用户名: 密码: 验证码:
海战场电磁态势生成若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电磁技术和用频设备的广泛应用,战场电磁环境变得日益复杂、电磁频谱资源越来越重要。特别是在信息化元素极为丰富的海战场,复杂电磁环境给海上作战指挥提出了更高的挑战,这在很大程度上体现在对电磁环境认知和全面电磁态势的需求。作为传统战场态势的重要补充,电磁态势覆盖了从辐射源信息融合到频谱资源调配、从战术级方案优化到战役级辅助决策等作战的各个方面,准确认识海战场电磁环境,并在态势理解和态势展现的基础上生成全面的电磁态势,是夺取海上制电磁权的关键因素。
     本文从海战场指挥控制和频谱管理对电磁态势的实际需求出发,研究了海战场电磁态势生成的体系结构,提出了一种海战场电磁态势生成框架,研究了该框架下一些重要过程域的关键技术,包括电磁环境展现技术、电磁态势分析技术和电磁态势评估技术,并给出了仿真实验结果及相关理论分析。本文的主要贡献和创新点具体体现在以下几个方面:
     (1)建立了一种海战场电磁态势生成框架。基于传统态势生成模型中对数据分级处理的原则,提出了一套包含电磁环境感知、电磁环境构建、电磁态势理解和电磁态势展现四个过程域的电磁态势生成框架。其中,定义了战场电磁态势的相关概念,给出了面向电磁环境构建的用频装备模型、电磁环境计算方法和电磁环境描述方法,介绍了电磁态势理解域中态势分析和态势评估的概念、目标、及基本技术路线。统一的电磁态势生成框架利于各关键技术的有机结合、态势生成的完整性和规范性。
     (2)提出了一种时间自适应的多维电磁环境态势展现方法。将区域电磁环境转化为由离散像素点组成的位图,从而构建典型频谱特征直方图,通过计算直方图特征向量距离来度量电磁环境的变化程度。基于对电磁环境动态性的度量,利用平行坐标系方法实现了电磁环境态势的多维展现和时间自适应性。对传统的平行坐标系方法进行了改进,包括数据项拟合、定量映射、自适应时间滑窗三个部分的算法理论模型。其中基于Bezier曲线的数据拟合用以解决各维度间数据项连接时的数据遮蔽混淆以及电磁态势各个维度之间信息关联不清晰的问题;定量映射策略模型将电磁态势的多个维度的数据项定量映射到平行坐标系中的相应坐标轴上;自适应步长的时间滑窗机制能够有效调整电磁态势展现的时间间隔,使其充分适应电磁环境的动态变化。实现了多维电磁环境态势在单幅图表中的快速、高效展现。
     (3)提出了一种面向大量用频节点的电磁干扰关系网络建模方法。针对海战场舰艇编队中用频装备众多的特点以及编队频管的实际需求,提出了基于复杂网络的电磁干扰关系建模思想,并建立了两种干扰关系网络模型:基于实时解析法的干扰关系网络(A型EMIN)、基于经验统计法的干扰关系网络(B型EMIN)。通过对两种EMIN的仿真及网络特性分析,指出了它们各自特点以及在电磁干扰态势分析中的应用方向。通过对B型EMIN聚类性质的仿真分析,验证了分层频管的合理性。基于平均距离、度、聚集系数和网络密度等网络特征提出了相应的EMIN度量指标,解释了这些特征和指标在EMIN中的具体含义,并指出了它们在评价和度量EMIN中的有效性。
     (4)提出了一种海战场电磁态势评估模型。该模型包括一套评估指标和两种评估方法。综合考虑影响海战场电磁域作战的各个因素,定义了一套电磁态势评估指标。针对海战场编队的结构特点,提出了一种层次化的指标定量评估方法,通过对具体装备的测量和计算,融入了装备和任务权重的计算结果逐层向上汇聚,形成该指标在编队层面的综合评价,并以编队干扰程度评估的仿真实例验证了方法的有效性。针对电磁态势中各指标相互影响的特点,提出了一种基于模糊认知图(FCM)的综合态势评估方法,给出了FCM邻接矩阵的量化方法,改进了传统FCM的阈值函数和推理方法使其适用于电磁态势评估。相比传统电磁环境评估手段,FCM模型考虑了更全面的态势指标以及指标间的关联关系,评估结果更加准确,且具备一定的态势预测能力。
With the widespread use of electromagnetic technology and electronic equipment,electromagnetic environment (EME) of battlefield has become increasingly complex, andspectrum has become more and more important. Especially in the naval battlefield with a highlevel of information technology, EME has put forward higher requests to command andcontrol—that is, to a considerable degree, demands for comprehensive electromagneticsituation (EMS). As an important complement to conventional battlefield situation, EMSplays a key role in various battle domains, such as emitter data fusion, spectrum deployment,schema optimization in tactic-level, decision supporting in campaign-level, and so on.Therefore, electromagnetic situation generation (EMSG), consisting of environmentunderstanding, situational awareness, and situation representation, has become a critical factorin electromagnetic supremacy.
     According to the needs of EMS in naval Command&Control and spectrummanagement (SM), this thesis studies the architecture of EMSG, and proposes a frameworkfor EMSG in sea battlefield. Based on deeply research on several key techniques in EMSG,including situation representation, situation analysis, and situation assessment, we proposesome noval models and methods, and also present the theoretical analysis and the experimentresults. The main innovative achievements are as follows:
     (1) An electromagnetic situation generation framework (EMSGF) for sea battlefield isbuilt. Based on hierarchical processing principle in traditional situation models, the EMSGFconsists of four process domains—electromagnetic environment awareness, electromagneticenvironment constructing, electromagnetic situation understanding, and electromagneticsituation representation. In addition, we define the concepts and terms of EMS and its processdomains. Models for typical equipment and propagation loss, and an EM characterizationmethod are presented to construct the virtual electromagnetic environment. We also introducethe concepts, objectives, and technology of situation analysis and situation assessment, whichare the essential components of situation understanding. The proposed EMSGF shouldcontribute to the integrity and normalization of EMSG.
     (2) A time-adaptive visualization approach for EME situation representation is proposed.Expressing a specified electromagnetic area in the form of bitmap consisting of pixels, we cancreate the histogram of spectrum features. Then the change in frequency-domain of thespecified EM area can be measured by calculating the distance of feature vectors between histograms. Based on the measurement of variability of EME and parallel coordinates method,a time-adaptive visualization approach for multi-dimensional EME situation representation isrealized. We propose an Advanced Parallel Coordinates Method (APCM) to build avisualization framework for multi-dimensional EMS representation. It mainly includes threealgorithmic modules of a data fitting, a quantitative mapping, an adaptive time-slidingwindow. Respectively, the data fitting model mitigates the degree of line overlapping betweenthe correlated adjacent data dimensions by Bezier curve. The quantitative mapping model canmap the multi-dimensional information in different sizes and types into coordinate system.Based on them, the adaptive time-sliding window model can adjust time interval of situationrepresentation dynamically in order to make it adaptable to the change in an electromagneticenvironment. The experiments show that the APCM is an effective approach to displaymulti-dimensional EMS information quickly and precisely.
     (3) For large number of spectrum-depending nodes, this thesis proposes a modelingapproach for relation network of electromagnetic interference. In consideration of the largenumber of electronic equipment in naval fleet, we build a complex network model, in whichelectronic equipment are nodes and interference relation are edges. Two forms of the modelare presented—one with real-time analyze, the other with experiential statistic. The twomodels are named as A-EMIN and B-EMIN, respectively. A series of simulations and analysisof the two EMINs reveal some useful network characteristic that make sense to bothinterference analysis and spectrum management. The simulation result of cluster characteristicof B-EMIN verifies the rationality of a hierarchical SM strategy. In addition, we presentseveral EMIN metrics based on network features such as degree, density, mean distance,clustering coefficient, and so on. Explaining what these metrics mean in EMINs, we point tothe application potential of them in EMIN evaluation.
     (4) An electromagnetic situation assessment system for sea battlefield is set up. Takinginto account of all the factors considered in EMS, we propose a relatively comprehensiveindex system for EMS assessment. According to the structural feature of naval fleet, ahierarchical, quantitative assessment model for some indices is proposed, in which thesituation data is collected from equipment-level, and flows to fleet-level in a bottom-up way.Consequently, the measure of this index on fleet-level is generated with consideration overequipment weight and task weight. Applied to evaluating the index of EMI degree in fleet, themodel is proven to be effective. An FCM based situation assessment model is proposed inconsideration of the feature that most indices influence each other. We present the quantification method for adjacency matrix of FCM, and improve the threshold function andinference algorithm to make the model applicable to EMS assessment. Compared with theconventional EME assessment approaches, the FCM takes into consideration of variousfactors and the relations between them, produces more accurate results, and has a certainability of situation prediction.
引文
[1]王小非.海上网络战[M].北京:国防工业出版社,2006.
    [2]王汝群.战场电磁环境[M].北京:解放军出版社,2006.
    [3]王小非.美军指控系统发展及其对我军舰载指控系统建设的启示[J].舰船电子工程,2010,30(5):1-5.
    [4] Mikhalev A, Hughes E J, Ormondroyd R F. Comparison of Hough transform andparticle filter methods of passive emitter geolocation using fusion of TDOA and AOAdata[C].13th Conference on Information Fusion, Fusion2010.
    [5]安彧,王小非,夏学知,等.海战场的目标检测与识别[J].华中科技大学学报(自然科学版),2012,40(10):9-12.
    [6] Zuo W M, Zhang D, Wang K Q. On kernel difference-weighted k-nearest neighborclassification[J]. Pattern Analysis and Applications,2008,11(3-4):247-257.
    [7] Guo Qiang, Guan Xin, Zhang Zhengchao, et al. Study on emitter signal recognitionbased on Rough Sets and grey association theory[C].2010IEEE10th InternationalConference on Signal Processing, p2336-2340.
    [8]王小非,陈云秋.海战场态势分析与评估方法[J].火力与指挥控制,2006,31(6):1-3.
    [9] D.S.Dixson, M.Obara, and N.Schade. Finite-element analysis (FEA) as EMCPrediction tool[J]. IEEE Trans. Electromagn. ComPat.,35(2):241-248. May1993.
    [10] J.R.Brauer and B.S.Brown. Mised-dimensional finite-element models ofelectromagnetic coupling and shielding[J]. IEEE Trans. Electromagn. ComPat.,35(2):235-24,May1993.
    [11] He Jun, Wang Meng-Lin. Study on the visualization of battlefield electromagneticsituation[C]. Proceedings of the2nd International Conference on Modeling andSimulation, ICMS2009, v2, p437-441,2009.
    [12] Sathyamurthy S, Sundaresh S. Performance simulation of HF-VHF mobile radiosystems in a tactical vehicle[J]. Defense Science Journal, v58, n6, p762-767,November2008.
    [13] D.L.Hall and J.Llinas. An Introduction to Multisensor Data Fusion[C]. Proceedings ofthe1998IEEE International Symposium on Circuits and System,1998,85(1):6-23.
    [14] Steinberg,A.N., Bowman,C.L., and White,F.E. Revisions to the JDL Data FusionModel[C]. Proceedings of the SPIE,1999, Vol.3719:430-441.
    [15] Mica R.Endsley. Toward a Theory of Situation Awareness in Dynamic Systems[J].Human Factors Journal,1995,37(1):32-64.
    [16] J.Linas, E.Waltz. Multisensor Data Fusion[M]. Artech House, Norwood, Massachusetts,1990.
    [17] D.L.Hall, A.K.Garga. New perspectives on level four processing in data fusionsystems[C]. in Proceedings of SPIE-The International Society for OpticalEngineering, v3709, p213-220,1999.
    [18] Shahabzian E, Blodgett D, Labbe P. The Extended OODA Model for Data FusionSystems[C]. Proceedings of Information Fusion,2001,1:19-25.
    [19] Bedworth M. O’Brien J. The Omnibus Model:A New Model of Data Fusion[C].Proceedings of IEEE AES Systems Magazine,2000:30-36.
    [20] D.L.Hall and J.Llinas. Handbook of Multisensor Data Fusion[M]. Washington DC, NY:CRC Press,2001.
    [21] D.L.Hall and A.McMullen. Level5:Cognitive Refinements and Human-ComputerInteraction. In: Mathematical techniques in Multisensor Data Fusion[M]. ArtechHouse,Inc. US.2004.
    [22] Dr.John J.Salerno. Where’s Level2/3Fusion-a Look Back over the Past10Years[C].Proceedings of Information Fusion2007:1-4.
    [23] E.Blasch. Assembling an Information-fused Human-Computer Cognitive DecisionMaking Tool[J]. IEEE Aerospace and Electronic Systems Magazine, June2000:11-17.
    [24] Erik Blasch.Level5(User Refinement)Issues Supporting Information FusionManagement[C]. Proceedings of Information Fusion2006:1-8.
    [25] James Linas, Christopher Bowman, ect. Revisiting the JDL Data Fusion Model II[C].Proceedings of Information Fusion,2004:1-13.
    [26]王小非. C3I系统中的数据融合技术[M].黑龙江,哈尔滨工程大学出版社,2006.
    [27] Polychronopoulos, U.Scheunert, etc. Revisiting the JDL Model for Automotive SafetyApplications: the PF2Functional Model[C]. Proceedings of Information Fusion,2006:1-7.
    [28]王智均,李德仁,李清泉.基于小波理论的IKONOS卫星全色影像和多光谱影像的融合[J].测绘学报,2001,30(2):112-116.
    [29] Stover J A, Hall D L, Gibson R E.A Fuzzy-logic Architecture for AutonomousMultisensor Data Fusion[J]. IEEE Transaction on Industrial Electronics,1996,43(3):403-410.
    [30]王宏飞,王永成,杨成梧.一种模糊阶段态势估计方法[J].火力与指挥控制,2003,28(3):31-34.
    [31] Das S, Grey R, Gonsalves P. Situation Assessment via Bayesian Belief Networks[C].Proceedings of the Fifth International Conference on Information Fusion,2002,1:664–671.
    [32] Das S, Lawless D. Trustworthy Situation Assessment via Belief Networks[C].Proceedings of Information Fusion,2002,1:543–549.
    [33] Azarewicz J, Fala G, Heithecker C. Template-based Multi-agent Plan Recognition forTactical Situation Assessment[C]. Proceedings of Fifth Conference on ArtificialIntelligence for Applications,1989:247–254.
    [34] Cholvy L. Applying Theory of Evidence in Multisensor Data Fusion:a LogicalInterpretation[C]. Proceedings of Information Fusion,2000,1:17-24.
    [35]李兵,郁文贤,胡卫东.基于条件事件代数系统的条件证据组合与条件信任组合[J].模糊系统与数学,2001,15(1):103-107.
    [36]程岳,等.基于分级多层黑板模型的态势估计系统结构研究[J].计算机应用研究,2002,19(6):29-31.
    [37] Everitt R G, Marrs A D. Hypothesis Management in Situation Assessment[C].Proceedings of IEEE Aerospace Conference,2003,4:1895-1903.
    [38] Looney C G. Exploring Fusion Architecture for a Common Operational Picture[C].Proceedings of Information Fusion,2001,2:251-260.
    [39] Looney C G, Liang L R. Cognitive Situation and Threat Assessments of GroundBattlespaces[C]. Proceedings of Information Fusion,2003,4:297-308.
    [40] Ballard D, Rippy L. A Knowledge-based Decision Aid for Enhanced SituationalAwareness[C]. AIAA/IEEE13th Digital Avionics Systems Conference(DASC),1994,340–347.
    [41]周倜,王小非,等.基于进程和文件行为的主机安全态势评估模型[J].华中科技大学学报(自然科学版),2010,38(10):39-42
    [42] Zhou Ti, Wang Xiaofei, Feng Li, et al. Research on Host-Level Security SituationalAwareness[C]. in Proceedings of3rdIEEE International Conference on ComputerScience and Information Technology,2010.
    [43] Stephen Lau. The spinning cube of potential doom[J]. Communications of the ACM,47(6):25-26, Jun.2004.
    [44] Kiran L, William Y, Adam J. NVisionIP: NetFlow Visualizations of System State forSecurity Situational Awareness[C] Proceedings of VizSEC/DMSEC. Washington:IEEE Press,2004:122-135.
    [45] Yegneswaran V, Barford P, Paxson V. Using Honeynets for Internet SituationalAwareness [C/OL].[2008-01-12]. http://www.icir.org/vern/papers/sit-aware-hotnet05.pdf
    [46] Arnes,A, Valeur,F, Vigna,G.,et al. Using Hidden Markov Models to Evaluate the Riskof Intrusions[C]. Proceedings of the International Symposium on the Recent Advancesin Intrusion Detection. Hamburg: Springer Press,2006:145-164.
    [47] Holsopplea J, Yanga S, Suditb M. TANDI: Threat Assessment of Network Data andInformation. Multisensor[C]. Multisource Information Fusion: Architectures,Algorithms, and Applications2006. Florida: SPIE Press,2006:62420O.1-62420.12.
    [48]陈秀真,郑庆华,管晓宏,等.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897.
    [49]韦勇,连一峰,冯登国.基于信息融合的网络安全态势评估模型[J].计算机研究与发展,2009,46(3):353-362.
    [50] ITU-R Rec. PN.525-2, Calculation of free-space attenuation,1994.
    [51] Hata, masaharu. Empirical Formula for Propagation Loss in Land Mobile RadioServices[J]. IEEE Trasactions on Vehicular Technology, Vol.VT-29, No.3,1980.
    [52] Manual on Mobile Communication Development, ITU BDT,1997, p63-66.
    [53] ITU. http://www.itu.int
    [54] Hufford G A, Longley A G, Kissick W A. A guide to the use of the ITS IrregularTerrain Model in the area prediction mode[R]. NTIA Report82-100,1982.
    [55] ITU R Rec.526-6, Propagation by diffraction,1999.
    [56] ITU R Rec.619-1, Propagation data required for the evaluation of interferencebetween stations in space and those on the surface of the earth.
    [57] ITU R Rec.1546-3, Method for point-to-area predictions for terrestrial services in thefrequency range30MHz to3000MHz,2007.
    [58] Erceg V, et al. An Empirically Based Path Loss Model for Wireless Channels inSuburban Environments[J]. IEEE Journal on Selected Areas in Communications, Vol.17, No.7,1999.
    [59] Brown P G, Constantinou C C. Investigations on the prediction of radio wavepropagation in urban microcell environments using ray-tracing methods [J]. IEEEProceedings: Microwaves, Antennas and Propagation (S1350-2417),1996,143(1):36-42.
    [60] Simpson J J. Global FDTD Maxwell's Equations Modeling of ElectromagneticPropagation From Currents in the Lithosphere[J]. Antennas and Propagation, IEEETransactions on (S0018-926X).2008,56(1):199-203.
    [61] A.E. Barrios. A terrain parabolic equation model for propagation in the troposphere[J].IEEE Trans (S0018-926X),1994, AP-42(1):90-98.
    [62] P. Chen, L.D. Wu,3D representation of Radar coverage in complicated environment[J].Simulation Modelling Practice and Theory, Vol.16,2008, pp.1190-1199.
    [63]张蔚,成柏林,金素华.搜索雷达探测范围的可视化技术[J].现代雷达,2000,22(3):44-47.
    [64] Rancic D, Dimitrijevic A, Milosavljevic A, et al. Virtual GIS for Prediction andVisualization of Radar Coverage[C]. Proceedings of Visualization, Imaging, and ImageProcessing2003.
    [65]陈鹏.虚拟战场环境中雷达作用范围表现技术研究[D].湖南长沙:国防科学技术大学,2007.
    [66]周桥,徐青,陈景伟等.电磁环境建模与3维可视化[J].测绘科学技术学报,2008,25(2):112-115.
    [67] Nancy J V. Institute for Telecommunication Sciences2002Technical ProgressReport[R]. US Department of commerce,2002.
    [68] Abdulnasir H, Fakhri A W, Joseph A J. Classification of modulation signals usingstatistical signal characterization and artificial neural networks[J]. EngineeringApplications of Artificial Intelligence,2007,20(4):463-472.
    [69] Matuszewski J, Kawalec A. Knowledge-based signal processing for radaridentification[C].9th Int Conf on Modern Problems of Radio Engineering,Telecommunications and Computer Science. Warsaw,2008:302-305.
    [70] L E Langley. Specific emitter identification and classical parameter fusiontechnology[C]. IEEE WESCON’93Conf Record. San Francisco,1993, p377-381.
    [71] A Kawalec, R Owczarek. Specific emitter identification using intrapulse data[C]. inProceedings of1st European Radar Conference. Amsterdam,2004, p249-252.
    [72]刘海军.雷达辐射源识别关键技术研究[D].湖南:国防科学技术大学,2010.
    [73] Zhang Gexiang, Jin Weidong, Hu Laizhao. Resemblance coefficient based intrapulsefeature extraction approach for radar emitter signals[J]. Chinese Journal of Electronics,2005,14(2):337-341.
    [74] Carroll T L. A nonlinear dynamics method for signal identification[J]. Chaos: AnInterdisciplinary J of Nonlinear Science,2007,17(1):23-30.
    [75] Wang Jiegui. Emitter target recognition based on multisensory data fusion of ESM andIR[C]. in Proceedings of the9th International Conference on Signal Processing.Beijing,2008, p1508-1511.
    [76]李楠,曲长文,平殿发等.基于分布式传感器信息融合的辐射源识别[J].控制与决策,2010,25(12):1793-1798.
    [77] Shieh C S, Lin C T. A Vector Neural Network for Emitter Identification[J]. IEEE Transon Antennas and Propagation,2002,50(8):1120-1127.
    [78]沈阳,陈永光,李修和.雷达辐射源识别的多元信息融合算法研究[J].电子与信息学报,2007,29(10):2229-2232.
    [79] Clayton R. Paul. Introduction to Electromagnetic Compatibility[M]. Wiley Press,2005.
    [80]王庆斌,刘萍,尤利文等.电磁干扰与电磁兼容技术[M].北京:机械工业出版社,1999.
    [81] Foreman T. Antenna coupling model for radar electromagnetic compatibilityanalysis[J]. IEEE Transactions on Electromagnetic Compatibility,1989:85-87.
    [82]胡皓全,杨显清,赵家升.雷达之间电磁干扰预测模型研究[J].电子科技大学学报,2001,30(1):37-40.
    [83]侯民胜,秦海潮.雷达之间相互干扰的计算机仿真[J].现代电子技术,2007,24(263):91-93.
    [84]夏栋,李敬辉,李仙茂.编队中雷达互扰模型研究[J].舰船电子对抗,2008,31(5):81-84.
    [85]马世民,肖文书.米波雷达抗通信干扰分析与实现[J].现代雷达,2008,30(4):14-17.
    [86]高昂,何树有,任海鹏.雷达对通信系统的干扰特性[J].舰船电子对抗,2007,30(3):86-88.
    [87] Dupont A. The dynamic frequency assignment problem[J]. European Journal ofOperational Research,2009,195(1):75-88.
    [88] L Hanzo, R Tafazolli. A Survey of QoS Routing Solutions for Mobile Ad hocNetworks[J]. IEEE Communications Survey and Tutorials,2007,9(2):50-70.
    [89] Tang H, Zhang J. A Framework of Intelligent Decision Support System of MilitaryCommunication Network Effectiveness Evaluation[C]. in Proceedings of the FifthInternational Conference on Fuzzy Systems and Knowledge Discovery,2008.
    [90]石福丽,杨峰,李群等.基于SEA评估算子的军事通信网络效能仿真评估方法[J].火力与指挥控制,2011,36(5):56-59.
    [91]尹成友.战场电磁环境分类与复杂性评估[J].信息对抗学术,2007,18(4):4-6.
    [92]代合鹏,苏东林.电磁环境复杂度定量分析方法研究[J].微波学报,2009,25(3):25-27.
    [93] Qi X W, Sun Y K, Xiong Z X, et al. Research on Simulation of Searching Radars’Intelligence Detection in Complicated Electromagnetic Environment[C]. inProceedings of International Conference on System Simulation and ScientificComputing,2008:918-923.
    [94] Raghu K R. Challenges of the Naval Electromagnetic Environment for EMCEngineer[C]. in Proceedings of8thInternational Conference on ElectromagneticInterference and Compatibility,2003:41-46.
    [95]张智南,刘增良,陶源,等.基于有向图的电磁环境复杂度度量算法[J].电讯技术,2009,49(6):1-4.
    [96]李莉,孙振华,李立伟,等.装备定型试验中复杂电磁环境研究[J].装备指挥技术学院学报,2009,20(2):73-76.
    [97] E Swiercz. Automatic classification of LFM signals for radar emitter recognition usingwavelet decomposition and LVQ classifier[J]. Physical Aspects of Microwave andRadar Applications, v119, n4, p488-494, April2011.
    [98] Michael I, Gunther L, Yoann P. A quantitative method for mono and multistatic radarcoverage area prediction[C]. in Proceedings of2010IEEE Radar Conference: GlobalInnovation in Radar, RADAR2010. Washington DC, United states, pp.707-711.
    [99] P. Chen, L.D. Wu,3D representation of Radar coverage in complicated environment[J].Simulation Modelling Practice and Theory, Vol.16,2008, pp.1190-1199.
    [100]周桥,徐青,陈景伟等.电磁环境建模与3维可视化[J].测绘科学技术学报,2008,25(2):112-115.
    [101] D.L.Hall and J.Llinas. An Introduction to Multisensor Data Fusion[C]. Proceedings ofthe1998IEEE International Symposium on Circuits and System,1998,85(1):6-23.
    [102] Endsley, M. R., Toward a Theory of Situation Awareness in Dynamic Systems[J],Human Factors Journal,37(1), pages32-64, March1995.
    [103] Endsley, M.R. and Garland, D.J., Situation Awareness Analysis and Measurement[M],Lawrence Erlbaum Associates, Mahawah, New Jersey, USA,2000.
    [104] J Roy. From data fusion to situation analysis[M]. In ISIF, editor, Fourth InternationalConference on Information Fusion, volume II, pages ThC2–3–ThC2–10, Montreal,Canada,2001.
    [105]何俊,王梦麟.基于Delaunay三角网的二维电磁态势可视化方法[J].系统工程理论与实践.2011,31(9):1799-1803.
    [106] B. Marc, I. Michael. A signal simulator for multistatic and netted radar systems[J].IEEE Transactions on Aerospace and Electronic Systems, v47, n1, p178-186,2011.
    [107] L. Francesco, et al. Electro optical radar transmission chain modeling andsimulation[C]. International Radar Symposium, IRS2011-Proceedings, p429-434,2011.
    [108] Brown P G, Constantinou C C. Investigations on the prediction of radio wavepropagation in urban microcell environments using ray-tracing methods [J]. IEEEProceedings: Microwaves, Antennas and Propagation (S1350-2417),1996,143(1):36-42.
    [109] Simpson J J. Global FDTD Maxwell's Equations Modeling of ElectromagneticPropagation From Currents in the Lithosphere[J]. Antennas and Propagation, IEEETransactions on (S0018-926X).2008,56(1):199-203.
    [110] A.E. Barrios. A terrain parabolic equation model for propagation in the troposphere [J].IEEE Trans.(S0018-926X),1994, AP-42(1):90-98.
    [111] A.E. Barrios. Considerations in the development of the advanced propagation model(APM) for U.S. Navy applications[C], in: Proceedings of the International RadarConference, Atmos. Propagation Branch, Spawarsyscen, San Diego, CA, USA,2003.
    [112] H. V. Hitney. Hybrid Ray Optics and Parabolic Equation Methods for RadarPropagation Modeling[C]. in Radar’92IEE Conf. Pub.365,12-13Oct1992, pp.58–61.
    [113] H. V. Hitney. Refractive Effects from VHF to EHF: Propagation Mechanisms[J]. inPropagation Modelling and Decision Aids for Communications, Radar and NavigationSystems, AGARD Lecture Series196, Sept.1994, pp.4A-4B.
    [114]邓斌.雷达性能参数测量技术[M].陕西:国防工业出版社,2010.
    [115] GIRI D V, TESCHE F M. Classification of Intentional Electromagnetic Environments(IEME)[J]. IEEE Transactions on Electromagnetic Compatibility,2004,46(3):322-328.
    [116]陈行勇,等.战场电磁环境复杂性定量分析研究综述[J].电子信息对抗技术,2010,V.25:44-51.
    [117] S. Sven, et al. Discussing millimeter wave pencil beam radar for terrainvisualization[C].30th Digital Avionics Systems Conference, DASC2011, Seattle,United states. pp.8D51-8D510.
    [118] R. Oscar, et al. Real-time tessellation of terrain on graphics hardware[J]. Computersand Geosciences, Vol.41,2012, pp.147-155.
    [119] I. Michael, L. Gunther, P. Yoann, A quantitative method for mono-and multistatic radarcoverage area prediction[C]. in Proceedings of2010IEEE Radar Conference: GlobalInnovation in Radar, RADAR2010. Washington DC, United states, pp.707-711.
    [120] Y.M. Chen, et al.3D Visualization of electromagnetic environment[C]. in Proceedingsof19th International Conference on Geoinformatics, Geoinformatics2011, Shanghai,China, June2011.
    [121] Rancic D., Dimitrijevic A., Milosavljevic A., et al. Virtual GIS for Prediction andVisualization of Radar Coverage [C]. Proceedings of Visualization, Imaging, andImage Processing2003, Benalmadena, Spain,2003.
    [122]唐泽圣等.三维数据场可视化[M].北京:清华大学出版社,1999.
    [123]穆兰等.空间电磁环境可视化系统的研究与应用[J].系统仿真学报,2011,32(4):724-728.
    [124] TRIGUBOVICH W B. On Some Characteristics of Electromagnetic Environment[C].Proceedings of7th International Conference on Mathematical Methods inElectromagnetic Theory. Kharkov, Ukraine,1998:447-449.
    [125] JAEKEL B W. Electromagnetic Environments Phenomena, Classification,Compatibility and Immunity levels[C]. Proceedings of The IEEE Region8Conference.St. Petersburg, Russia: IEEE,2009:1498-1502.
    [126] J. Hafner, et al., Efficient color histogram indexing for quadratic form of distances[J],IEEE Trans. Pattern Anal. Mach. Intell.17(7)(1995)729-736.
    [127] Keim D A, Ankerst M. Visual data mining and exploration of large databases[C].PKDD. Freiburg, Germany,2001.
    [128] INSELLBERG A,DIMSDALE B. Parallel coordinates: a tool for visualizingmultidimensional geometry[C]. Proc of the1st IEEE Conference on Visualization.Los Alamitos,CA: IEEE Computer Society,1990:361-378.
    [129] Wang Kun, Long Yunliang. Propagation modeling over irregular terrain by theimproved two-way parabolic equation method[J]. IEEE Transactions on Antennas andPropagation,2012,60(9):4467-4471.
    [130]管清波,冯书兴.复杂电磁环境生灭模型及特征生成[J].系统仿真学报,2010,22(11):1757-1759.
    [131] Watts D J, Strogatz S H. Collective dynamics of Small-World networks[J]. Nature,1998,393(6638):440-442.
    [132] Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science,1999,286(5439):509-512.
    [133] Palla G, Derenyi I, Farkas I, Vicsek T. Uncovering the overlapping communitystructures of complex networks in nature and society[J]. Nature,2005,435(7043):814818.
    [134] Palla G, Barabási A L, Vicsek T. Quantifying social group evolution[J]. Nature,2007,446(7136):664667.
    [135] Albert R, Jeong H, Barabasi A L. Attack and error tolerance in complex networks[J].Nature,2000,406:387-482.
    [136] Albert R, Albert I, Nakarado G L. Structural vulnerability of the North Americanpower grid[J]. Physical Review E,2004,69:025103.
    [137] Kinney R, Crucitti P, Albert R, et al. Modeling cascading failures in the NorthAmerican power grid[J]. The European Physical Journal B,2005,46(1):101-107.
    [138] Wang Z, Zhang J. In serach of the biological significance of modular structures inprotein networks[J]. PLOS Computational Biology,2007,3(6):e107.
    [139] Farutin V, Robison K, Lightcap E, Dancik V, Ruttenberg A, Letovsky S, Pradines J.Edge-Count probabilities for the identification of local protein communities and theirorganization[J]. Proteins: Structure, Function, and Bioinformatics,2006,62(3):800818.
    [140] Newman MEJ. Coauthorship networks and patterns of scientific collaboration[C]. Proc.of the National Academy of Science,2004,101(1):52005205.
    [141] Nekovee M, Moreno Y, Bianconi G, et al. Theory of rumour spreading in complexsocial networks[J]. Physica A,2007,374(1):457-470.
    [142] Ash J and Newth D. Optimizing complex networks for resilience against cascadingfailure[J]. Physica A,2007,380:673-683.
    [143] Jeffrey R. An information age combat model[R]. Alidade Consulting Technical Paper,March,2001.
    [144] Sean D, Michael I. Applying the information age combat model: quantitative analysisof network centric operations[J]. The International C2Journal,2009(1).
    [145] Newman M E J,Phys. Rev. Lett.,2002,89:208701;Phys. Rev. E,2003,67:026126.
    [146] E. Ravasz and Barabasi A L, Phys. Rev. E,67(2003)026112.
    [147] Girvan M, Newman MEJ. Community structure in social and biological networks[C].Proc. of the National Academy of Science,2002,9(12):78217826.
    [148] Albert R, Barabási A L. Rev. Mod. Phys.,2002,74:47-97.
    [149] Jeffrey R C. Fundamentals of Distributed, Networked Military Forces and the,Engineering of Distributed Systems[R].2002.
    [150] Alidade. Lcs Platform And Associated Off Board Systems Structure And CompositionTopological Analysis[R].2009
    [151]胡晓峰,李志强,贺筱媛等.复杂网络:战争复杂系统建模仿真新途径[J].装备指挥技术学院学报,2009,20(2):1-7.
    [152]王再奎,马亚平,周任华等.复杂网络理论体系对抗作战体系建模[J].火力与指挥控制,2011,36(8):40-47.
    [153]朱涛,常国岑,施笑安.基于复杂网络的指挥信息系统拓扑模型研究[J].系统仿真学报,2008,20(6):1574-1581.
    [154]胡斌,黎放,郑建华.基于复杂网络的舰艇编队网络中心战模型研究[J].系统仿真学报,2010,22(8):1960-1965.
    [155]张璐.基于多Agent复杂网络的交战模拟方法研究[D].国防科学技术大学,2008.
    [156]张勇,杨宏伟,白勇.基于复杂网络的武器装备重要度评估方法[J].装甲兵工程学院学报,2012,26(1):5-9.
    [157]冯磊,查亚兵,胡记文等.基于复杂网络的作战模拟组织建模研究[J].系统仿真学报,2012,24(4):882-886.
    [158] German F, Annamalai K, Young M, et al. Simulation and data management for cositeinterference prediction[C]. in Proceedings of IEEE International Symposium onElectromagnetic Compatiblity,2010:869-874.
    [159] Adamy D L. Introduction to Electronic Warfare Modeling and Simulation[M]. ArtechHouse,2004.
    [160] Newman MEJ, Girvan M. Finding and evaluating community structure in networks[J].Physical Review E,2004,69(2):026113.
    [161]杨博,刘大有,LIU Jiming等.复杂网络聚类方法[J].软件学报,2009,20(1):54-66.
    [162] Chen Feng, Liu Dehui, Zhang yi, et al. A hierarchical evaluation approach for networksecurity based on threat spread model[J]. Computer Research and Development,48(6):945-954.
    [163] Mei Tao, Hua Xian-Sheng, Zhu Cai-zhi, et al. Home video visual quality assessmentwith spatiotemporal factors[J]. IEEE Transactions on Circuits and Systems for VideoTechnology,2007,17(6):699-706.
    [164]尹成友.国军标GJB6520-2008,战场电磁环境分类与分级方法[S].北京,2008,6.
    [165]郭万海,赵晓哲.舰载雷达效能评估[M].北京:国防工业出版社,2003.
    [166] Saaty T L. The Analytic Hierarchy Process[M]. New York: McGraw—Hil1.1980.
    [167] Saaty T L Decision Making—The Analytic Hierarchy and Network Processes(AHP/ANP)[J] Journal of Systems Science and Systems Engineering,2004,13(1):l-35
    [168]孙才志,林学钰.基于层次分析的模糊一致性判断矩阵及其应用[J].模糊系统与数学,2002,16(3):59-63.
    [169] Zhi Xiao, Weijie Chen, Lingling Li. An integrated FCM and fuzzy soft set for supplierselection problem based on risk evaluation[J]. Applied Mathematical Modelling,2012,36:1444-1454
    [170] Ilker Akgun, Ahmet Kandakoglu, Ahmet Fahri Ozok. Fuzzy integrated vulnerabilityassessment model for critical facilities in combating the terrorism[J]. Expert Systemswith Applications,2010,37:3561-3573.
    [171] Namho Lee, Jae Kwon Bae, Chulmo Koo. A case-based reasoning based multi-agentcognitive map inference mechanism: An application to sales opportunity assessment[J].Inf. Syst. Front,2012,14:653-668.
    [172] H J Song, C Y Miao, R Wuyts, et al. An Extension to Fuzzy Cognitive Maps forClassification and Prediction[J]. IEEE Transactions on Fuzzy Systemes,2011,19(1):116-135.
    [173] Elpiniki I. Papageorgiou, Nikolaos Papandrianos, Georgia Karagianni, et al. FuzzyCognitive Map Based Approach for Assessing Pulmonary Infections[J]. Lecture Notesin Computer Science, v5722, p109-118,2009.
    [174] Sandeep Chandana, Henry Leung, Eloi Bosse, et al. Fuzzy Cognitive Map basedSituation Assessment for Coastal Surveillance[C].11thInternational Conference onInformation Fusion, Cologne, Germany:2008.
    [175] S Mohagheghi. A Fuzzy Cognitive Map for Data Integrity Assessment in a IEC61850Based Substation[C]. IEEE PES General Meeting, PES2010, MN, United States:2010.
    [176] Maurizio Bevilacqua, Filippo Emanuele Ciarapica, Giovanni Mazzuto. Analysis ofinjury events with fuzzy cognitive maps[J]. Journal of Loss Prevention in the ProcessIndustries,2012,25:677-685.
    [177] Chen J, Yu G H, Gao X G. Cooperative Threat Assessment of Multi-aircrafts Based onSynthetic Fuzzy Cognitive Map[J]. J. Shanghai Jiaotong Univ.(Sci.),2012,17(2):228:232.
    [178] B Kosko. Fuzzy cognitive maps[J]. International Journal of Man-Machine Studies,24(1986):65-75.
    [179] H Zhuge, X Luo. Automatic generation of document senantics for the e-sciencknowledge grid[J]. The Journal of Systems and Software,79(2006)969-983.
    [180] W Stach, L Kurgan, W Pedrycz, et al. Genetic learning of fuzzy cognitive maps[J].Fuzzy Sets and Systems153(2005)371-401.
    [181] A M Sharif, Z Irani. Exploring fuzzy cognitive mapping for IS evaluation[J]. EuropeanJournal of Operational Research,173(2005)1175-1187.
    [182] Yetton, P., Botter, P. The relationships among group size, member ability, socialdecision schemes, and performance[J]. Organizational Behavior and HumanPerformance(October),1983:145–159.
    [183] Lee C. Fuzzy logic in control systems: Fuzzy logic controller, Part I and II[J]. IEEETransactions on Systems, Man and Cybernetics,20(1990)404–435.
    [184] D Yaman, S Polat. A fuzzy cognitive map approach for effect-based operations: Anillustrative case[J]. Information Sciences179(2009)382-403.
    [185] E I Papageorgiou. Learning Algorithms for Fuzzy Cognitive Maps—A Reviw Study[J].IEEE Transactions on Systems, Man and Cybernetics,2012,42(2):150-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700