用户名: 密码: 验证码:
无人驾驶车辆运动障碍物检测、预测和避撞方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无人驾驶车辆是一种轮式移动机器人,其技术涉及认知科学、人工智能、机器人技术与车辆工程等交叉学科,是验证各种新兴技术的最佳实验平台,也是当今前沿科技的重要发展方向。它既包括理论方法与关键技术的突破,也涉及到大量的工程与试验问题。
     在无人驾驶车辆的单元技术中,室外复杂环境下的运动障碍物检测、预测和避撞一直是研究的重点和难点。针对无人驾驶车辆在室外复杂环境中进行运动障碍物检测、预测和避撞所遇到的问题以及系统的总体设计要求,本文设计了一种无人驾驶车辆运动障碍物避撞系统,对其中检测、预测和避撞方法进行了深入研究,介绍了在工程应用和实验测试中具体的一些技术手段。具体的研究内容包括以下几个方面:
     1)对无人驾驶车辆运动障碍物避撞系统的相关概念和国内外研究成果进行了分析,了解无人驾驶车辆运动障碍物检测、预测和避撞的基本流程和基本方法。
     2)介绍了“智能先锋”号无人驾驶车辆的系统架构和基本方法,分析了室外复杂环境下无人驾驶车辆运动障碍物检测、预测和避撞过程中的关键性问题,提出了系统的总体设计要求,并设计了“智能先锋”号无人驾驶车辆运动障碍物避撞系统。
     3)研究了无人驾驶车辆运动障碍物检测方法。采用四线激光雷达Ibeo和三维激光雷达Velodyne作为运动障碍物的检测传感器,分别对其数据进行一系列处理,最后融合两者数据得到障碍物运动信息,该方法既能满足无人驾驶车辆对运动障碍物检测准确性的要求,又能满足实时性的要求。
     4)研究了无人驾驶车辆运动障碍物碰撞预测及表示方法。提出一种新的障碍物占用栅格图——时空障碍物栅格图,它不仅能表示静态障碍物的占用信息,还能将无人驾驶车辆在未来一段时间内与运动障碍物之间的预测碰撞信息表示出来。采用不同的模型来预测不同场景下无人驾驶车辆与运动障碍物之间的碰撞关系,并介绍了时空障碍物栅格图的直接生成方法和优化生成方法。它能够将运动障碍物的避撞与静态障碍物避撞统一起来,简化避撞过程的算法复杂性。
     5)研究了无人驾驶车辆运动障碍物避撞方法。提出一种可搜索连续邻域的改进A*算法,对栅格进行线性插值,将传统A*算法的可搜索邻域从离散的8个增加为无限个,搜索方向也变为连续的任意方向,能够解决传统A*算法在栅格图中求解出的最短路径并非最优的问题。然后介绍了一种基于这种改进A*算法的无人驾驶车辆动静态障碍物避撞方法,实现无人驾驶车辆在动态环境中安全、智能的自主驾驶。
     “智能先锋”号无人驾驶车辆平台应用了以上研究内容,对其进行了实车测试并参加了由国家自然科学基金委举办的“智能车未来挑战赛”,实验结果和优异的比赛成绩验证了系统及其具体方法的有效性和可行性。本文最后总结了该系统中存在的优势和不足,也对进一步的研究提出了展望。
The autonomous vehicle is one kind of wheeled mobile robots, whose technologies are related to cognitive science, artificial intelligence, robot technology, automotive engineering, and many other interdisciplines. It is the best experimental platform to exam the newly developing technology and an important development direction of today's advanced science and technology. The autonomous vehicle not only includes the breakthrough of theoretical approaches and key technology, but also, it is related to the issue of engineering and experimentations.
     Of the unit technology of autonomous vehicles, dynamic obstacles detection, prediction and avoidance in complex outdoor environments is always the emphasis and difficulty of the research. On account of the problem autonomous vehicles encountered in research on dynamic obstacles detection, prediction and collision avoidance in complex outdoor environments, and the general design requirement of the system, a dynamic obstacles avoidance system of autonomous vehicles is presented. In this paper, the methods in detection, prediction and avoidance are researched indepth and some specific techniques of engineering application and experimental testing are introduced. The specific research contents include some aspects as follows.
     1) The related notion and research results abroad and in China of dynamic obstacles avoidance system of autonomous vehicles are analysed. The basic flow and basic approach of dynamic obstacles detection, prediction and avoidance of autonomous vehicles are understood.
     2) The system architecture and basic approach of "Intelligent Pioneer" autonomous vehicles are presented. The critical problem of dynamic obstacles detection, prediction and avoidance of the autonomous vehicle in complex outdoor environments is analysed and the general design requirement of the system is proposed. In addition, the "Intelligent Pioneer" dynamic obstacles avoidance system of autonomous vehicles is designed.
     3) Dynamic obstacle detection approach for the autonomous vehicle is researched. The four layers laser radar "Ibeo" and the three-dimensional laser radar "Velodyne" are used as detection sensors for dynamic obstacles. Their data are respectively processed through a series of processes. Finally, motion information of dynamic obstacles processed from these two types of data is fused. This approach not only meets the demand of accuracy, but also, it meets the demand of real-time of dynamic obstacle detection of autonomous vehicles.
     4) Dynamic obstacle collision prediction and representation approach for the autonomous vehicle is researched. In this paper, a new occupancy grid named space-time occupancy grid map is presented. It can not only represent the occupancy information of static obstacles, but also, it can represent the predicted collision information of the autonomous vehicle and dynamic obstacles in a period of future time. Different models are used to predict the collision between the autonomous vehicle and dynamic obstacles when the autonomous vehicle travels in different scenarios. The directly generating method and the optimization generating method of space-time occupancy grid map are introduced. This grid map unites the collision avoidance of dynamic obstacles and static obstacles, and simplifies the algorithm complexity of the collision avoidance process.
     5) Dynamic obstacle avoidance approach for the autonomous vehicle is researched. In this paper, an improved A*algorithm for searching consecutive neighbourhoods is presented. Linear interpolation of the grid is executed. As a result, the searchable neighbourhood number of the conventional A*algorithm is changed from8to infinite and the searchable direction is with an arbitrary and continuous degree. It can solve the problem that the optimal path calculated by the conventional A*algorithm on grid map is not the best one. Then a dynamic and static obstacles collision avoidance approach for the autonomous vehicle based on this improved A*algorithm and the space-time occupancy grid map is introduced. This approach can realize secure and intelligent autonomous driving of the autonomous vehicle in dynamic environments.
     The above research contents are applied on the "Intelligent Pioneer" autonomous vehicle platforms. The "Intelligent Pioneers" have tested on the actual road and participated in the "Intelligent Vehicle Future Challenge of China" Competition funded by Natural Science Foundation of China. The experimental result and excellent performance in the competition validate the effectiveness and feasibility of this system and the specific methods. At the end of this paper, the advantages and disadvantages of this system are summarized, and an expectation of further research is brought out.
引文
Albus J S.4D/RCS:a reference model architecture for intelligent unmanned ground vehicles[C]//AeroSense 2002. International Society for Optics and Photonics,2002: 303-310
    Bacha A, Bauman C, Faruque R, et al. Odin:Team victortango's entry in the darpa urban challenge[J]. Journal of Field Robotics,2008,25(8):467-492.
    Bertozzi M, Bombini L, Broggi A, et al. The vislab intercontinental autonomous challenge: 13,000 km,3 months, no driver[C]//Proc.17th World Congress on ITS, Busan, South Korea.2010.
    Bertozzi M, Broggi A, Fascioli A. Vision-based intelligent vehicles:State of the art and perspectives[J]. Robotics and Autonomous systems,2000,32(1):1-16.
    Bishop R. Intelligent vehicle technology and trends[M].2005.
    Biswas R, Limketkai B, Sanner S, et al. Towards object mapping in non-stationary environments with mobile robots[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,2002,1:1014-1019.
    Bohren J, Foote T, Keller J, et al. Little Ben:The Ben Franklin racing team's entry in the 2007 Darpa urban challenge[J]. Journal of Field Robotics,2008,25(9):598-614.
    Botea A, Muller M, Schaeffer J. Near optimal hierarchical path-finding[J]. Journal of game development,2004,1(1):7-28.
    Bruno S, Khatib O. Springer handbook of roboticsfM]. Springer,2008.
    Brusaglino G. Safe and effective mobility in Europe-the contribution of the PROMETHEUS programme[C]//IEE Colloquium on Prometheus and Drive. IET,1992:1/1-110.
    Chen C, Tay C, Laugier C, et al. Dynamic environment modeling with gridmap:a multiple-object tracking application[C]//9th International Conference on Control, Automation, Robotics and Vision. IEEE,2006:1-6.
    Cheng Z, Mei T, Liang H. Positioning Algorithm Based on Skylight Polarization Navigation[C]//Intelligent Autonomous Vehicles.2013,8(1):97-101.
    Chen J, Zhao P, Mei T, et al, Lane change path planning based on piecewise Bezier curve for autonomous vehicle[C]//2013 IEEE International Conference on Vehicular Electronics and Safety(ICVES). IEEE,2013:17-22.
    Chen Y L, Sundareswaran V, Anderson C, et al. TerraMax:Team oshkosh urban robot[M]//The DARPA Urban Challenge. Springer Berlin Heidelberg,2009:595-622.
    Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische mathematik,1959,1(1):269-271.
    Dorai C, Wang G, Jain A K, et al. Registration and integration of multiple object views for 3D model construction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(1):83-89.
    Ferguson D, Darms M, Urmson C, et al. Detection, prediction, and avoidance of dynamic obstacles in urban environments[C]//Intelligent Vehicles Symposium,2008 IEEE. IEEE,2008:1149-1154.
    Ferguson D, Stentz A. Field D*:An interpolation-based path planner and replanner[M]// Robotics Research. Springer Berlin Heidelberg,2007:239-253.
    Fiorini P, Shiller Z. Motion planning in dynamic environments using velocity obstacles[J]. The International Journal of Robotics Research,1998,17(7):760-772.
    Forrest A R. Interactive interpolation and approximation by Bezier polynomials[J]. The Computer Journal,1972,15(1):71-79.
    Fraichard T, Asama H. Inevitable collision states-a step towards safer robots?[J]. Advanced Robotics,2004,18(10):1001-1024.
    Fraichard T, Scheuer A. Car-like robots and moving obstacles[C]//1994 IEEE International Conference on Robotics and Automation,1994. Proceedings. IEEE,1994:64-69.
    Freund Y, Schapire R E. Experiments with a new boosting algorithm[C]//ICML.1996,96: 148-156.
    Fulgenzi C, Spalanzani A, Laugier C. Dynamic obstacle avoidance in uncertain environment combining PVOs and occupancy grid[C]//2007 IEEE International Conference on Robotics and Automation. IEEE,2007:1610-1616.
    Gindele T, Brechtel S, Schroder J, et al. Bayesian occupancy grid filter for dynamic environments using prior map knowledge[C]//Intelligent Vehicles Symposium,2009 IEEE. IEEE,2009:669-676.
    Hart P E, Nilsson N J, Raphael B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968,4(2):100-107.
    Himmelsbach M, Muller A, Luttel T, et al. Lidar-based 3d object perception[C]//Proceedings of 1st International Workshop on Cognition for Technical Systems.2008,1.
    Huang J, Liang H, Wang Z, et al. Robust lane marking detection under different road conditions[C]//2013 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE,2013:1753-1758.
    Kamiya H, Fujita Y, Tsuruga T, et al. Intelligent technologies of Honda ASV[C]//Intelligent Vehicles Symposium,1996., Proceedings of the 1996 IEEE. IEEE,1996:236-241.
    Kammel S, Ziegler J, Pitzer B, et al. Team AnnieWAY's autonomous system for the DARPA Urban Challenge 2007[M]//The DARPA Urban Challenge. Springer Berlin Heidelberg,2009:359-391.
    Koenig S, Likhachev M. D* Lite[C]//AAAI/IAAI.2002:476-483.
    Lei Gao, Wei Liu, Runxin Niu, Yanbiao Sun, Yu Xin, Huawei Liang. Moving Vehicle Detection in Dynamic Scene Using Vector Quantization[C]//lntelligent Vehicles Symposium (IV),2014 IEEE. IEEE,2014:to be published.
    Leonard J, How J, Teller S, et al. A perception-driven autonomous urban vehicle[J]. Journal of Field Robotics,2008,25(10):727-774.
    Markoff J. Google cars drive themselves, in traffic[J]. The New York Times,2010,10:A1. Shladover S E, Desoer C A, Hedrick J K, et al. Automated vehicle control developments in the PATH program[J]. IEEE Transactions on Vehicular Technology, 1991,40(1):114-130.
    Martin B, Lagnemma K, Singh S, et al. The DARPA urban challenge:autonomous vehicles in city traffic[M]. springer,2009.
    McBride J R, Ivan J C, Rhode D S, et al. A perspective on emerging automotive safety applications, derived from lessons learned through participation in the DARPA Grand Challenges[J]. Journal of Field Robotics,2008,25(10):808-840.
    Mei T, Liang H, Kong B, et al. Development of'Intelligent Pioneer'unmanned vehicle[C]//Intelligent Vehicles Symposium (IV),2012 IEEE. IEEE,2012:938-943.
    Mertz C, Navarro-Serment L E, MacLachlan R, et al. Moving object detection with laser scanners[J]. Journal of Field Robotics,2013,30(1):17-43.
    Miller I, Campbell M, Huttenlocher D, et al. Team Cornell's Skynet:Robust perception and planning in an urban environment[J]. Journal of Field Robotics,2008,25(8):493-527.
    Mingbo Du, Jiajia Chen, Pan Zhao, Huawei Liang, Yu Xin, Tao Mei. An Improved RRT-based Motion Planner for Autonomous Vehicle in cluttered environments[C]//International Conference on Robotics and Automation (ICRA),2014 IEEE. IEEE,2014:to be published.
    Montemerlo M, Becker J, Bhat S, et al. Junior:The stanford entry in the urban challenge[J]. Journal of Field Robotics,2008,25(9):569-597.
    Owen E, Montano L. A robocentric motion planner for dynamic environments using the velocity space[C]//2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,2006:4368-4374.
    Patz B J, Papelis Y, Pillat R, et al. A practical approach to robotic design for the darpa urban challenge[J]. Journal of Field Robotics,2008,25(8):528-566.
    Pears N E. Feature extraction and tracking for scanning range sensors[J]. Robotics and Autonomous Systems,2000,33(1):43-58.
    Petrovskaya A, Thrun S. Efficient techniques for dynamic vehicle detection[C]// Experimental Robotics. Springer Berlin Heidelberg,2009:79-91.
    Petrovskaya A, Thrun S. Model based vehicle detection and tracking for autonomous urban driving[J]. Autonomous Robots,2009,26(2-3):123-139.
    Rauskolb F W, Berger K, Lipski C, et al. Caroline:An autonomously driving vehicle for urban environments[J]. Journal of Field Robotics,2008,25(9):674-724.
    Reynolds C W. Steering behaviors for autonomous characters[C]//Game developers conference.1999,1999:763-782.
    Schulz D, Burgard W, Fox D, et al. People tracking with mobile robots using sample-based joint probabilistic data association filters[J], The International Journal of Robotics Research,2003,22(2):99-116
    Shiller Z, Large F, Sekhavat S. Motion planning in dynamic environments:Obstacles moving along arbitrary trajectories[C]//Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation. IEEE,2001,4:3716-3721.
    Shoemaker C M, Bornstein J A. Overview of the Demo III UGV program[C]//Aerospace/Defense Sensing and Controls. International Society for Optics and Photonics,1998:202-211.
    Stentz A. Optimal and efficient path planning for partially-known environments[C]//Proceedings.,1994 IEEE International Conference on Robotics and Automation. IEEE,1994:3310-3317.
    Stentz A. The focussed D* algorithm for real-time replanning[C]//IJCAI.1995,95: 1652-1659.
    Sun C, Liang H, Mei T, et al. An image-based three-camera real-time synchronous skylight polarization pattern measurement system[C]//2013 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE,2013:1677-1682.
    Thrun S, Montemerlo M, Dahlkamp H, et al. Stanley:The robot that won the DARPA Grand Challenge[J]. Journal of field Robotics,2006,23(9):661-692.
    Tubbs J D. A note on binary template matching[J]. Pattern Recognition,1989,22(4): 359-365.
    Urmson C, Anhalt J, Bagnell D, et al. Autonomous driving in urban environments:Boss and the urban challenge[J]. Journal of Field Robotics,2008,25(8):425-466.
    Von Hundelshausen F, Himmelsbach M, Hecker F, et al. Driving with tentacles:Integral structures for sensing and motion[J]. Journal of Field Robotics,2008,25(9):640-673.
    Wang B, Lu W, Kong B. Building Map and Locating System for Indoor Robot Based on Player[J]. International Journal of Information Acquisition, Vol.8, No.4,2011, pp: 281-290.
    Wang C C, Thorpe C, Thrun S. Online simultaneous localization and mapping with detection and tracking of moving objects:Theory and results from a ground vehicle in crowded urban areas[C]//Proceedings. ICRA'03. IEEE International Conference on Robotics and Automation. IEEE,2003,1:842-849
    Wang D, Liang H, Mei T, et al. Lidar Scan matching EKF-SLAM using the differential model of vehicle motion[C]//Intelligent Vehicles Symposium (IV),2013 IEEE. IEEE, 2013:908-912.
    Xin Y, Liang H, Mei T, et al. A new dynamic obstacle collision avoidance system for autonomous vehicle[J]. International Journal of Robotics and Automation (IJRA), to be published.
    Xin Y, Liang H, Mei T, et al. A New Occupancy Grid of the Dynamic Environment for Autonomous Vehicles[C]//Intelligent Vehicles Symposium (IV),2014 IEEE. IEEE, 2014:to be published.
    Yang J, Kong B. Sparsely Connected Associative Memory with Adaptive Topology through Annealed Dilution[C]//2012 Fifth International Symposium on Computational Intelligence and Design (ISCID). IEEE,2012,1:168-172.
    Yang J, Kong B, Wang B. Vision-Based Traffic Sign Recognition System for Intelligent Vehicles[M]//Foundations and Practical Applications of Cognitive Systems and Information Processing. Springer Berlin Heidelberg,2014:347-362.
    Yap P. Grid-based path-finding[M]//Advances in Artificial Intelligence. Springer Berlin Heidelberg,2002:44-55.
    Zhang W, Mei T, Liang H, et al. Research and Development of Automatic Driving System for Intelligent Vehicles[M]//Foundations and Practical Applications of Cognitive Systems and Information Processing. Springer Berlin Heidelberg,2014:675-684.
    Zhao P, Chen J, Mei T, et al. Dynamic motion planning for autonomous vehicle in unknown environments[C]//lntelligent Vehicles Symposium (IV),2011 IEEE. IEEE,2011: 284-289.
    Zhao P, Chen J, Song Y, et al. Design of a Control System for an Autonomous Vehicle Based on Adaptive-PID[J]. International Journal of Advanced Robotic Systems,2012, 9.
    蔡自兴.人工智能及其应用[M].清华大学出版社,1996.
    陈福增.多传感器数据融合的数学方法[J].数学的实践与认识,1995,2:11-16.
    谌彤童.三维激光雷达在自主车环境感知中的应用研究[D].国防科学技术大学,2011.
    刘振超,孔斌,王俊,等.水平亮度微分在车道线检测中的使用[J].仪表技术,2012,7:008.
    刘梓,唐振民,任明武.基于3D激光雷达的实时道路边界检测算法[J].华中科技大学学报(自然科学版),2011,2.
    李雪.非结构化道路路边融合算法研究[D].南京理工大学,2011.
    吕太之,赵春霞.基于插值AA*算法的路径规划[J].微计算机信息,2006(11Z):250-252.
    牛润新,梅涛,夏静霆,等.基于触须算法构建与修正的智能车辆自主驾驶与避障[J].汽车工程,2010(012):1083-1087.
    邱英杰.增强现实中手势与虚拟模型交互研究[D].南京师范大学,2013.
    宋彦,赵盼,陶翔,等.基于μ综合的无人驾驶车辆路径跟随串级鲁棒控制方法[J].机器人,2013,35(004):417-424.
    孙振平,安向京CITAVT-IV--—-视觉导航的自主车[J].机器人,2002,24(2):115-121.
    王改革,郭立红,段红,等.基于Elman_AdaBoost强预测器的目标威胁评估模型及算法[J].电子学报,2012,40(5):901-906.
    万海.多传感器数据融合及其应用[M].西安电子科技大学出版,2004.
    肖正.动态环境中移动机器人的时空关联地图构建的研究[D].长沙:中南大学硕士学位论文,2007.
    辛煜,梁华为,杜明博,等.一种可搜索无限个邻域的改进A*算法[J].机器人,2014,己录用.
    辛煜,梁华为,梅涛,等.基于激光传感器的无人驾驶汽车动态障碍物检测及表示方法[J].机器人,2014,已录用.
    徐诚.基于自主学习的复杂目标跟踪算法研究[D].湖北工业大学,2013.
    杨飞.基于三维激光雷达的运动目标实时检测与跟踪[D].浙江大学,2012.
    杨静,孔斌,王斌.基于启发式退火拓扑择优机制的稀疏联想记忆实现[J].上海交通大学学报,2013,47(007):1009-1014.
    杨明,王宏,何克忠,等.基于激光雷达的移动机器人环境建模与避障[J].清华大学学报(自然科学版),2000,40(7):112-116.
    杨明.无人自动驾驶车辆研究综述与展望[J].哈尔滨工业大学学报,2006,38(8): 1259-1262.
    赵盼.城市环境下无人驾驶车辆运动控制方法的研究[D].中国科学技术大学,2012.
    周书仁,汤琛,殷建平.多检测器融合的行人检测研究[J].计算机工程与应用,2012,48(23):36-39.
    朱淋,梁华为,王智灵,等.基于视频序列的车道线检测和跟踪[J].电子测量技术,2013(7):43--47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700