Yang, R. Y., C. M. Hsiung, C. Y. Hung, and C. C. Lin,"A high performancebandpass filter with a wide and deep stopband by using square stepped impedanceresonators," Journal of Electromagnetic Waves and Applications, Vol.24,1673-1683,2010.
    [137] Yu, W.-H., J.-C. Mou, X. Li, and X. Lv,"A compact filter with sharp-transitionand wideband-rejection using the novel defected ground structure," Journal ofElectromagnetic Waves and Applications, Vol.23,329-340,2009.
    [138] Gu, Y. C., L. H. Weng, and X. W. Shi,"An improved microstrip open-loopresonator bandpass filter with DGSS for WLAN application," Journal ofElectromagnetic Waves and Applications, Vol.23,463-472,2009.
    [139] Huang, C. Y., M. H. Weng, C. S. Ye, and Y. X. Xu,"A high band isolation andwide stopband diplexer using dual-mode stepped-impedance resonators," ProgressIn Electromagnetics Research,Vol.100,299-308,2010.
    [140] Deng, P. H., C. H. Wang, and C. H. Chen,"Compact microstrip diplexers basedon a dual-passband filter," Proceedings of Asia-Pacific Microwave Conference,2006.
    [141] J. Shi, Q. Xue. Balanced Bandpass Filters Using Center-LoadedHalf-Wavelength Resonators[J]. IEEE Trans.Microwave Theory Tech.,2010.58(4):970-977.
    [142] J. Shi, Q. Xue. Dual-Band and Wide-Stopband Single-Band Balanced BandpassFilters With High Selectivity and Common-Mode Suppression[J]. IEEETrans.Microwave Theory Tech.,2010.58(8):2204-2212.
    [143] Ching-Her Lee, Hsu, C.-I.G., Chih-Chan Hsu. Balanced Dual-Band BPF WithStub-Loaded SIRs for Common-Mode Suppression [J]. IEEE Microw. Wirel.Compon. Lett.,2010,20(2):70–72.
    [144] J. Shi, Q. Xue. Novel Balanced Dual-Band Bandpass Filter Using CoupledStepped-Impedance Resonators [J]. IEEE Microw. Wirel. Compon. Lett.,2010,20(1):19–21.
    [145] Z.-H. Bao, J.-X. Chen, E. H. Lim, and Q. Xue,“Compact microstrip diplexer withdifferential outputs,” Electron. Lett., no.3, pp.766–768,2010.
    [146] C.-H. Wu, C.-H. Wang, and C. H. Chen,“A novel balanced-to-unbalanceddiplexer based on four-port balanced-to-balanced bandpass filter,” in Proc. Eur.Microw. Conf.,2008, pp.28–31.
    [147] D. E. Bockelman, W. R. Eisenstadt. Combined Differential and Common-ModeScattering Parameters: Theory and Simulation IEEE Trans.Microwave Theory Tech.,1995.43(7):1530-1539.
    [148] T. Ohira,“Rigorous-factor formulation for one-and two-port passive linearnetworks from an oscillator noise spectrum viewpoint,” IEEE Trans. Circuits Syst.II, Exp. Briefs, vol.52, no.12, pp.846–850, Dec.2005.
    [149] T. Ohira and K. Araki,“Oscillator frequency spectrum as viewed from resonantenergy storage and complex factor,” IEICE Electron. Exp., vol.3, no.16, pp.385–389, Aug.2006.
    [150] Agilent Application Note, Simplified filter tuning using time domain,1287-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700