用户名: 密码: 验证码:
双能场/生物法降解废水中苯酚的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯酚是石油化工、塑料、农药和合成纤维等工业生产中的主要原料,它的毒性大且难降解,对生态系统造成了严重的污染。因此,寻找经济、高效的含酚废水处理方法已成为是环保方面的重要课题。含酚废水的成份复杂,采用传统的或单一的生物、化学和物理方法处理效率低下,很难达到污水综合排放标准。本文旨在探索生物法、超声波、紫外光催化等多种废水处理方法协同降解对含酚废水降解的可行性及规律,以期为确立一种对苯酚废水降解的新技术奠定基础。
     本文利用胶束毛细管电泳建立了苯酚分析检测的新方法,并将该方法应用于测定焦化废水中苯酚的含量。最佳电泳条件为:检测波长275nm,40 mmol/L硼砂-40 mmol/L SDS缓冲液,pH 9.5,分离电压25 kV。该方法简单、快速、稳定性高,精密度高,重现性好,为以后的研究提供了苯酚的测定方法。
     通过对芜湖市钢铁厂的活性污泥进行富集、驯化、纯化,最终分离得到一株高耐苯酚菌株,在以苯酚为唯一碳源的培养基中最高可耐受1000 mg/L的苯酚。根据形态观察和生理生化特征分析,初步鉴定为假单胞菌属(Pseudomonas)。其最佳降酚条件为:温度25℃、pH值8.0、装液量为100mL/250mL三角瓶、接种量15%,在此条件下菌株对600 mg/L苯酚的降解率为81.71%;在培养基中添加100 mg/L葡萄糖时,对菌株生长和苯酚降解有促进作用。
     研究了超声波、紫外光催化及其组合技术等不同能场用于降解苯酚的可行性,研究发现使用声-光双能场能够有效地提高降解率,超声波与紫外光在对苯酚的降解过程中存在较强的协同效应。利用SAS软件对声-光双能场降解苯酚的条件进行了优化,结果表明影响降解的最主要因素依次为:初始pH、H2O2投加量、超声功率,最佳组合参数为:TiO2用量1.0g/L,H202投加量为10mL/L,起始pH为6.0,温度30℃,曝气量3 L/min,超声频率25 kHz,超声功率为221W,总体积1L,在此条件下的苯酚降解率为68.89%。
     在生物法和双能场降解苯酚的研究基础上,研究了将双能场/生物法协同用于降解苯酚的可行性,并对试验装置和反应模式进行了初步探索。初步研究结果表明:使用生物法处理47h后,由双能场降解9h,通过两系统协同作用最短消耗56h即可将600mg/L的苯酚降解至0.5 mg/L以下。与单独使用生物法降解苯酚相比,时间节省了9h,与单独使用双能场降解苯酚相比,降酚能力提高了5倍。
Phenol is a principal material used in industry operations such as petroleum chemical engineering, plastics, pesticide, synthetic fabric and so on, which causes seriously pollution to ecosystem due to its toxic and difficult degradability. So, it is an important issue of environment protection to approach for an economic, high efficient treatment of phenolic wastewater degradation. As the phenolic effluent contains complex elements, the efficiency is low with traditional or single biological, chemical, physical treatment, and it's difficult to achieve discharging standard of wastewater. The subject intended to explore the feasibility and regulations of the synergetic treatment for phenolic wastewater degradation which combined biodegradation, ultrasonic and photocatalysis, in hope of providing foundations to establish a kind of new degradation technology.
     A method for the determination of phenol was established by MEKC, and was applied to detect phenol in coking wastewater. The optimum conditions was:UV detection at 275 nm, a buffer of 20 mmol/L Na2B4O7-40 mmol/L SDS, pH 9.5, separation voltage at 25 kV, respectively. The method was simple, promptly, highly steady, highly accurate and repeatability, which used as the analyze method in the after research.
     A high phenol-endurance strain was isolated from activated sludge of Steel Works, Wuhu city by enriching, isolating, purifying, which could tolerate 1000 mg/L of phenol utilized as the sole carbon source. According to the morphological, physiological and biochemical characteristics, the strain was identified as Pseudomonas sp.. The optimum condition was:25℃, pH 8.0, liquid amount of 100 mL/250mL flask, and the quantity of inoculation at 15%, respectively. In this condition, the degradation ratio of 600 mg/L phenol was 81.71%.The growth of bacteria and phenol degradation ratio was increase by adding 100mg/L Glucose.
     The feasibility of different energies contained ultrasonic, photocatalysis and ultrasonic-photocatalytic coupling technology were studied to degrade phenol. The study found that the degradation ratio could be increased efficiently by the ultrasonic-photocatalytic coupling energy fields, as the synergetic effect could be brought about in the process of combining ultrasonic and photocatalysis. The conditions of the bi-energy fields were optimized utilized SAS software. Results showed that the most important factors affecting degradation were:initial pH, H2O2 value, ultrasonic power, successively. The optimum condition was: TiO2 value at 1.0 g/L, H2O2 value at 10 mL/L, initial pH 6.0, temperature at 30℃, air flow at 3 L/min, ultrasonic frequency at 25 kHz, ultrasonic power at 221 W, and total volume at 1 L, respectively. In this condition, the phenol degradation ratio was 68.89%.
     Based on the study of bi-energy fields and biology treatment, the feasibility of integrating bi-energy fields and bioreactor for phenol degradation was studied. The experimental equipment and integrated mode was primary explored. Results showed that the least reaction time for this system was 56 h when 600 mg/L could be degraded to below 0.5 mg/L at biological treatment reaction time of 47 h with bi-energy fields reaction time of 9 h. Time was saving of 9 h compared to using biological treatment exclusively, phenol degradability was enhancing of 5 times。compared to using bi-energy fields exclusively.
引文
[1]吴勇民,李甫,黄咸雨,等.含酚废水处理新技术及其发展前景[J].环境科学与管理,2007,32(3):152-153.
    [2]向东,肖明.苯酚的国内外生产现状及市场前景[J].石油化工技术经济,2006,22:38
    [3]白振光,王成伟,李冠伦.我国水污染现状及控制对策[J].舰船防化,2006,3:15-17
    [4]张芳西等.含酚废水的处理与利用[M].北京:化学工业出版社,1983,1-10
    [5]Guido Busca, Silvia Berardinelli, Carlo Resini, Laura Arrighi. Technologies for the removal of phenol from fluid streams:A short review of recent developments[J]. Hazardous Materials,2008,160:265-288
    [6]斯琴高娃,乌云,田艳飞.浅析苯酚对环境的污染[J].内蒙古化工,2006,12:50-51
    [7]卞倩,王心如.烷基酚类物质的生殖发育毒效应及其作用机制[J].卫生研究,2004,33:357-360
    [8]杜浩,危起伟,刘鉴毅,等.苯酚、Cu2+、亚硝酸盐和总氨氮对中华鲟稚鱼的急性毒性[J].大连水产学院学报,2007,22(2):119
    [9]陈旭.苯酚对蛋白核小球藻及原生动物群落的毒性效应[J].工业卫生与职业病,2004,30(1):35-37
    [10]刑平伟,秦天,宋清生.中国的水污染现状及防治对策浅论[J].太原科技,2003,4:4-5
    [11]殷中意,郑旭煦,向夕品,等.固定相络合萃取剂处理水中苯酚的性能研究[J].重庆环境科学,2002,24(5):45-47.
    [12]江燕斌,钱宇,黄理纳,等.炼油碱渣废水处理萃取脱酚实验研究[J].化学工程,2000,28(5):39-41
    [13]严新焕,许丹倩,徐振元.Fe/活性炭作催化剂湿式氧化降解对氨基苯酚永[J].染料工业,2002,39(3):42-43.
    [14]Qu X.F., Zheng J.T., Zhang Y.Z.Catalytia ozonation of phenollic wastewater with activated carbon fiber in a fluid bed reactor[J].Colloid Interface Sci,2007,309:429-435
    [15]石中亮,申华,王传胜.乳化液膜分离技术处理造纸工业废水[J].纸和造纸,2006,25(1):75-77
    [16]刘有智,章德玉,焦纬洲.乳状液膜法脱酚的进一步研究[J].膜科学与技术,2006,26(5):66-71
    [17]孙德智,于秀娟,冯玉杰,等.环境工程中的高级氧化技术[M].北京:化学工业出版社,2002.
    [18]徐斌文.对亚硝基苯酚废水处理的研究[J].化工环保,1991,11(3):130-135.
    [19]张璇,文一波,陈劲松.电絮凝深度处理焦化废水的研究[J].山西建筑,2009,35(9):192-193
    [20]张杰,解立平,胡志歆.铁炭内电解法处理4-亚硝基苯酚废水[J].天津工业大学学报,2009,6:62-65
    [21]陈云华,周鑫玉,潘玲,等.臭氧氧化去除水中芳香族化合物机理初探[J].化工环保,1998,18(2):74-78.
    [22]Hoffman MR, Martin ST, ChoiW, et a.l Environmental Applications of Semiconductor Photocatalysis[J]. ChemRev,1995,95:69-96.
    [23]Pulgarin C, Invernizzi M, Parra S, Sarria V, Polania R, Peringer P. Strategy for the coupling of photochemical and biological flow reactors useful in mineralization of biorecalcitrant industrial pollutants. Catal Today 1999,54(2-3):341-52.
    [24]刘琼玉,李太友.含酚废水的无害化处理技术进展[J].环境污染治理技术与设备.2002,3(2):38-42
    [25]王一惠,向述荣,林敏.微生物降解苯酚的研究进展及其工程菌的应用前景[J].高技术通讯,2001,12:98-101
    [26]向述荣,林敏.假单胞菌phen8的降解特性及其缺失突变株的筛选[J].高技术通讯,2001,11:20.
    [27]王继华,杨茹冰,程玉鹏.瓦尔假丝酵母降解酚类污染物的研究[J].环境科学研究,2006,19(1):35-38
    [28]尹萍,杨彦希,杨惠芳.麦芽糖假丝酵母10-4降解酚类化合物的研究[J].环境科学,1997,1:10-14
    [29]刘宏芳,张肇铭.沼泽红假单胞菌降解苯酚的动力学研究[J].科技情报开发与 经济,2008,18(12):136-137
    [30]陈文波.苯酚降解菌的分离、鉴定及其固定化研究[D].贵州大学,2007
    [31]丁兰岚.苯酚降解菌的筛选及特性研究[D]重庆大学,2009
    [32]Shingler V RC.H., Franklin M.,Tsuda D.,etc. Molecular analysis of a plasmid edcoded phenol hydrolase ofPseudomonas sp Strain CF600[J]. Gen.Microbiol,1989, 135:1083-1098
    [33]Neidle E.L.,Omston J.N.Cloning and expression of Acinetobacter calcoaceticus catechol 1,2-dioxygenase gene catA in Escherichia coli[J]Bacteriol,1986,168:815-820
    [34]向述荣.降酚菌phen8的特性、突变株的检测和16S rDNA序列分析[D].甘肃农业大学,2001
    [35]Hiroyuki Arai, Tohru Ohishi, Mee Young Chang. Arrangement and regulation of the genes for meta-pathway enzymes required for degradation of phenol in Comamonas testosterone TA441 [J].Microbiology,2000,14:7-1715.
    [36]Fiona M.Duffner, Rudolf Muller. A novel phenol hydroxylase and catechol 2,3-dioxygenase from the thermophilic Bacillus thermoleovorans strainA2:nucleotide
    sequence and analysis of the genes[J].Microbiology letters,1998,161:37-45
    [37]刘国光,丁雪军,张学治.光催化氧化技术的研究现状及发展趋势[J].环境污染治理技术与设备.2003.4(8):65-69
    [38]Alemany L J,Ban ares M A,Pardo E.etcl.Photodegradation of phenol in water using silica-support titania catalysts[J].Appl.Catal.B,1997,13(3/4):289-297.
    [39]陈建霞.掺杂铁的纳米二氧化钛光催化降解苯酚的研究[J].内蒙古石油化工,2008,1:9-11
    [40]王铮.复合光催化剂的制备及其降解水中染料的应用研究[D].同济大学,2007
    [41]谢海生,卢科峰.Zn2+改性TiO2对苯酚废水的光催化降解研究[J].应用化工2009,38:1777-1779
    [42]ZHANG Ru-bing, GAO Lian.Preparation of photocatalytic activity nanosized TiO2 from metatitanic acid [J]. Inorganic Materials,2002,17(2):253-258.
    [43]Jun Wang, Yingpeng Xie, Zhaohong Zhang.etc. Photocatalytic degradation of organic dyes with Er3+:YA103/ZnO composite under solar light[J]. Solar Energy Materials&Solar Cells 2009,93:355-367
    [44]Sridhar K,Rama K,Hiroaki K.Microwave-hydrothermal processing of titanium dioxide[J].Mater.Chem.Phy.,1999,61(1):50-54
    [45]Zheng Y,L D Z, Fu X Z.Microwave-assisted heterogenous photocatalytic oxidation of ethylenep[J].Chem. J. Chin. Univ.,2001,22(3):443-445
    [46]罗亚田,汤红妍,余以雄.超声波、电场和紫外光催化协同降解苯酚[J].中国环境科学,2005,25:69-72
    [47]朱兆文.光催化臭氧法对化工制药废水的解毒和降解研究[J].化学工程与装备,2008,10:143-148
    [48]Milena Lapertot, Sirous Ebrahimi, Stefano Dazio, etc. Photo-Fenton and biological integrated process for degradation of a mixture of pesticides[J]. Journal of Photochemistry and Photobiology A:Chemistry,2007,186:34-40
    [49]Hideyuki Katsumata,Toshiko Okada,Satoshi Kaneco, etc. Degradation of fenitrothion by ultrasound/ferrioxalate/UV system[J]. Ultrasonics Sonochemistry, 2010,17:200-206
    [50]张锦,李圭白,马军.含酚废水的危害及处理方法的应用特点[J].环境工程,2001,83(2):362-371.
    [51]GB8978-1996,污水综合排放标准[S].国家环境保护局,1996
    [52]黄秀华,孙郁莉.气相色谱法测定水中酚类化合物[J].中国给水排水,2000(03):52-53.
    [53]樊彩梅,孙彦平.苯酚及其光催化降解中间产物的HPLC法同时测定[J].分析测试学报,2000,(04):48-50.
    [54]国家环境保护局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第4版,北京:中国环境科学出版社,2002:460-462.
    [55]陈义.毛细管电泳技术及应用[M].北京:化学工业出版社,第二版,2005:40-56.
    [56]Miroslav Polasek, Ivan Petriska, Marie Pospisilova, etc. Use of molybdate as novel complex-forming selector in the analysis of polyhydric phenols by capillary zone electrophoresis[J]. Talanta,2006,69(1):192-198.
    [57]Diana L.D. Lima, Armando C. Duarte, Valdemar I. Esteves. Optimization of phenolic compounds analysis by capillary electrophoresis[J]. Talanta,2007,72(4): 1404-1409.
    [58]Diana L.D. Lima, Armando C. Duarte, Valdemar I. Esteves. Solid-phase extraction and capillary electrophoresis determination of phenols from soil after alkaline CuO oxidation[J]. Chemosphere,2007,69(4):561-568.
    [59]赵燕燕,王翠玲,白洁,等.胶束毛细管电泳在线推扫富集技术和毛细管气相色谱法测定几种中草药中农药残留分析方法的比较研究[J].中国药学杂志,2009,44(4):306-309.
    [60]杜建中,张天辉,丁玎,等.胶束电动毛细管电泳法分离测定食品中尼泊金酯的研究[J].食品科学,2009,30(12):183-186.
    [61]吴美剑,颜流水,江鑫,等.胶束毛细管电泳快速分离八种农药类环境内分泌干扰物[J].江西化工,2009,(06):53-57.
    [62]张玉芬,席海山,谢凤山,等.毛细管胶束电泳测定番茄中环境激素2,4-滴的含量[J].农药,2007,46(9):607-608.
    [63]徐溢,申纪伟,曹明霞,等.含双T切换接口的胶束电动色谱-毛细管区带电泳二维电泳芯片上混合氨基酸的分离富集[J].分析化学,2009,37(10):1421-1425.
    [64]贾绍栋,金东日.手性冠醚为手性分离选择剂的胶束毛细管电泳在线富集分离吉米沙星对映体[J].分析化学,2009,37(2):271-274.
    [65]Miroslav Polasek, Ivan Petriska, Marie Pospisilova, etc. Use of molybdate as novel complex-forming selector in the analysis of polyhydric phenols by capillary zone electrophoresis[J]. Talanta,2006,69(1):192-198.
    [66]Diana L.D. Lima, Armando C. Duarte, Valdemar I. Esteves. Optimization of phenolic compounds analysis by capillary electrophoresis[J]. Talanta,2007,72(4): 1404-1409.
    [67]赵燕燕,杜光玲,闫宏远,等.胶束毛细管电泳在线推扫富集技术测定工业废水中痕量苯酚和硝基苯酚[J].分析试验室,2005,24(8):88-90.
    [68]陈烈,何金兰.苯酚与苯二酚的胶束电动毛细管色谱分离研究[J].分析试验室,1998,17(4):48-52.
    [69]李江,白涛,饶军,等.苯酚高效降解菌的筛选和降解特性研究[J].微生物学通 报,2007,34(3):492-495.
    [70]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [71]赵斌,何绍江.微生物学实验[M].北京:科学出版社,2002.
    [72]冯若.超声手册[M].南京:南京大学出版社,1999.78-91.
    [73]Michael R. Hoffmann, Inez Hua, Ralf Hochemer. Application of ultrasonic irradiation for the degradation of chemical contaminants in water[J]. Ultrasonics Sonochemistry,1996,3:163-172
    [74]R. Rajan, R. Kumar, K. S. Gandhi.Modelling of sonochemical oxidation of the water-KI-CC14 system[J].Chemical Engineering Science,1998,53:255-271
    [75]Anand G. Chakinala, Parag R. Gogate, Arthur E. Burgess, et al. Intensification of hydroxyl radical production in sonochemical reactors[J]. Ultrasonics Sonochemistry, 2007,14:509-514
    [76]P.R. Gogate, Cavitation:an auxiliary technique in wastewater treatment schemes[J].Adv. Environ. Res.,2002 (6):335-358.
    [77]C. Petrier, M.F. Lamy, A. Francony, A. Benehcene, B. David, Sonochemical degradation of Phenol in dilute aqueous solutions:Comparison of reaction Rates at 20 and 487 kHz[J]. Phys. Chem.(A),1994 (98):10514-10520.
    [78]J.D. Seymour, R.B. Gupta, Oxidation of aqueous pollutants using ultrasound: Salt induced enhancement, Ind. Eng. [J]. Chem. Res.,1997 (36):3453-3457.
    [79]M.H. Entezari, C. Petrier, P. Devidal, Sonochemical degradation of phenol in water:a comparison of classical equipment with a new cylindrical reactor[J]. Ultrasonics Sonochemistry,2003 (10):103-108.
    [80]Z. Guo, R. Feng, J. Li, Z. Zheng, Y. Zheng, Degradation of 2,4-dinitrophenol by combining sonolysis and different additives, [J]. Haz. Mat.,2008 (158):164-169.
    [81]J.G. Lin, C.N Cheng, J. Wu, Y. Ma, Enhancement of the decomposition of 2-chlorophenol with ultrasound/H2O2 process[J]. Water Sci. Technol.,1996 (34): 41-48.
    [82]N. Shimizu, C. Ogino, M.F. Dadjour, T. Murata, Sonocatalytic degradation of methylene blue with TiO2 pellets in water, [J]. Ultrasonics Sonochemistry,2007 (14):184-190.
    [83]A. Francony, C. Petrier, Sonochemical degradation of carbon tetrachloride in aqueous solution at two frequencies:20 kHz and 500 kHz[J]. Ultrasonics Sonochemistry,1996 (3):77-82.
    [84]郝红伟,王海,陈以方,等.高频超声辐照降解水中4-氯酚的研究[J].环境污染治理技术与设备,2002,3(5):20-22.
    [85]陈伟.超声辐射降解水中有机污染物的研究[D].上海同济大学,1999.
    [86]王玉俊,李海云.TiO2/GAC光催化降解苯酚废水的实验研究[J].广东化工,2006,5(33):40-42
    [87]刘守新,曲振平,韩秀文等.Ag担载对TiO2光催化活性的影响[J].催化学报,20042,25(2):133-137.
    [88]方佑龄,赵文宽,尹少华等.纳米TiO2在空心陶瓷微球上的固定化及光催化分解辛烷[J].应用化学,1997,14(2):81-83
    [89]Marta Mrowetz, Carlo Pirola, Elena Selli. Degradation of organic water pollutants through sonophotocatalysis in the presence of TiO2[J]. Ultrasonics Sonochemistry,2003,10:247-254
    [90]Zhu C P, Feng R, Zhao Y Y. Sonochemical effect of a bifrequency irradiation[J]. Chinese Science Bulletin,2000,45:142-144
    [91]倪勤.SAS最优化软件速成[M].北京:科学出版社,1998:1.
    [92]刘渠道,王建中,许诺.响应面法优化超声波辅助提取茶多酚的工艺研究[J].中国食物与营养,2008,9:40-44
    [93]罗灵芝,李春玲,袁敬伟,等.响应面法优化玉米秸秆同步酶解发酵产乙醇条件[J].生物加工过程,2009,5:27-33
    [94]王晓东.饮用水中典型内分泌干扰物的检测和去除的研究[D].天津大学,2006
    [95]张义萍,张伟国.利用SAS软件优化L-精氨酸发酵培养基[J].化学与生物工程,2006,23:44-46
    [96]李欣悦,王建中.应用SAS软件优化螺旋藻蛋白水解工艺条件的研究[J].现代农业科学,2008,4:50-52
    [97]胡运权.试验设计方法[M].哈尔滨:哈尔滨工业大学出版社,1997:153-154.
    [98]Thompson D R. Response surface experimentation [J].Food Proc. Pres, 1982,(6):155.
    [99]吴有炜.试验设计与数据处理[M].苏州:苏州大学出版社,2002:135-142.
    [100]M. Begona Prieto, Aurelio Hidalgo, Juan L. Serra, Maria J. Llama Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on Biolite(?) in a packed-bed reactor[J]. Biotechnology,2002,9:1-11
    [101]Alejandra C., Manuel E., Carmen D.Design, Construction, and Starting-up of an Anaerobic Reactor for the Stabilisation, Handling, and Disposal of Excess Biological Sludge Generated in a Wastewater Treatment Plant[J]Anaerobe,2001,7:143-149
    [102]M. Subramanian, A. Kannan.Photocatalytic degradation of phenol in a rotating annular reactor[J].Chemical Engineering Science,2010,6:2727-2740
    [103]Herrmann J M.Heterogeneous photocatalysis:fundamentals and applications to the removal of various types of aqueous pollutants[J]. Catalysis Today,1999,53:115-129.
    [104]Yamashita H,Harada M.Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts:Fe ion-implanted TiO2[J]. Catalysis Today,2003,84(3/4):191
    [105]薛向东,金奇庭.TiO2-活性炭组合光催化降解苯酚废水[J].中国给水排水,2002,18(6):42-45.
    [106]李春喜,李玉同,王子镐.超声波-光催化联合降解苯酚废水研究[J].环境污染治理技术与设备,2002,3(8):49-51.
    [107]V. Sarria, M. Deront, P. Peringer, etc. Degradation of a biorecalcitrant dye precursor present in industrial wastewaters by a new integrated iron(III) photoassisted-biological treatment[J].Applied Catalysis B:Environmental,2003 (40): 231-246
    [108]Walid K. Lafi, Z. Al-Qodah. Combined advanced oxidation and biological treatment processes for the removal of pesticides from aqueous solutions[J]. Hazardous Materials,2006 (B137):489-497
    [109]Milena Lapertot, Sirous Ebrahimi, Stefano Dazio, etc. Photo-Fenton and biological integrated process for degradation of a mixture of pesticides[J]. Photochemistry and Photobiology A:Chemistry,2007 (186):34-40
    [110]M.M. Ballesteros Mart'in, J.A. S'anchez P'erez, J.L. Garc'ia S'anchez, etc. Degradation of alachlor and pyrimethanil by combined photo-Fenton and biolo-gical oxidation[J]. Hazardous Materials,2008(155):342-349
    [111]M.M. Ballesteros Mart'in, J.A. S'anchez P'erez, J.L. Garc'ia S'anchez, etc. Combined photo-Fenton and biological oxidation for pesticide degradation:Effe-ct of photo-treated intermediates on biodegradation kinetics[J]. Chemosphere,2008 (70):1476-1483
    [112]Claudia Mendoza-Marin,Paula Osorio,Norberto Benitez. Decontamination of industrial wastewater from sugarcane crops by combining solar photo-Fenton and biological treatments[J]. Hazardous Materials,2010(177):851-855
    [113]钟春妮.多能场协同紫外光催化降解废水中有机污染物的研究[D].武汉理工大学,2003
    [114]汤红妍.水中酚类污染物的多能场协同降解研究[D].武汉理工大学,2005
    [115]罗亚田,皮科武,钟春妮,等.多能场协同紫外光催化降解甲基橙的实验研究[J].环境污染治理技术与设备,2004,5(3):51-53
    [116]M. Klare,G Waldner, R.Bauer,etc.Degradation of Nitrogen Containing Organ-ic Compounds by Combined Photocatalysis and Ozonation[J]. Chemosphere, 1999,38(9):2013-2027.
    [117]E. Oliveros, O. Legrini, M. Hohl, T. Muller,etc.Large scale development of a light-enhanced fenton reaction by optimal experimental design[J].Water Science and Technology, Volume 35, Issue 4,1997, Pages 223-230
    [118]Christian Petrier, Anne Francony. Ultrasonic waste-water treatment:incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation[J]. Ultrasonics Sonochemistry,1997,4:295-300
    [119]张萃,李亚峰,田西满.超声波辅助光催化氧化技术在废水处理中的研究进展[J].工业废水与用水,2009,3:16-19
    [120]苑宝玲(Yuan B L),王洪杰(WangHJ).水处理新技术原理与应用[M].北京:化学工业出版社,2006:43-44
    [121]Pulgarin C, Invernizzi M, Parra S. Strategy for the coupling of photochemical and biological flow reactors useful in mineralization of biorecalcitrant industrial pollutants[J]. Catal Today,1999,54(2-3):341-352.
    [122]Tabrizi, G.B.,Mehrvar, M. Integration of advanced oxidation technologies and biological processes:recent developments, trends, and advances.[J]Environ Sci Heal A,2004,39:3029-3081.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700