用户名: 密码: 验证码:
国营农场作物生产信息管理系统开发及数据共享技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国营农场具有管理体制行政化、农业生产规模化的特点。由于土地广袤、农田面积大而平整,因此不但农业机械化水平很高,同时农业信息技术也得到了比较广泛的应用并取得了一定的效果。但目前农业信息技术在应用过程中普遍存在基础应用缺乏、系统建设和运行成本高、重复建设等问题,使得信息技术很难有效、持续地服务农业生产并产生经济和社会效益。本文从农业生产管理和农情数据共享两个方面入手,以国营农场为应用基础开展了以下研究工作:
     1、以新疆生产建设兵团团场为应用示范单位,分析团场农业生产管理需求特点以及人员、角色、权限要求,采用B/S(Browser/Server)和C/S(Client/Server)混合模式,设计开发农作物生产信息管理系统。系统综合采用分层架构、面向对象技术以及基于角色的访问控制技术,以农业生产管理过程中数据的获取、分析和管理为研究对象,以提高农业生产管理效率为目标,解决团场农业生产管理信息化的基本问题,并成为进一步深入实施农业信息技术的基础平台。
     2、通过将农情数据进行合理分类,分析其数据结构特点,基于XML和AgroXML技术设计Schema文件,采用规范的XML文件描述农情数据结构,从而实现数据表述一致化,解决不同系统对数据的一致理解问题。同时基于.net平台设计开发数据解析模块,以实现不同软件系统之间的数据相互解读。
     3、通过分析比较各种分布式技术的特点和应用场景,结合农情数据提供者和消费者(例如政府、企业等农业相关部门)分布广泛、动态变化的现实特点,将农情数据合理抽象为网络资源。采用REST(REpresentational State Transfer,表述性状态转移)技术设计数据访问服务接口和资源路径,并基于.net平台和WCF(Windows CommunicationFoundation)技术开发RESTFul Web服务,实现异构系统间的农情数据交互。
     具体研究结果如下:
     1、开发了基于兵团国营农场应用规模的农作物生产信息管理系统,系统针对农田、人员、作物、农业生产等多种数据进行管理,提供自动生成春播战报、灌溉统计等报表功能,大大提高了数据处理、分析和统计效率;设计了农业技术员、农业生产管理者、系统管理员3种角色,以及角色与时间相结合的权限控制机制;绘制了农田电子地图,使用WebGis技术实现了基础数据和农业生产数据的可视化表达。通过该系统的应用,提高了团场的农业生产管理效率,同时积累了较为全面和规范的农田管理数据,能够作为进一步全面实施农业信息技术的管理基础和数据保障。
     2、使用XML文件作为农情数据表述载体,设计了4个schema文件,涵盖了农情信息表述常用的35个基础数据类型和29个复合数据类型,初步实现了现有数据的规范化描述。同时基于C#语言开发了数据解析模块,能够实现数据库记录、程序内存对象、XML文件、JSON(JavaScript Object Notation)对象4者之间的相互转换,为数据共享打下了信息描述和多形式解读的基础。
     3、基于REST技术设计了农情数据共享架构,针对8种农田管理数据设计了56个资源路径,并基于WCF技术开发了相应的数据访问接口和服务实现。
     本文主要创新点如下:
     1、兵团农场是行政化管理体制下的大农业生产组织实体,在农业生产过程中涉及到大量人员、数据以及管理问题,应用需求十分复杂和独特。本文初步探索了针对这样的特殊需求进行信息化管理需要解决的技术平台、应用模式、运行流程等问题。
     2、分析了农情数据多系统共享的大趋势以及潜在的数据提供者和消费者;提出实现数据共享必须解决数据描述和数据访问两个问题,分别采用XML和REST技术设计了解决方案并开发实现。
State-operated farm generally has the characteristics of administrative management sys-tem and large-scale agricultural production. Because of the vast land and large and levelfarmland, so not only agricultural mechanization level is very high, at the same time, a lot ofinformation technology is also got more extensive application and has obtained the certaineffect. But currently there are some widespread problems in the process of agricultural in-formation technology in the application: lack of basic application, costly system constructionand running, repeated construction and so on, make it hard for information technology to ser-vice agricultural production effectively and consistently and create economic and social ben-efits. In this paper, based on the application of state farms from two aspects: agricultural pro-duction management and agricultural data sharing, we carried out the following researchworks:
     1. The characteristics of agricultural production management requirements, roles, per-missions, and personnel requirements are analyzed by XinJiang production and constructioncorps herd used as application demonstration unit, crops production management informationsystem is designed and developed based on B/S (Browser/Server) and C/S (Client/Server)mode. The system used the layered architecture, object-oriented technology and role-basedaccess control technology, to solve the basic problems of agricultural production informatio-nization in the herd by using data acquisition, analysis, and management in the process ofagriculture production management as the research object, improving the efficiency of agri-cultural production and management as the goal, which could used as the basis platform forfurther implementation of agricultural information technologies.
     2. Agricultural data is classified reasonable and the data structure characteristics is ana-lysed, the schema files is designed based on XML and AgroXML, so as to realize consistentdata representation by using normative XML files to describe agricultural data, and to solvethe problem of consistent data understanding between different systems. At the same time, inorder to realize the mutual interpretation of data between different software systems, dataparsing module is design and developed based on the.net platform.
     3. The characteristics of all kinds of distributed technology and application scenarios arecompared. In combination with the realistic characteristics of widely distribution and dynam-ic changing of agricultural data providers and consumers (agricultural departments such asgovernment, enterprises and so on), the agricultural data is rationally abstracted as networkresources. REST (REpresentational State Transfer, declarative State Transfer) technology isused to design data access service interface and the resource path, and RESTFul Web servicesare developed based on.net platform and WCF (Windows Communication Foundation)technology, which could achieve agricultural data interaction between heterogeneous sys-tems.
     Specific research results are as follows:
     1. The production information management system is developed based on the productionand construction corps state-owned farm scale, which manage many kinds of data such asfarmland, personnel, crop, agricultural production and so on, and could provide automaticgeneration of many reports such as spring sowing report and irrigation statistical report,which greatly improved the efficiency of data processing, analysis and statistics; The accesscontrol mechanism of combination with roles and time and the3kinds of roles such as agri-cultural technicians, agricultural production managers, system administrators are designed;The fields electronic map is drew, the visual expression of basic data and agricultural produc-tion data has realized by using WebGis technology. Through the application of the system, theherd’s agricultural production and management efficiency has improved, and at the same timeaccumulated acomprehensive and standard farmland management data, which can be as amanagement foundation and data security for further comprehensive implementation of agri-cultural information technology.
     2. Four schema files are designed by using XML file as agricultural data expression car-rier, which covers the35basic data types and29compound data types that agricultural in-formation expression commonly used, and the standardization of the existing data descriptionis preliminarily realized. At the same time, data parsing modules are developed based on C#language to realize mutual conversion between the four objects: database records, programmemory objects, XML files, JSON (JavaScript Object Notation) objects, which form thefoundation of information description and multiform reading for data sharing.
     3. The agricultural data sharing framework are designed based on REST technology, and56resource paths are designed for eight kinds of farmland management data, at the same time,the corresponding data access interface and service implementation is developed based onWCF technology.
     The main innovation points as follows:
     1. the corps farms is an agricultural production organization entity under administrationmanagement system, involves large amount of people, data, and management issues in theprocess of agricultural production, and has very complicated and unique application require-ments. This paper preliminary exploration on the issues such as technology platform, applica-tion model, operation process and so on which should solve in terms of management infor-matization under such special application requirement.
     2. The trends of agricultural data sharing between different systems and potential dataproviders and consumers are analyzed; Two issues of data description and data access thatmust solved for data sharing are proposed, the solution design and implementation develop-ment are achieved by using XML and REST.
引文
[1]陈智文,刘吉平,张清.中国精准农业的应用现状与推广措施.世界农业,2008,352(8):52-54.
    [2]陈枫.黑龙江垦区农业现代化问题研究[D]:东北农业大学,2004.
    [3]卢荣善.农业现代化的本质要求:农民从身份到职业的转换.经济学家,2006,6):64-71.
    [4]汪懋华.“精细农业”发展与工程技术创新.农业工程学报,1999,15(1):1-8.
    [5]Schmoldt D L. Precision agriculture and information technology. Computers and Electronics inAgriculture,2001,30(1-3):5-7.
    [6]赵春江,薛绪掌,王秀,陈立平,潘瑜春,孟志军.精准农业技术体系的研究进展与展望.农业工程学报,2003,19(4):7-12.
    [7]Lewis T. Evolution of farm management information systems. Computers and Electronics inAgriculture,1998,19(3):233-248.
    [8]赵其国,叶方.信息化与农业现代化.土壤学报,2004,41(3):449-455.
    [9]罗锡文,臧英,周志艳.精细农业中农情信息采集技术的研究进展.农业工程学报,2006,22(1):167-173.
    [10]王凤花,张淑娟.精细农业田间信息采集关键技术的研究进展.农业机械学报,2008,39(5):112-121,111.
    [11]杨绍辉,杨卫中,王一鸣.土壤墒情信息采集与远程监测系统.农业机械学报,2010,41(9):173-177.
    [12]陆明洲,沈明霞,孙玉文,熊迎军,刘龙申,林相泽.农田无线传感器网络移动终端数据收集方案.农业工程学报,2011,27(8):242-246.
    [13]杨敬锋,李亭,卢启福,陈志民.基于RBF神经网络的土壤含水量传感器标定方法.安徽农业科学,2010,38(7):3315-3316.
    [14]李震, Ning W,洪添胜,文韬,刘志壮.农田土壤含水率监测的无线传感器网络系统设计.农业工程学报,2010,26(2):212-217.
    [15]张晓东,毛罕平,倪军,张元,程秀花.作物生长多传感信息检测系统设计与应用.农业机械学报,2009,40(9):
    [16]蔡镔,毕庆生,李福超,王栋,杨英,袁超.基于ZigBee无线传感器网络的农业环境监测系统研究与设计.江西农业学报,2010,22(11):153-156.
    [17]高峰,俞立,张文安,徐青香,于莉洁.基于无线传感器网络的作物水分状况监测系统研究与设计.农业工程学报,2009,25(2):107-112.
    [18]李明,赵春江,李道亮,王成,杨信廷.日光温室黄瓜叶片湿润传感器校准方法.农业工程学报,2010,26(2):224-230.
    [19]高峰,俞立,张文安,徐青香,姜庆臣.基于作物水分胁迫声发射技术的无线传感器网络精量灌溉系统的初步研究.农业工程学报,2008,24(1):60-63.
    [20]刘贺,赵燕东.基于驻波原理的短探针小麦茎水分传感器.农业工程学报,2011,27(11):140-144.
    [21]韩安太,何勇,李剑锋,陈志强,孙延伟.基于无线传感器网络的粮虫声信号采集系统设计.农业工程学报,2010,26(6):181-187.
    [22]胡均万,罗锡文,陈树人,李耀明,杨洪博.机身倾斜导致谷物流量传感器零点漂移的补偿.农业机械学报,2009,40(Supp):57-60.
    [23]赵祥,李长春,苏娜.滑坡泥石流的多源遥感提取方法.自然灾害学报,2009,18(6):29-32.
    [24]李强子,张飞飞,杜鑫,吴炳方,张磊,魏彦昌,蒙继华.汶川地震粮食受损遥感快速估算与分析.遥感学报,2009,13(5):
    [25]刘振波,倪绍祥,查勇,葛云健.河北省黄骅市三个重点蝗区两个时段土壤湿度的遥感提取.动物学研究,2006,27(3):281-285.
    [26]Lee W S, Alchanatis V, Yang C, Hirafuji M, Moshou D, Li C. Sensing technologies for precisionspecialty crop production. Computers and Electronics in Agriculture,2010,74(1):2-33.
    [27]余凡,赵英时,李海涛.基于遗传BP神经网络的主被动遥感协同反演土壤水分.红外与毫米波学报,2012,31(3):283-288.
    [28]张显峰,赵杰鹏.干旱区土壤水分遥感反演与同化模拟系统研究.武汉大学学报,2012,37(7):794-799.
    [29]余凡,赵英时.基于主被动遥感数据融合的土壤水分信息提取.农业工程学报,2011,27(6):187-192.
    [30]汪潇,张增祥,赵晓丽,谭文彬.遥感监测土壤水分研究综述.土壤学报,2007,44(1):157-163.
    [31]李楠,刘成良,李彦明,张佳宝,朱安宁.基于3S技术联合的农田墒情远程监测系统开发.农业工程学报,2010,26(4):169-174.
    [32]Champagne C, McNairn H, Berg A A. Monitoring agricultural soil moisture extremes in Canadausing passive microwave remote sensing. Remote Sensing of Environment,2011,115(10):2434-2444.
    [33]王纪华,赵春江,郭晓维,黄文江,田庆久.利用遥感方法诊断小麦叶片含水量的研究.华北农学报,2000,15(4):68-72.
    [34]张佳华,许云,姚凤梅,王培娟,郭文娟,李莉, LiMin Y.植被含水量光学遥感估算方法研究进展.中国科学,2010,40(10):1121-1129.
    [35]于君明,蓝朝桢,周艺,王世新.农作物含水量的遥感反演.武汉大学学报,2009,34(2):210-213.
    [36]柏军华,李少昆,王克如,王方永,陈兵,初振东.棉花产量遥感预测的L-Y模型构建.作物学报,2006,32(6):840-844.
    [37]白丽,王进,蒋桂英,杨朋,孙蜀江.干旱区基于高光谱的棉花遥感估产研究.中国农业科学,2008,41(8):2499-2505.
    [38]李卫国,王纪华,赵春江,刘良云.基于遥感信息和产量形成过程的小麦估产模型.麦类作物学报,2007,27(5):904-907.
    [39]刘姣娣,曹卫彬,马蓉.棉花叶面积指数的遥感估算模型研究.中国农业科学,2008,41(12):4301-4306.
    [40]姜晓剑,刘小军,田永超.基于遥感影像的作物生长监测系统的设计与实现.农业工程学报,2010,26(3):156-162.
    [41]郭伟,赵春江,顾晓鹤,黄文江,马智宏,王慧芳,王大成.乡镇尺度的玉米种植面积遥感监测.农业工程学报,2011,27(9):69-74.
    [42]黄文江,王锦地,穆西晗,王纪华,刘良云,刘强,牛铮.基于核驱动模型参数反演的作物株型遥感识别.光谱学与光谱分析,2007,27(10):1921-1924.
    [43]王纪华,黄文江,劳彩莲,张录达,罗长兵,王韬,刘良云,宋晓宇,马智宏.运用PLS算法由小麦冠层反射光谱反演氮素垂直分布.光谱学与光谱分析,2007,27(7):1319-1322.
    [44]陈鹏飞,王吉顺,潘鹏,徐于月,姚凌.基于氮素营养指数的冬小麦籽粒蛋白质含量遥感反演.农业工程学报,2011,27(9):75-80.
    [45]谭昌伟,周清波,齐腊,庄恒扬.水稻氮素营养高光谱遥感诊断模型.应用生态学报,2008,19(6):1261-1268.
    [46]竞霞,黄文江,琚存勇,徐新刚.基于PLS算法的棉花黄萎病高空间分辨率遥感监测.农业工程学报,2010,26(8):229-235.
    [47]陈兵,王克如,李少昆,肖春华,王方永,苏毅,唐强,陈江鲁,金秀良,吕银亮,刁万英,王楷.棉花黄萎病疑似病田的卫星遥感监测—以TM卫星影像为例.作物学报,2012,38(1):129-139.
    [48]陈兵,王克如,李少昆,竞霞,陈江鲁,苏毅.蚜虫胁迫下棉叶光谱特征及其遥感估测.光谱学与光谱分析,2010,30(11):3093-3097.
    [49]蒋金豹,陈云浩,黄文江.病害胁迫下冬小麦冠层叶片色素含量高光谱遥感估测研究.光谱学与光谱分析,2007,27(7):1363-1367.
    [50]李少昆,王崇桃.图象及机器视觉技术在作物科学中的应用进展.石河子大学学报(自然科学版),2002,6(1):79-86.
    [51]吕菲,刘建立,张佳宝,张均华,李慧霞.利用随机网络模型和CT数字图像预测近饱和土壤水分特征曲线.灌溉排水学报,2009,28(6):18-21.
    [52]肖武,李小昱,李培武,冯耀泽,王为,张军.近红外光谱和机器视觉信息融合的土壤含水率检测.农业工程学报,2009,25(8):14-17.
    [53]王方永,王克如,王崇桃,李少昆,朱玉,陈兵,明博,潘文超.基于图像识别的棉花水分状况诊断研究.石河子大学学报(自然科学版),2007,25(4):404-407.
    [54]李少昆,索兴梅,白中英,祁之力,刘晓鸿,高世菊,赵双宁.基于BP神经网络的小麦群体图像特征识别.中国农业科学,2002,35(6):616-620.
    [55]王方永,李少昆,王克如.基于机器视觉的棉花群体叶绿素监测.作物学报,2007,33(12):2041-2046.
    [56]王克如.基于图像识别的作物病虫草害诊断研究[D].北京:中国农业科学院,2005.
    [57]赖军臣,汤秀娟,谢瑞芝,白中英,李少昆.基于G-MRF模型的玉米叶斑病害图像的分割.中国农业科学,2010,43(7):1363-1369.
    [58]贾良良.应用数字图像技术与土壤植株测试进行冬小麦氮营养诊断[D].北京:中国农业大学,2003.
    [59]张立周,侯晓宇,张玉铭,李红军,程一松,胡春胜.数字图像诊断技术在冬小麦氮素营养诊断中的应用.中国生态农业学报,2011,19(5):1168-1174.
    [60]王晓静,张炎,李磐,侯秀玲,冯固.地面数字图像技术在棉花氮素营养诊断中的初步研究.棉花学报,2007,19(2):106-113.
    [61]赖军臣.基于病症图像的玉米病害智能诊断研究[D].石河子:石河子大学,2010.
    [62]牟伶俐,刘钢,黄健熙.基于Java手机的野外农田数据采集与传输系统设计.农业工程学报,2006,22(11):165-169.
    [63]赵国罡,赵丽,陈桂芬,杨信廷.基于J2ME的农业生产履历采集系统.农业工程学报,2009,25(Supp.2):190-193.
    [64]车艳双,李民赞,郑立华,邓小蕾.基于GPS和PDA的移动智能农田信息采集系统开发.农业工程学报,2010,26(Supp.2):109-114.
    [65]尚明华,秦磊磊,王风云,刘淑云,张晓艳.基于Android智能手机的小麦生产风险信息采集系统.农业工程学报,2011,27(5):178-182.
    [66]孟志军,王秀,赵春江,薛绪掌.基于嵌入式组件技术的精准农业农田信息采集系统的设计与实现.农业工程学报,2005,21(4):91-96.
    [67]刘峰,李存军,董莹莹,王芊,王纪华,黄文江.基于遥感数据与作物生长模型同化的作物长势监测.农业工程学报,2011,27(10):101-106.
    [68]黄彦,朱艳,王航,姚鑫锋,曹卫星, B.Hannaway D,田永超.基于遥感与模型耦合的冬小麦生长预测.生态学报,2011,31(4):1073-1084.
    [69]孙波,严浩,施建平.基于组件式GIS的施肥专家决策支持系统开发和应用.农业工程学报,2006,22(4):75-79.
    [70]陈蓉蓉,周治国,曹卫星.农田精确施肥决策支持系统的设计和实现.中国农业科学,2004,37(4):516-521.
    [71]陈智芳,宋妮,王景雷.节水灌溉管理与决策支持系统.农业工程学报,2009,25(Supp.2):1-6.
    [72]李凤菊,刘小军,姜海燕,曹卫星,朱艳.基于WebGIS与知识模型的小麦病虫草害管理决策支持系统研究.麦类作物学报,2009,29(5):934-940.
    [73]周舟,王秀,王俊.基于GIS的变量喷药决策支持系统.农业工程学报,2008,24(Supp.2):123-126.
    [74]刘书华,杨晓红,蒋文科.基于GIS的农作物病虫害防治决策支持系统.农业工程学报,2003,19(4):147-150.
    [75]高灵旺,陈继光,于新文.农业病虫害预测预报专家系统平台的开发.农业工程学报,2006,22(10):154-158.
    [76]赵春江,诸德辉,李鸿祥,杨宝祝,康书江,郭晓维.小麦栽培管理计算机专家系统的研究与应用.中国农业科学,1997,30(5):42-49.
    [77]曹卫星,潘洁,朱艳,刘小军.基于生长模型与Web应用的小麦管理决策支持系统.农业工程学报,2007,23(1):133-138.
    [78]廖桂平,官春云.油菜优质高产高效栽培管理多媒体专家系统.作物学报,2002,28(1):140-142.
    [79]李建军,沈佐锐,贺超兴.日光温室番茄长季节生产专家系统的研制.农业工程学报,2003,19(3):267-268.
    [80]陈青云,李鸿.黄瓜温室栽培管理专家系统的研究.农业工程学报,2001,17(6):142-146.
    [81]王尧,宋卫堂,乔晓军.水培番茄、黄瓜营养液管理专家系统的构建.农业工程学报,2004,20(5):254-257.
    [82]何勇,宋海燕.基于神经网络的作物营养诊断专家系统.农业工程学报,2005,21(1):110-113.
    [83]陈云坪,赵春江,王秀,马金锋,田振坤.基于知识模型与WebGIS的精准农业处方智能生成系统研究.中国农业科学,2007,40(6):1190-1197.
    [84]王秀,赵春江,孟志军,陈立平,潘瑜春,薛绪掌.精准变量施肥机的研制与试验.农业工程学报,2004,20(5):114-117.
    [85]伟利国,张小超,苑严伟,刘阳春,李卓立.2F-6-BP1型变量配肥施肥机的研制与试验.农业工程学报,2012,28(7):14-18.
    [86]介战,刘红俊,侯凤云.中国精准农业联合收割机研究现状与前景展望.农业工程学报,2005,21(2):179-182.
    [87]Qing Y, Shujie P, Chenghai Y, Mintong L, Yongjun L, Shuming Y. Variable rate irrigation controlsystem integrated with GPS and GIS. Transactions of the CSAE,2006,22(10):134-138.
    [88]曹卫星,江海东.小麦温光反应与发育进程的模拟.南京农业大学学报,1996,19(1):9-16.
    [89]Peets S, Mouazen A M, Blackburn K, Kuang B, Wiebensohn J. Methods and procedures forautomatic collection and management of data acquired from on-the-go sensors with application toon-the-go soil sensors. Computers and Electronics in Agriculture,2012,81(104-112.
    [90]Schuster E W, Lee H-G, Ehsani R, Allen S J, Steven Rogers J. Machine-to-machinecommunication for agricultural systems: An XML-based auxiliary language to enhance semanticinteroperability. Computers and Electronics in Agriculture,2011,78(2):150-161.
    [91]Nikkila R, Wiebensohn J, Nash E, Seilonen I, Koskinen K. A service infrastructure for therepresentation, discovery, distribution and evaluation of agricultural production standards forautomated compliance control. Computers and Electronics in Agriculture,2012,80(80-88.
    [92]Sorensen C G, Pesonen L, Bochtis D D, Vougioukas S G, Suomi P. Functional requirements for afuture farm management information system. Computers and Electronics in Agriculture,2011,76(2):266-276.
    [93]Sorensen C G, Pesonen L, Fountas S, Suomi P, Bochtis D, Bildsoe P, Pedersen S M. A user-centricapproach for information modelling in arable farming. Computers and Electronics in Agriculture,2010,73(1):44-55.
    [94]Sorensen C G, Fountas S, Nash E, Pesonen L, Bochtis D, Pedersen S M, Basso B, Blackmore S B.Conceptual model of a future farm management information system. Computers and Electronics inAgriculture,2010,72(1):37-47.
    [95]Nikkila R, Seilonen I, Koskinen K. Software architecture for farm management informationsystems in precision agriculture. Computers and Electronics in Agriculture,2010,70(2):328-336.
    [96]冀荣华,吴才聪,李民赞,叶海建,郭巍,郑立华.基于远程通讯的农田信息管理系统设计与实现.农业工程学报,2009,25(Supp.2):165-169.
    [97]郭武士,易欣,陈云坪,王秀.基于WebGIS和条码技术的土壤空间信息管理系统.农业工程学报,2010,26(9):251-256.
    [98]赵朋,刘刚,李民赞,李道亮.基于GIS的苹果病虫害管理信息系统.农业工程学报,2006,22(12):150-154.
    [99]周治国,曹卫星,朱艳,王绍华,潘洁,王启猛.基于GIS的作物生产管理信息系统.农业工程学报,2005,21(1):114-118.
    [100]郭银巧,赵传德,刘小军,姜晓剑,曹卫星,朱艳,李存东,孙红春.基于模型和GIS的数字棉作系统的设计与实现.农业工程学报,2008,24(11):139-144.
    [101]Kutter T, Tiemann S, Siebert R, Fountas S. The role of communication and co-operation in theadoption of precision farming. Precision Agriculture,2009,12(1):2-17.
    [102]Fountas S, Kyhn M, Jakobsen H L, Wulfsohn D, Blackmore S, Griepentrog H W. A systemsanalysis of information system requirements for an experimental farm. Precision Agriculture,2009,10(3):247-261.
    [103]Nikkil R, Seilonen I, Koskinen K. Software architecture for farm management informationsystems in precision agriculture. Computers and Electronics in Agriculture,2010,70(2):328-336.
    [104]S rensen C G, Fountas S, Nash E, Pesonen L, Bochtis D, Pedersen S M, Basso B, Blackmore SB. Conceptual model of a future farm management information system. Computers and Electronics inAgriculture,2010,72(1):37-47.
    [105]Xu L Y, Chen L P, Chen T E, Gao Y B. SOA-based precision irrigation decision support system.Mathematical and Computer Modelling,2011,54(3-4):944-949.
    [106]Wolfert J, Verdouw C N, Verloop C M, Beulens A J M. Organizing information integration inagri-food-A method based on a service-oriented architecture and living lab approach. Computers andElectronics in Agriculture,2010,70(2):389-405.
    [107]Murakami E, Saraiva A, Ribeirojunior L, Cugnasca C, Hirakawa A, Correa P. An infrastructurefor the development of distributed service-oriented information systems for precision agriculture.Computers and Electronics in Agriculture,2007,58(1):37-48.
    [108]Rijgersberg H, Top J L. Exchanging crop trials information: standardization by means of datamodel templates. Computers and Electronics in Agriculture,2000,25(3):221-231.
    [109]Bostick W M, Koo J, Walen V K, Jones J W, Hoogenboom G. A web-based data exchangesystem for crop model applications. Agronomy Journal,2004,96(3):853-856.
    [110]Steinberger G, Rothmund M, Auernhammer H. Mobile farm equipment as a data source in anagricultural service architecture. Computers and Electronics in Agriculture,2009,65(2):238-246.
    [111]Iftikhar N, Pedersen T B. Flexible exchange of farming device data. Computers and Electronicsin Agriculture,2011,75(1):52-63.
    [112]Wolfert J, Verdouw C N, Verloop C M, Beulens A J M. Organizing information integration inagri-food—A method based on a service-oriented architecture and living lab approach. Computers andElectronics in Agriculture,2010,70(2):389-405.
    [113]闫小军.基于Internet的中国作物种质资源信息共享服务系统研究[D].北京:中国农业科学院,2004.
    [114]杨从科.中国农业科学数据资源建设研究[D].北京:中国农业科学院,2007.
    [115]杨晓蓉.分布式农业科技信息共享关键技术研究与应用[D].北京:中国农业科学院,2011.
    [116]张莉.中国农业科学数据共享发展研究[D].北京:中国农业科学院,2006.
    [117]赵胜钢.国家农业科学数据共享平台体系结构研究[D].北京:中国农业科学院,2009.
    [118]Schmitz M, Martini D, Kunisch M, Mosinger H J. agroXML Enabling Standardized,Platform-Independent Internet Data Exchange in Farm Management Information Systems. Metadataand Semantics,2009,463-468.
    [119]Kunisch M, Frisch J, Martini D, Stefan, B ttinger. agroXML–a standardized language for dataexchange in agriculture[EB/OL].[2011.05.13].http://www.itfoodtrace.de/dateien/EFITA_Kunisch_et_al.pdf.
    [120]Santos C, Hirakawa A R. The Use of Agroxml Standard for Data Exchange Processes in theCotton Culture. Ieee Latin America Transactions,2012,10(1):1425-1427.
    [121]Santos C, Hirakawa A R. An Overview of the Use of Metadata in Agriculture. Ieee LatinAmerica Transactions,2012,10(1):1265-1267.
    [122]Doluschitz R, Engler B, Hoffmann C. Quality assurance and traceability of foods of animalorigin: major findings from the research project IT FoodTrace. Journal Fur Verbraucherschutz UndLebensmittelsicherheit-Journal of Consumer Protection and Food Safety,2010,5(1):11-19.
    [123]Doluschitz R. Data requirements and software solutions for an efficient management of dairyherds. Tieraerztliche Umschau,2007,62(12):667-+.
    [124]陈赟,胡坚,汪超亮,李子扬.基于RESTWeb Services的分布式遥感数据检索技术研究.计算机工程与设计,2010,31(14):3207-3209,3213.
    [125]许卓明,栗明,董逸生.基于RPC和基于REST的Web服务交互模型比较分析.计算机工程,2003,29(20):6-8.
    [126]Arroqui M, Mateos C, Machado C, Zunino A. RESTful Web Services improve the efficiency ofdata transfer of a whole-farm simulator accessed by Android smartphones. Computers and Electronicsin Agriculture,2012,87(14-18.
    [127]叶俊民,汪望珠.面向对象软件工程使用UML、模式与Java(第2版)[M].北京:清华大学出版社,2006.
    [128]吴大刚,肖荣荣. C/S结构与B/S结构的信息系统比较分析.情报科学,2003,21(3):313-315.
    [129]Sandhu R, Coyne E, Feinstein H. Role-based access control models. IEEE Computer,1996,29(2):38-47.
    [130]宋昕,夏辉,王学通..NET环境下基于RBAC的Web应用程序访问控制.计算机技术与发展,2006,16(4):218-220.
    [131]李卿,乔元松,郑慧.角色分离的层次化RBAC模型.计算机工程与设计,2006,26(6):1563-1585.
    [132]Murakami E, Saraiva A M, Ribeiro L C M, Cugnasca C E, Hirakawa A R, Correa P L P. Aninfrastructure for the development of distributed service-oriented information systems for precisionagriculture. Computers and Electronics in Agriculture,2007,58(1):37-48.
    [133]Thomson A J. Information interoperability and organization for national and global forestinformation systems. Computers and Electronics in Agriculture,2005,47(3):163-165.
    [134]Twery M J, Knopp P D, Thomasma S A, Rauscher H M, Nute D E, Potter W D, Maier F, Wang J,Dass M, Uchiyama H, Glende A, Hoffman R E. NED-2: A decision support system for integratedforest ecosystem management. Computers and Electronics in Agriculture,2005,49(1):24-43.
    [135]杨信廷,钱建平,孙传恒,赵春江,王俊英,台社红,侯彦林.蔬菜安全生产管理及质量追溯系统设计与实现.农业工程学报,2008,24(3):162-166.
    [136]郑火国,刘世洪,孟泓,胡海燕,苏晓路.粮油产品质量安全可追溯系统构建.中国农业科学,2009,42(9):3243-3249.
    [137]昝林森,郑同超,申光磊,王立国,曾祥虎.牛肉安全生产加工全过程质量跟踪与追溯系统研发.中国农业科学,2006,39(10):2083-2088.
    [138]刘鹏,屠康,侯月鹏.基于射频识别中间件的粮食质量安全追溯系统.农业工程学报,2009,25(12):145-150.
    [139]王新忠,王熙,汪春,王智敏,庄卫东.黑龙江垦区大豆变量施肥播种应用试验.农业工程学报,2008,24(5):143-146.
    [140]丁志远,赵东妮.网络计算-分布式计算环境(DCE)概述.电脑知识与技术,2010,6(21):5947-5949.
    [141]崔颖,陈奇,俞瑞钊.一种基于CORBA和XML的OA系统的实现.计算机工程与设计,2003,24(11):73-75.
    [142]刘伟伟,吴宇红.一种基于CORBA的综合网管系统设计方案.计算机工程,2003,29(4):46-47,195.
    [143]张小东,初佃辉,郭浩岩.基于EJB技术的分布式财务系统的研究与应用.计算机工程与设计,2009,30(3):716-719.
    [144]史永昌,李亚岗. CORBA、DCOM和J2EE技术比较.唐山师范学院学报,2007,29(5):98-100.
    [145]凌晓东. SOA综述.计算机应用与软件,2007,24(10):122-124.
    [146]张海军,史维峰,刘伟.基于SOA企业应用集成框架研究与实现.计算机工程与设计,2008,29(8):2085-2088.
    [147]丁兆青,董传良.基于SOA的分布式应用集成研究.计算机工程,2007,33(10):246-248.
    [148]徐光侠,杨丹.基于Web Service技术的异构系统的无缝集成.计算机工程与设计,2007,28(6):1409-1411.
    [149]李锟,俞黎敏,马钧,崔毅. REST实战(中文版)[M].南京:东南大学出版社,2011.
    [150]姜勇,陈朕,乔延春,张宏.基于REST+RIA架构的水环境监测点位管理系统.环境监控与预警,2011,3(4):19-22.
    [151]李久刚,唐新明,汪汇兵,刘正军. REST架构的WebGIS技术研究与实现.测绘科学,2011,36(3):85-87.
    [152]程冬梅,王瑞聪,刘燕,秦伟俊.基于REST架构风格的物联网服务平台研发.计算机工程与应用,2012,48(14):74-78,157.
    [153]张山山,吴宝佑,隋宁宁,瑞秦.应用REST技术的GML数据管理.中国有色金属学报,2012,22(3):954-960.
    [154]Pautasso C. REST vs. SOAP:Making the Right Architectural Decision[EB/OL].http://www.jopera.org/files/soa-amsterdam-restws-pautasso-talk.pdf.
    [155]冯新扬,沈建京. REST和RPC:两种Web服务架构风格比较分析.小型微型计算机系统,2010,31(7):1393-1395.
    [156]毛峰,刘婷,刘仁义,刘南,张丰.基于REST面向资源的地理信息服务设计.计算机工程,2011,37(8):238-240.
    [157]年福丰,刘秋让.基于WCF的异构数据源集成系统的研究和实现.科学技术与工程,2009,9(11):1671-1819.
    [158]边小凡,赵峰.基于REST风格的RBAC模型研究.计算机应用与软件,2009,26(9):162-164.
    [159]王建斌,胡小生,李康君,赵靓. REST风格和基于SOAP的Web Services的比较与结合.计算机应用与软件,2010,27(9):297-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700