用户名: 密码: 验证码:
新型内循环污泥浓缩消化反应器(ICSTD)特性及处理污泥性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从上世纪80年代帕克公司研制开发了厌氧IC反应器以来,IC反应器在全世界污水处理领域得到广泛研究和使用。目前,为中小城镇开发低耗、高效的城市污泥处理工艺是我国污泥处理技术研究领域亟待解决的重大课题。将浓缩和消化引入到一个反应器的新型内循环污泥浓缩消化(ICSTD)反应器,为解决这一问题提供了新的思路。本研究在吸取传统IC反应器和重力浓缩池运行机理研究成果的基础上,重新设计、制作了新型内循环污泥浓缩消化(ICSTD)反应器,本文研究了ICSTD反应器的流态特性,处理污泥的性能,分析了反应器运行性能的影响因素和反应器内的生物相。
     流态试验采用外加电解质的脉冲信号响应法进行,分析了液龄分布函数,并发现ICSTD流态近似于推流式。试验发现进水流量和气体搅拌量是影响ICSTD流态特性的重要因素,推流式的流态有利于提高污染物降解性能。在ICSTD处理污泥的性能试验中,观察了ICSTD的启动性能,分析了ICSTD处理污泥的效果和反应器内生物相的变化。由于ICSTD反应器具有沼气搅拌和内循环的功能,所以污泥在反应器内消化效果良好。启动运行试验采用好氧活性污泥进行驯化培养,在日处理量为50L/d,进泥含水率为99.23%~99.46%,进泥VS/TS为0.65~0.73,进泥COD为4115mg/L~5780mg/L,反应器容积负荷为1.31KgCOD/m3·d时,排泥含水率在96.2%~97.3%,排泥VS/TS为0.48~0.57,COD去除率在95%以上,出水pH在6.6~7.1,且上清液澄清。容积负荷为1.83kgCOD/m3.d(设计负荷)、2.36kgCOD/m3.d运行阶段,在进泥性质与启动阶段相似的条件下,排泥含水率为95.3%~97.2%,排泥VS/TS为0.56~0.58,排泥比阻为220~550,出水SS为1~3,产气率为0.7~1.8 m3 /m3泥,沼气中甲烷含量为54%~75%,COD去除率在95%以上,出水pH在6.5~7.2,且反应器内污泥中产甲烷菌以索氏丝状菌为优势菌属。试验表明:ICSTD反应器浓缩效果优于普通的浓缩池(普通重力浓缩池排泥含水率为97.5%~97%),消化效果于普通消化池差距不大。
     对ICSTD运行效能的检测数据统计分析后,发现影响ICSTD运行效能的主要运行条件包括:反应器的水力负荷(停留时间)、沼气搅拌和水温。试验发现,随着水力负荷的提高(在到达设计负荷之前),反应器对污泥的处理效果也相应的变好;当水温低于20℃后,反应器运行效果明显降低。
     ICSTD处理城市污泥的运行性能试验表明,新型内循环污泥浓缩消化(ICSTD)反应器在继承了传统IC反应器和传统重力浓缩池的优点的基础上,将浓缩和消化集于一个反应器内,使浓缩和消化相互促进,符合低耗、高效的工艺要求。
IC reactor have been invested and used extensively in the field of wastewater treatment around the world since it was been developed by Paques Environmental Technology Co., Ltd from 1980’s. At present, to develop the sludge treatment process with low-energy and high-efficient for medium and small-size town has become the biggest task of sludge treatment process in China. In order to solve this problem, a new thought put forward is to explore Internal Circulation Thickening and Digestion (ICSTD) Reactor, in which sludge thickening and digestion process by integration. This study redesigns and makes ICSTD reactor on the basis of research and findings about traditional IC reactor and gravity thickener, researches the flow-pattern characteristics and the performance of treating sludge and analyses the influencing factor of operation performance and bio-phase inside reactor.
     In order to analyze the exit-age distribution function, the flow-pattern test adopts the impulse signal response method with applied electrolyte. According to the result of experiment, it is discovered that the ICSTD flow-pattern is approximately plug flow, the impact factor of ICSTD flow-pattern characteristics is the inflow and gas agitation, the flow-pattern influence of operation performance mostly represents the degradation ratio of contamination and utilization ratio of cubage and plug flow is available for improving the degradation ratio of contamination. Because of gas agitation and inner circulation, the assimilation effect of sludge is good in working. The aerobic active sludge was adopted to domestication in the startup experiment of sludge treatment in New version of Internal Circulation Sludge Thickening and Digestion reactor (ICSTD).When the volume of per day treatment sludge is 50L/d inflow sludge’s containing water rate is 99.23%~99.46% The value of VS/TS is 0.65~0.73 the inflow of sludge’s COD is 4115mg/L~5780 mg/L, load is 1.31KgCOD/m3·d, outflow sludge’s containing water rate is 96.2%~97.3%. The value of VS/TS rises to 0.48 from 0.57 95% COD removal rate is achieved the PH of outflow is 6.6~7.1.and the liquid is clear. At the running stage of load being 1.83kgCOD/m3.d and 2.36kgCOD/m3.d, outflow sludge’s containing water rate is 96.2%~97.3%, VS/TS is 0.56~0.58, specific resistance of sludge is 220~550,SS of outflow is 1~3, gas per cubic sludge is 0.7~1.8 m3, COD removal rate is above 95%, pH is 6.5~7.2 and the predominance bacterium of methane in sludge is Methanothrix. The experiment indicates that the sludge thickening performance of ICSTD is better than the traditional thickener which water ratio of outflow sludge is 97.5%~97%, but the assimilation effect is obscure.
     The statistics analysis results of operation digital shows that the running condition impacting the operation performance of ICSTD includes HRT, methane agitation and water temperature. At the same time, the effect of sludge treatment is connected with HRT except water temperature under 20℃.
     The experiment of reactor indicates ICSTD accelerates the sludge thickening and digestion reciprocally through integrating thickening and digestion process, which is not only keep the virtue of traditional IC reactor and gravity thickener but coincidence with the desire of low-energy and high-efficiency.
引文
[1] 田宁宁,王凯军.污水处理厂污泥处置及利用途径研究[J].环境保护,2000,(2):18~20.
    [2] 薛文源.城市污水污泥处理与处置的途径[J].中国给水排水,1992,8(1):41~46.
    [3] 周立祥,胡霭堂,戈乃玢.城市污泥土地利用研究[J].生态学报,1999,19(2):185~193.
    [4] Davis R D.The impact of EU and UK environmental pressures on the future of sludge treatment and disposal[J],Water Environ Manage.1996,10(2):65~69.
    [5] Tessier A,Campbell PGG.Biason M.Sequential extraction procedure for the speciation for particulate trace metal [J], Analytical chemistry, 1979,51(7):844-850.
    [6] P. Aarne Vesilind. Role of water in sludge dewatering[J]. Water Environment Research. 1994,66 (1) : 4~11.
    [7] Tai Hak Chung. Significance of Pressure and Recirculation in Sludge Thicking by Dissolved Air Floatation[J]. Wat.Sci.Tech., 1997,36(12): 223-230.
    [8] 朱南文,高廷耀,周增炎.我国城市污水厂污泥处置途径的选择[J].上海环境科学,1998,17(11):40~42.
    [9] 韦朝海,陈传好.污泥处理、处置与利用的研究现状分析[J].城市环境与城市生态,1998, 11(4):10-13.
    [10] 杨小文,杜英豪.污泥处理与资源化利用方案选择.中国给水排水.2002,18(4):31-33
    [11] 甘一萍. 我国污泥处理处置技术现状分析.北京:化学工业出版社,2003,165-168.
    [12] 国内首家污泥处理厂渝水环保公司在重庆成立 重庆日报 2005.7.13
    [13] 全面了解污泥性质 合理选择污泥处置技术 《桑德视界》第九期
    [14] Cole, D.W., Henry, C.L. and Nutter, W.L. The Forest Alternative of Treatment & Utilization of Municipal & Industrial Wastes. University of Washington Press, 1986.
    [15] Vesilind, P.A., Hartman, G.C. and Skene, E.T. Sludge Management and Disposal for the Practicing Engineer. Lewis Publishers, LNC.1986
    [16]城市污泥二次污染严重 经济参考报 2005 年 07 月 18 日。
    [17] 中科院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社,1983
    [18] 南京农学院.土壤农化分析.北京:农业出版社,1985
    [19] 国家环境保护局.环境监测标准分析方法.环境科学出版社,1983
    [20] 北京大学.仪器分析教程.北京大学出版社,1992
    [21] 深掘政喜:污泥处理.课题与展望.再生与利用:18(67),66-69,1995
    [22] 李国鼎,金琦,杨基宏等:固体废物处理与资源化,清华大学出版社,120-158,1990
    [23] U.SEPS:Biosolids Generation,Use,and Disposal in the United States.September 1999
    [24] 赵亚乾,R.D.Davis:英国污泥处置现状及其发展概述.给水排水,24(9),25-29,1998
    [25] R.D.Davis, J.E.Hall:Production,Treatoment and Disposal of Wastewater Sludge in Europe from a UK Perspectire,European Water Pollution Control,7(2),67-71,1997
    [26] 张建频:上海市城市污泥处理与处置方法探讨,中国土木工程学会排水委员会,3,82-83,2003
    [27] 卢宗文, 国内外污泥研究现状及进展,中国环保技术在线,2006
    [28] 丁亚兰:国内外废水处理工程工程设计实例,北京:化学工业出版社,43,2000
    [29] 王凯军,贾立敏:城市污水生物处理新技术开发与应用,北京:化学工业出版社,484,2001
    [30] P.Flyhammar:Estimation of Heaby Metal Transformations in Munisipal Solid Waste,Sci.Total Environ,198(2),123-133,1997
    [31] Liang Qiao:The Effects of Clay Amendment and Composting on Metal Speciation in Digested Sludge,Water Res..,31(s),951-964,1997
    [32] 迟文涛等.厌氧反应器的发展历程与应用现状[J].城市管理与科技,2004,6(1):31-33.
    [33] 中国水协设备网 http://www.gpwater.com
    [34] Talarposhti A.Mahdavi, Donnelly T., Anderson, G.K. Colour removal from a simulated dye wastewater using a two-phase Anaerobic packed bed reactor. Water Research, Vol: 35, Issue: 2, February, 2001, p 425-432.
    [35] Arsov R., Ribarova I., Nikolov N., Mihailov G., Topalova Y., Khoudary E. Two-phase anaerobic technology for domestic wastewater treatment at ambient temperature. Water Science Technology, Vol: 39, Issue: 8, 1999, p 115-122.
    [36] Leighton I. R., Forster C. F. The adsorption of heavy metals in an acidogenic thermophilic anaerobic reactor. Water Research, Vol: 31, Issue: 12, December, 1997, p 2969-2972.
    [37] Leighton I. R., Forster C. F. The effect of heavy metals on a thermophilic methanogenic upflow sludge blanket reactor. Bioresource Technology, Vol: 63, Issue: 2, February, 1998, p 131-137.
    [38] 张忠祥等主编. 废水生物处理新技术. 北京:清华大学出版社,2004:350~354
    [39] 李刚,杨立中,欧阳峰.厌氧消化过程控制因素及 pH 和 Eh 的影响分析[J].西南交通大学学报,2001,36(5):512~518
    [40] 张希衡等编著.废水厌氧生物处理工程.中国环境科学出版社,1996.12
    [41] 周洪波等.产酸相中氧化还原电位控制及其对葡萄糖厌氧发酵产物的影响.中国沼气.2000,8(4):20~23
    [42] 李军,杨秀山,彭永臻.微生物与水处理工程【M].北京:化学工业出版社,2002.245 一 250.
    [43] 管运涛,蒋展鹏,祝万鹏,陈中颍等. 两相厌氧膜生物系统处理有机废水的研究.环境科学,1998.19(6): 56-59.
    [44] Field J. R., Advances in chemical conditioning .In recent Advances in sludge rocessing .Aqua Enviro/university of leeds, Wakefield.1993
    [45] 贺延龄. 废水的厌氧生物处理. 北京: 中国轻工业出版社,1998.1
    [46] Koster,I. W. and G. Lettinga. Ammoniium toxicity in anaerobic digestion.Proc. Anaerobic Wastewater Treatment Symp. The Hague, The Netherlands.1983.553
    [47] 朱南文等. 论污水厌氧生物处理新工艺--升流式厌氧污泥床.上海环境科学,2003 ,17 (11)
    [48] 何强,王祥勇.新型内循环污泥浓缩消化反应器.中国给水排水,2005,21(4): 5-8
    [49] 戚以政,汪叔雄. 生化反应动力学与反应器. 北京:化学工业出版社,1999: 345-379
    [50] 许保玖,龙腾锐. 当代给水与废水处理原理. 北京:高等教育出版社,2000: 78-111
    [51] 马溪平. 厌氧微生物学与污水处理. 北京:化学工业出版社,2005: 5025-6992
    [52] 胡纪萃.试论内循环厌氧反应器[J].中国沼气,1999,17(2):3-6.
    [53] 傅金祥,于兴,孙文章.UASB 污泥颗粒化试验研究[J].沈阳建筑大学学报(自然科学版),2006,22(1):113-136
    [54] 王光辉,张志凡,李亚焕等.环境污染与防治,2006,21(7): 48-51
    [55] 钱易,米祥友.现代废水处理新技术[M].北京:中国科学技术出版社,1993.5
    [56] 黄祖安.Carrousel 氧化沟脱氮除磷工艺的运行控制[J].中国给水排水,2003,19(12):101-102.
    [57] 赵一章,张辉,唐一,邓宇,连莉文.高活性厌氧颗粒污泥微生物特性和形成机理的研究.微生物学报,1994, 34 (1) :4551
    [58] Macleod FA, Cuiot SR, Costerton JW. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Appl Environ Microb,1990,56(6):1598~1610
    [59] 竺建荣,胡纪萃,顾夏声,颗粒污泥的产甲烷细菌及结构模型初探.微生物学通报,1994, 33(4):304309
    [60] 苏玉民,等.脉冲上流式厌氧污泥床反应器的应用.环境科学,1996,17(1):50
    [61] 郑平.厌氧活性污泥的颗粒化及其影响因素.环境污染与防治,1990,12(1):12
    [62] 杨秀山,等,对处理不同废水的几种厌氧消化器生物量中优势产甲烷菌的观察.微生物学报,1989,29(2):145
    [63] Wu wei min,Jain M K and Zeikus J G.Formation of fatty acid-degrading,anaerobic granules by defined species.Appl.Environ Microbiol,1996,62(6):2037
    [64] Schmidt J E,Ahring B R.Granular sludge Formation in upflow anaerobic sludge blanket(UASB) reactors.Biotechnology and Bioengiheering,1996,49:229
    [65] Wu Weimin,Hickry R F,Zeikus J G.Characteristization of metabolic performance of methanogenic granules treating brewery wastewater:role of sulfao-reducing bacteria.Appl Environ Microbiol,1991,57(12):3438
    [66] Grotenhuis J P C,Smit M,et al.Bacteriological composition and structure of granularsludge adapted to different substates.Appl.Environ.Microbiol,1991,57(7):1942
    [67] Morgan J W,Evison L M & Forster C F.The internal architecture of anaerobic sludge granules. J.chern.Tech.Biotech.,1991,50.211
    [68] Fang H H P,Chen T,Li Y Y.Chui H K.Degradation of phenol in wastewater in an upflow anaerobic sludge blanket reactor.Water Res.,1996,30(6):1353
    [69] Quarmby J,Forster C F.An examination of the structure of UASB granules.Wat.Res, 1995,29(11):2449
    [70] Sekiguchi Y,et al.Fluorescence in situ hybridization using 16s rRNA-Targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules.Appl.Environ.Microbiol,1999,65(3):1280
    [71] Thaveesri J,et al.Granulation and sludge bed stabiity in upflow anaerobic sludge bed reactors in relation to surface thermodynamics.Appl.Environ.Microbiol,1995,61(10):3681
    [72] Harada H,Endo G,Tohya Y,Momonoi K.High rate performance and its related characteristics of granulate sludges in UASB Reactors treating various wastewaters,pp.1011~1020,In:Tilche A.and Rozzi(eds.)A.Proceedings on the fifth international symposium of anaerobic digestion, Monduzzi Editore,Bologna
    [73] Chui H K,Fang H H R.Histological analysis of microstructure of UASB granules. J.Environ. Engng.,1994,120(5,6):1322
    [74] Daffonchio D,et al.Contact angle measuremnet and cell hydrophobicity of granular sludge from upflow anaerobic sludge bed reactors.Appl.Environ.Microbiol.,1995,61(10):3676

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700