用户名: 密码: 验证码:
无磷阻垢缓蚀剂的分子动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无磷水处理剂在水处理中有重要应用,无磷化是未来水处理剂的发展方向。本论文对一些常用无磷阻垢缓蚀剂与晶体相互作用进行了分子动力学(MD)模拟,通过比较无水条件下和水溶液中的结合能、形变能和对关联函数等,研究了它们的阻垢和缓蚀作用机理,揭示了溶剂化效应对阻垢缓蚀作用影响的本质,为新型阻垢缓蚀剂的研发提供了理论指导。全文大体包括两部分内容:
     一是模拟研究常见无磷阻垢剂的阻垢作用机理。
     在无水(真空)条件下和水溶液中对四种常用聚合物阻垢剂,即聚丙烯酸(PAA)、水解聚马来酸酐(HPMA)、聚环氧琥珀酸(PESA)和聚天冬氨酸(PASP),分别与方解石(CA)(104)与(110)面、硬石膏(AD)(001)与(020)面和羟基磷灰石(HA)(001)与(110)面所形成的48种阻垢作用模型采用COMPASS力场进行NVT系综MD模拟。发现无水条件下和水溶液中4种聚合物阻垢剂均能阻止钙垢的生长,但水溶液中的模拟结果与实验结果更一致。两种情况下4种聚合物阻垢剂与各钙垢晶面相互作用时均能发生明显的形变。分析对关联函数g(r)Total、g(r)Ca(Crystal)-O(-C=O)、 g(r)Ca(Crystal)-O(-OH)、g(r)Ca(Crystal)-O(Water)、g(r)H(Polymer)-O(Water)和g(r)H(Polymer)-O(Crystal)均表明无水条件下和水溶液中聚合物阻垢剂与成垢晶体在近程区域有成键(含氢键)作用,在远程区易形成非键作用。在模拟体系中各物质之间的相互作用主要由非键作用提供。根据各聚合物重复单元在B3LYP/6-31G*水平下的自然电荷,发现聚合物O原子易与成垢晶体中的Ca原子形成库仑作用。
     对碳酸钙垢,水溶液中4种聚合物阻垢剂与CA(104)和(110)面相互作用的结合能大小排序均为:PESA> PASP> HPMA> PAA,同一聚合物阻垢剂与CA(110)面的结合能大于与(104)面的结合能。水分子的存在使聚合物阻垢剂与方解石晶体之间的结合能减小了。
     对硫酸钙垢,水溶液中聚合物阻垢剂与AD(001)面的模拟结果更接近实验结果。水溶液中4种聚合物阻垢剂与AD(001)和(020)面相互作用的结合能大小排序均为:PESA> PASP> HPMA> PAA,同一聚合物阻垢剂与AD(001)面的结合能小于与(020)面的结合能,与实验结果比较吻合。水分子的存在使聚合物阻垢剂与AD(001)面之间的结合能大大减小了,而使其与AD(020)面的结合能增大了。水分子的存在削弱了HPMA和PAA的形变,而使PASP和PESA的形变加剧了。
     对磷酸钙垢,水溶液中聚合物阻垢剂与HA(001)面的模拟结果更接近实验结果。聚合物阻垢剂与HA相互作用的温度或能量的波动比CaCO3剧烈,但与硬石膏相当。水溶液中4种聚合物阻垢剂与HA(001)相互作用的结合能大小排序为:HPMA> PASP>PESA>PAA;同一聚合物阻垢剂与HA两晶面的结合能相差不大,与实验结果比较吻合。无水条件下结合能的排序不符合实验结果,水分子的存在使HPMA和PESA的形变削弱,而使PASP和PAA的形变加剧。
     水分子的存在使得聚合物阻垢剂并不能直接与成垢晶体发生相互作用,而主要是通过水分子间接进行。用MD模拟研究水溶液中阻垢剂的阻垢机理时水分子的存在非常重要,即在构建相互作用的模型时水分子不能被忽略。
     二是模拟研究了无磷缓蚀剂对金属的缓蚀作用机理。
     对碳钢,在无水条件和水溶液中对聚合物缓蚀剂水解聚马来酸酐(HPMA)、聚环氧琥珀酸(PESA)和聚天冬氨酸(PASP)与Fe(001)和(110)面的缓蚀作用进行分子动力学(MD)模拟研究。结果发现,对同一聚合物缓蚀剂来说,与Fe不同晶面的结合能均有Ebind(001)HPMA>PESA,同时,水溶液中聚合物与Fe晶体的结合能比无水时的结合能要小得多。聚合物缓蚀剂在克服自身的形变而与Fe晶面紧密结合,从而阻止腐蚀介质与碳钢的结合,起到了缓蚀的作用。聚合物缓蚀剂并不能完全突破水结构而吸附于铁表面,使得缓蚀效果不佳,即水分子的存在影响了聚合物缓蚀剂与Fe晶体的相互作用。水分子的存在影响了聚合物缓蚀剂分子的形变程度。从对关联函数的分析,可知聚合物缓蚀剂分子和水分子中的O原子分别与Fe晶体中的Fe原子之间形成了非键作用。溶剂化效应在模型构建中存在着不可忽略的影响。
     对铜表面的缓蚀作用,围绕着苯并三氮唑母体(BTA)用羟基进行修饰,一共得到6种无磷缓蚀剂苯并三氮唑及其衍生物。运用MD模拟方法对该6种缓蚀剂与Cu20(001)面的相互作用在无水条件下和水溶液中进行研究,发现后者与实验结果更吻合。同一温度下水溶液中6种BTA及其羟基衍生物与Cu20(001)晶面相互作用的结合能大小排序为:1-OH-BTA>4-OH-BTA>7-OH-BTA>BTA>5-OH-BTA>6-OH-BTA。水分子的存在对缓蚀剂分子与Cu20晶体相互作用的结合能有着重要的影响。水溶液中分子结构不同导致温度对苯并三氮唑及其衍生物的缓蚀作用不同。不同温度下1-OH-BTA与Cu20(001)晶面的结合能排序为343K>323K>333K,而BTA与Cu20(001)晶面的结合能强弱为323K>333K>343K。从非键作用能和对关联函数可知,缓蚀剂分子与Cu20晶体相互作用体系的结合能Ebind主要来自库仑能变(包括离子键)的贡献。发现呈负电性的功能团能与难溶铜盐表面上带正电的铜离子通过库仑相互作用而产生较强的吸附行为,从而阻止腐蚀介质与金属铜的进一步作用,即防止了金属的腐蚀。1-OH-BTA/200H2O/Cu2O(001)体系中部分水分子与Cu20晶体和1-OH-BTA均存在着化学键或氢键作用,即用分子动力学研究时水分子是不能被忽略的。
     总之,本文对无磷阻垢缓蚀剂的结构-性能关系进行了系统的分子动力学模拟研究,解释了其作用机理,揭示了溶剂化效应对阻垢缓蚀性能影响的本质,做出了具有开拓和创新性的工作。
Non-phosphorous water treatment agent has an important application in water treatment and phosphate-free of agents is the way of the future. In this paper, the interaction models between common non-phosphorus scale and corrosion inhibitors and scale crystals with and without wate were simulated. The binding energies, deformation energies and pair correlation functions from molecular dynamics (MD) simulations with and without water were calculated and compared. The mechanisms of inhibiting scale and corrosion of the inhibitors have been investigated, and the essence of solvent effect on scale and corrosion inhibition has been revealed. The results obtained can provide a theoretical guidance to developing new scale and corrosion inhibitors. The whole work can be divided into two parts:
     The first part focused on the inhibition mechanism of non-phosphorus scale inhibitors with MD method. The interaction models between polymer inhibitors Polyacrylic acid (PAA), hydrolyzed polymaleic anhydride (HPMA), polyepoxysuccinic acid (PESA), and polyaspartic acid (PASP) and scale crystal surfaces including the (104) and (110) surfaces of calcite (CA) crystal, the (001) and (020) surfaces of anhydrite (AD) crystal, and the (001) and (110) surfaces of hydroxyapatite (HA) crystal with and without the present of water were constructed, respectively. The resulted48models simulated with COMPASS force field and NVT-MD method one by one.4polymer inhibitors can inhibit the growth of calcium scale. They deform obviously with and without when they interact with scale crystals. The results of models with water are closer to the experimental data. The pair correlation functions (PCFs) g(r)Total,g(r)Ca(Crystal)-o(-C=O)、 g(r)Ca(Crystal)-O(-OH), g(r)Ca(Crystal)-O(Water), g(r))H(Polymer)-O(Water) and g(r)H(Polymer)-O(Crystal) imply the bonding (including H-bond) interactions with and without water are formed between polymer inhibitors and scale crystals in shorter range, while the non-bond interactions are formed in longer range. The interactions between all the species in the models are mainly contributed from the non-bond interaction. Natural bond orbital (NBO) charges of the repeat units of polymer inhibitors were calculated by B3LYP/6-31G*method. The Coulomb interaction is formed between the O atoms of polymer inhibitors and the Ca atoms of scale crystal.
     For calcium carbonate, the binding energies between4polymer inhibitors and the (104) and (110) surfaces of CA crystal with water have the order of PESA> PASP> HPMA> PAA. The binding energy of the same polymer inhibitor on the (110) surface of CA is greater than that on CA(104). Water molecules decrease the binding energies of the four polymer inhibitors on the surfaces of calcite crystal.
     For calcium sulphate, the results from MD simulation between polymer inhibitors and AD(001) with water are closer to the experimental data. The sequence of binding energies between4polymer inhibitors and AD (001) and (020) with water is PESA>PASP> HPMA>PAA. The binding energy of the same polymer inhibitor on AD(001) is smaller than that on AD(020). Water molecules weaken the deformations of HPMA and PAA, but aggravate those of PASP and PESA.
     For calcium phosphate, the results from MD simulation with water between polymer inhibitors and HA (001) are more consistent with the experimental results. The temperature and energy fluctuations of the interaction MD model between polymer inhibitors and HA are severer than those between them and CA, but are almost equivalent to those between them and AD. The binding energies between4polymer inhibitors and the (001) surface of HA with water have the order of HPMA> PASP> PES A> PAA. The binding energy does not vary much between the same polymer and the two surfaces of HA. The results of MD simulations with water are in line with the experimental reports. Water molecules weaken the deformations of HPMA and PES A, but aggravate those of PASP and PAA.
     These may show that polymer inhibitor interacts with scale crystal surface indirectly through the water molecules, i.e., the water molecules play an important role in investigating the action mechanism of scale inhibitor in solution by MD simulation and can not be ignored when the interaction models are constructed.
     The second part concentrates on the study of the inhibition mechanism of non-phosphorus corrosion inhibitors to metals with MD method. For carbon steel, the corrosion inhibiton models between hydrolyzed polymaleic anhydride (HPMA), polyepoxysuccinic acid (PESA), and polyaspartic acid (PASP) and the (001) and (110) surfaces of Fe crystal with and without water were simulated with MD method. The results show that.Ebind(001) of the same polymer inhibitor is smaller than Ebind(110)(except PESA). The orders of the binding energies of polymer inhibitors with and without water are PASP> HPMA> PESA, but the binding energy of the former is much smaller than that of the latter. Polymer inhibitor can overcome its intense deformation and closely combine with the face of Fe crystal, and prevent the corrosive medium association with carbon steel, which leads to corrosion inhibition. Because polymer inhibitors can not completely break water molecules and adhere to the surface of Fe crystal, the corrosion inhibition effect is not good. Water molecules affect the interaction between polymer inhibitor and Fe crystal, and affect the deformation of polymer inhibitors, too. From the pair correlation functions, the non-bond interactions are formed between O (inhibitor)-Fe and O (H2O)-Fe. Solvent effect is not negligible in the construction of the model.
     For the surface of copper, the interactions between6benzotriazole derivatives obtained by modifying benzotriazole with hydroxyl and the (001) surface of Cu2O with and without water were simulated with MD method. The results show that the MD simulation result with water is more consistent with the experiment results. At the same temperature, the sequence of the binding energies of different benzotriazoles with Cu2O (001) in water solution is1-OH-BTA>4-OH-BTA>7-OH-BTA>BTA>5-OH-BTA>6-OH-BTA. Water molecules have an important influence on the interaction between corrosion inhibitors and Cu2O crystal. Because of the difference of molecular structures, the corrosion inhibitions of benzotriazole derivatives are different at various simulation temperatures. Under different temperatures, the order of binding energies of1-OH-BTA with Cu2O(001) is343K>323K>333K, but that of BTA is323K>333K>343K. From non-bond energy and pair correlation functions, the binding energies between corrosion inhibitors and Cu2O crystal are mainly contributed by the Coulomb interaction. Strong adsorption can be raised by the Coulomb interaction between the negatively charged functional groups in corrosion inhibitors and the positive copper ions in the Cu2O(001) face, and further interaction between aggressive media and copper can then be restricted. So the corrosion of copper can be avoided. Chemical bonds or hydrogen bonds are formed in the system of1-OH-BTA/H2O/Cu2O(001). Water molecules can not be ignored in MD simulations, too
     All in all, MD simulations were employed to systematically investigate the relationship between structures and properties of non-phosphorus scale and corrosion inhibitors. The inhibition mechanisms of them are explained, the essences of solvent effect on scale and corrosion inhibition are revealed, and the studies are precursory and originally innovative in front of multi-subject crossing research fields. The research projects assigned by National Natural Science Foundation and Key Laboratory for Ecological-Environment Materials of Jiangsu Province have been successfully completed.
引文
[1]舒红英,唐星华,覃毅.无磷阻垢剂的研究进展[J].江西化工,2006,(3):17-20
    [2]张曙光.有机阻垢缓蚀剂作用机理的理论研究[D].南京理工大学,2006
    [3]周本省.工业水处理技术第2版[M].北京:化学工业出版社,2002
    [4]陆柱,蔡兰坤,陈中兴,等.水处理药剂(第1版)[M].北京:化学工业出版社,2002
    [5]王睿,张岐,丁洁,等.阻垢剂作用机理研究进展[J].化学工业与工程,2001,18(2):79-86
    [6]J. Zeng, S. Zhang, X. Gong, et al. Molecular Dynamics Simulation of Interaction between Calcite Crystal and Phosphonic Acid Molecules[J]. Chinese Journal of Chemistry,2010,28(3): 337-343
    [7]J. Zeng, J. Zhang, X. Gong. Molecular Dynamics Simulation of Interaction between Benzotriazoles and Cuprous Oxide Crystal[J]. Computational and Theoretical Chemistry, 2011,963(1):110-114
    [8]S.G. Zhnag, W. Lei, M.Z. Xia, et al. QSAR sutdy on N-contiaining corrosion inhibitors: quantum chemical approach assisted by topological index[J]. Jurnal of Molecular Structure: Theochem,2005,732(1-3):173-182
    [9]张曙光,石文艳,雷武,等.水溶性聚合物与方解石晶体相互作用的MD模拟[J].物理化学学报,2005,21(11):1198-1204
    [10]石文艳,张曙光,夏明珠,等.甲叉磷酸型化合物阻垢机理的量子化学研究[J].水处理术,2006,32(1):37-40
    [11]张跃华,张曙光,雷武,等.萘类衍生物荧光发射光谱的密度泛函理论研究[J].计算机与应用化学,2005,22(1 0):557-562
    [12]王成立,顾明,夏明珠,等.聚合物阻垢剂阻垢机理的分子动力学研究[J].精细化工,2004,21(增刊):146-149
    [13]张庆轩,杨国华,杨普江,等.以水为溶剂马来酸酐——丙烯酸共聚物的合及阻垢性能研究[J].工业水处理,2000,20(12):26-29
    [14]张洪利,梅超群,刘志强,等.水解聚马来酸酐的绿色合成研究[J].应用化工,2007,136(10):970-972
    [15]徐群杰,丁斯婧,云虹,等.聚环氧琥珀酸的研究进展[J].上海电力学院学报,2009,25(2):131-134
    [16]S. Peroos, Z. Du, N.H. Leeuw. A computer modelling study of the uptake.structure and distribution of carbonate defects in hydroxy-apatite[J]. Biomaterials,2006,27:2150-2161
    [17]R. Bhowmik, K.S. Katti, D. Katti. Molecular dynamics simulation of hydroxyapatite-polyacrylic acid interfaces[J]. Polymer,2007,48:664-674
    [18]G. Gao, C.H. Liang. 1,3-Bis-diethylamino-propan-2-ol as volatile corrosion inhibitor for brass[J]. Corrosion Science,2007,49(9):3479-3493
    [19]A. Martinod, A. Neville, M. Euvrad, et al. Electrodeposition of a calcareous layer:Effects of green inhibitors[J]. Chemical Engineering Science,2009,64(10):2413-2421
    [20]E.M. Burkea, Y. Guoa, L. Colona, et al. Influence of polyaspartic acid and phosphophoryn on octacalcium phosphate growth kinetics[J]. Colloids and Surfaces B:Biointerfaces,2000,17(1): 49-57
    [21]X. Wang, B.I. Lee, L. Mann. Dispersion of barium titanate with polyaspartic acid in aqueous media[J] Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,202(1): 71-80
    [22]J. Roque, J. Molera, M. Vendrell-Saz, et al. Crystal size distributions of induced calcium carbonate crystals in polyaspartic acid and Mytilus edulis acidic organic proteins aqueous solutions[J]. Journal of Crystal Growth,2004,262(1-4):543-553
    [23]T. Nakato, M. Yoshitake, K. Matsubara, et al. Relationships between Structure and Properties of Poly(aspartic acid)s[J]. Macromolecules,1998,31 (7):2107-2113
    [24]韶晖,冷一欣.聚天冬氨酸及其复配物对硫酸钙的阻垢性能[J].工业水处理,2003,23(7):30-32
    [25]张玉玲,黄君礼,杨士林,等.聚天冬氨酸与聚丙烯酸对硫酸钙碳酸钙静态阻垢性能的对比研究[J].东华大学学报(自然科学版),2004,30(5):120-123
    [26]张建刚,张丽,丁庆伟,等.水处理阻垢剂聚天冬氨酸的改性研究[J].辽宁化工,2005,34(1):20-22
    [27]王毅,冯辉霞,张婷,等.绿色水处理剂聚天冬氨酸的合成与性能研究[J].净水技术,2008,27(2):62-65
    [28]陈丽,施冬梅,谷宁,等.聚天冬氨酸在KN03介质中的缓蚀性研究[J].石油化工腐蚀与防护,2008,25(5):5-7
    [29]李辉,张冰如,李风亭.绿色水处理剂聚天冬氨酸缓蚀协同效应的研究[J].净水技术,2006,25(1):7-10
    [30]R.C. Xiong, Q. Zhou, G. Wei. Corrosion Inhibition of a Green Scale Inhibitor Polyepoxysuccinic Acid[J]. Chinese Chemical Letters,2003,14(9):955-957
    [3 1]由庆,赵福麟.环境友好型阻垢剂聚环氧琥珀酸的研究进展[J].现代化工,2007,27(增刊21:88-91
    [32]S.M. Kessler, F. Hills. Method of inhibiting corrosion in aqueous systems:US,5256332[P]. 1993
    [33]J.M. Brown, J.F. McDowell, et al. Methods of controlling scale formation in aqueous systems: US,5062962[P].1991
    [34]曹燕,曾建平.PAA-PESA对阻Ca3(PO4)2垢性能的评定[J].化工时刊,2008,22(7):29-31
    [35]曾建平,田海州.水解马来酸酐-聚环氧琥珀酸复合阻垢剂阻CaCO3垢性能的评定[J].清洗世界,2007,23(8):13-17
    [36]王丽梅,刘振法,姜红静,等.聚环氧琥珀酸的合成、性能及在磁化水中的阻垢协同作用[J].水处理技术,2008,34(1):73-75
    [37]D. F. Zidovec, P.M. Prabhu. Calcium carbonate scale controlling method:US,5562830[P].1996
    [38]J.M. Brown, J. F. McDowell, et al. Methods of controlling scale formation in aqueous systems: US,5147555[P].1992
    [39]张学丽,马庆国,韩利华.聚环氧琥珀酸对碳钢缓蚀阻垢性的研究进展[J].化工进展,2009,28(增刊):224-226
    [40]柳鑫华,律文智,孔毅超,等.聚环氧琥珀酸在阻垢与缓蚀方面的研究进展[J].表面技术,2010,39(2):83-86
    [41]D.F. Zidovec, P.M. Prabhu., Calcium Carbonate Scale Controlling Method:US,5562830[P]. 1996
    [42]W.S. Carey, L.A. Perez, D.T. Freese, et al. Composition for Controlling Scale Formation in Aqueous Systems:US,5866032[P].1999
    [43]熊蓉春,周庆,魏刚.绿色阻垢剂聚环氧玻拍酸的缓蚀协同效应[J].化工学报,2003,54(9):1323-1325
    [44]周晓蔚,赵鑫.聚环氧琉拍酸对铜缓蚀性能的研究[J].腐蚀科学与防护技术,2004,16(3):172-174
    [45]张冰如,李辉,李风亭.聚环氧琥珀酸对碳钢的缓蚀协同效应的研究[J].工业水处理,2006,26(2):53-56
    [46]李志林,张巧云,陈泽民,等.用于金属表面预处理的自组装成膜技术研究[J].材料保护,2008,41(4):36-37
    [47]张冰如,李风亭.聚环氧琥珀酸的多元阻垢性能[J].工业水处理,2002,22(9):21-24
    [48]吕志芳,董伟,夏明珠.聚环氧琥珀酸的阻垢缓蚀性能研究[J].工业水处理,2001,21(3):23-25
    [49]张建枚,金栋.改性聚环氧琥珀酸的合成及性能研究[J].工业水处理,2006,26(8):36-38
    [50]曾建平,王风云,夏明珠,等.聚丙烯酸阻垢性能的评定——静态阻垢法[J].化工时刊,2006,20(4):15-17
    [51]Y. Tang, W. Yang, X. Yin, et al. Investigation of CaCO3 scale inhibition by PA A, ATMP and PAPEMP[J]. Desalination,2008,228(1-3):55-60
    [52]A.L. Kavithaa, T. Vasudevana, H.G. Prabu. Evaluation of synthesized antiscalants for cooling water system application[J]. Desalination,2011,268(1-3):38-45
    [53]韩应琳,赵任辉,王卉,等.膦磺酸型阻垢剂结构与性能探讨[J].南京化工大学学报,1997,19(3):7-12
    [54]王光江,韦金芳,成西涛.衣康酸—丙烯酸二元共聚物的合成及其阻垢性能研究[J].工业水处理,2000,20(4):25-26
    [55]Z. Amjad. Calcium sulfate dihydrate (gypsum) scale formation on heat exchanger surfaces:The influence of scale inhibitors[J]. Journal of Colloid and Interface Science,1988,123(2): 523-536
    [56]吴伟,张凌云,阎虎生.窄分子量分布的聚丙烯酸的合成及其阻垢性能[J].应用化学,2007,24(9):1050-1053
    [57]T.I. Jones, A. Harris. Treatment of water or aqueous systems. US,3810834[P].1974
    [58]K.E. Russell, E.C. Kelusky. Grafting of maleic anhydride to n-eicosane[J]. Journal of Polymer Science Part A:Polymer Chemistry,1988,26(8):2273-2280
    [59]O.G. Atici, A. Akar, R. Rahimian. Modification of Poly (maleic anhydride-co-styrene) with Hydroxyl Containing Compounds[J]. Turkish Journal of Chemistry,2001,25:259-266
    [60]J.D. Allison, J.D. Purkaple. Reducing permeability of highly permeable zones in underground formations:US,4773481 [P].1988
    [61]M. Sclavons, P. Franquinet, V. Carlier, et al. Quantification of the maleic anhydride grafted onto polypropylene by chemical and viscosimetric titrations, and FTIR spectroscopy[J]. Polymer, 2000,41(6):1989-1999
    [62]梅超群,樊永明,张洪利,等.含膦水解聚马来酸酐的绿色合成研究[J].工业水处理,2009,29(9):25-27
    [63]叶天旭,李芳,王铭浩,等.水解聚马来酸酐的最新合成工艺研究[J].应用化工,2009,38(12):1717-1719
    [64]余嵘,张建民,宋经华.水解聚马来酸酐三元复配阻垢性能研究[J].中国给水排水,2009,25(23):126-127
    [65]周臣,曾建平.复合阻垢剂PAA-HPMA阻碳酸钙垢性能的试验研究[J].浙江电力,2009,(6):24-26
    [66]曾建平.水解聚马来酸酐和聚丙烯酸阻磷酸钙垢性能及其机理研究[J].清洗世界,2008,24(11):7-11
    [67]文霞,韦亚兵.水解聚马来酸配的阻垢性能[J].精细石油化工,2006,23(4):51-54
    68]林保平,王国力,郭航,等.AA/HAPS共聚物阻垢性能研究[J).水处理技术,1996,22(1):44-47
    [69]马瑞廷,姜承志,丁保宏.水解聚马来酸酐缓蚀分散性能的研究[J].腐蚀科学与防护技术,2004,16(2):87-89
    [70]K.F. Khaled, S.A. Fadl-Allah, B. Hammouti. Some benzotriazole derivatives as corrosion inhibitors for copper in acidic medium:Experimental and quantum chemical molecular dynamics approach[J]. Materials Chemistry and Physics,2009,117:148-155
    [71]M. Finsgar, A. Lesar, A. Kokalj, et al. A comparative electrochemical and quantum chemical calculation study of BTAH and BTAOH as copper corrosion inhibitors in near neutral chloride solution[J]. Electrochimica Acta,2008,53:8287-8297
    [72]周建华,李景宁,罗志勇.1-羟甲基苯并三氮唑对铜的缓蚀性能研究[J].华南师范大学学 报(自然科学版),2009,(3):70-73
    [73]N. Bellakhal, M. Dachraoui. Study of the benzotriazole efficiency as a corrosion inhibitor for copper in humid air plasma[J]. Materials Chemistry and Physics,2004,85(2-3):366-369
    [74]谭明韩.苯并三氮唑(BTA)钝化膜对铜的缓蚀作用探讨[J].科技资讯,2009,9:10-11
    [75]周建华,李景宁,罗志勇.1-羟甲基苯并三氮唑复配物的缓蚀性能研究[J].广东化工,2008,35(7):9-10,82
    [76]张胜涛,薛茗月,王艳波,等.苯并三氮唑缓蚀剂在铜表面覆盖行为的研究[J].腐蚀科学与防护技术,2006,18(5):313-316
    [77]M.M. Mennucci, E.P. Banczek, P.R.P. Rodrigues, et al. Evaluation of benzotriazole as corrosion inhibitor for carbon steel in simulated pore solution[J]. Cement and Concrete Composites,2009,31(6):418-424
    [78]A.K. Satpati, P.V. Ravindran. Electrochemical study of the inhibition of corrosion of stainless steel by 1,2,3-benzotriazole in acidic media[J]. Materials Chemistry and Physics,2008, 109(2-3):352-359
    [79]黄乃宝,梁成浩.溴化锂溶液中苯并三氮唑对碳钢缓蚀作用研究[J].材料科学与工艺,2004,1 2(2):205-208
    [80]张军平,张秋禹,尹成先,等.盐酸介质中苯并三氮唑衍生物的缓蚀机理研究[J].腐蚀科学与防护技术,2007,19(4):251-254
    [81]王洪军,陈洪龄.盐酸介质中十二烷基苯并三氮唑对碳钢的缓蚀作用[J].材料保护,2008,41(7):16-20
    [82]李晓伟,高延敏.碳酸氢钠溶液中苯并三氮唑对A3钢缓蚀作用的研究[J].全面腐蚀控制,2009,23(1):13-15
    [83]R. Ketrane, B. Saidani, O. Gil, et al. Efficiency of five scale inhibitors on calcium carbonate precipitation from hard water:Effect of temperature and concentration[J]. Desalination,2009, 249(3):1397-1404
    [84]U. Aschauer, D. Spagnoli, P.Bowen, et al. Parker. Growth modification of seeded calcite using carboxylic acids:Atomistic simulations[J]. Journal of Colloid and Interface Science,2010, 346(1):226-231
    [85]M. Euvrard, A. Martinod and A. Neville. Effects of carboxylic polyelectrolytes on the growth of calcium carbonate[J]. Journal of Crystal Growth,2011,317(1):70-78
    [86]P.K. Ajikumar, B.J.M. Low, S. Valiyaveettil. Role of soluble polymers on the preparation of functional thin films of calcium carbonate[J]. Surface and Coatings Technology,2005,198(1-3): 227-230
    [87]J. Riger, J. Thieme, C. Schmidt. Study Precipitation Reactions by X-ray Microscopy:CaCO3 Precipitation and the Effect of Polycarboxylates[J]. Langmuir,2000,16(22):8300-8305
    [88]J.M. Didymus, S. Mann,W.J. Benton, et al. Interaction of poly(α,β-aspartate) with octadecyl amine monolayers:adsorption behavior and effects on CaCO3 crystallization[J]. Langmuir,1995, 11(8):3130-3136
    [89]L. Addadi, Z. Berkovitch-Yellin, N. Domb, et al. Resolution of conglomerates by stereoselective habit modifications[J]. Nature,1982,296(58):21-27
    [90]S. Zurcher, T. Graule. Influence of Dispersant St ructure on the Rheological Properties of Highly Concent rated Zirconia Dispersions[J]. Journal of the European Ceramic Society,2005, 25(6):863-873
    [91]李璐,冰如,李风.聚环氧琥珀酸在高炉循环冷却水系统中的应用[J].工业用水与废水,2006,37(6):68-70
    [92]周晓蔚,何蓉,宿伟成.聚环氧琥珀酸多元阻垢分散性能的研究[J].工业水处理,2004,24(12):46-49
    [93]A.G. Kalinichev, J. Wang, R. J. Kirkpatrick. Molecular dynamics modeling of the structure, dynamics and energetics of mineral-water interfaces:Application to cement materials[J], Cement and Concrete Research,2007,37:337-347
    [94]D. Spagnoli, D.J. Cooke, S. Kerisit, et al. Parker. Molecular dynamics simulations of the interaction between the surfaces of polar solids and aqueous solutions[J]. Journal of Materials Chemistry,2006,16:1997-2006
    [95]E.H. Dicke, J. Rieger, I.U. Rau, et al. Molecular dynamics simulations of the incrustation inhibition by polymeric additives[J]. Physical Chemistry Chemical Physics,1999,1(17):3891-3898
    [96]石文艳,王风云,夏明珠,等.羧酸共聚物与方解石晶体相互作用的MD模拟[J].化学学报,2006,64(17):1817-1823
    [97]夏明珠,王风云,雷武,等.羧酸聚合物对磷酸钙的阻垢作用和机理[J].化学学报,2008,66(4):476-480
    [98]夏明珠,王风云,雷武.羧酸聚合物对硫酸盐垢的抑制作用和机理[J].石油学报(石油加工),2008,24(4):460-464
    [99]张曙光,王风云,雷武,等.水溶性聚合物与硬石膏晶体相互作用的分子动力学模拟[J].化学学报,2007,65(20):2249-2256
    [100]王世燕,张军,卢贵武.聚合物阻垢机理的分子动力学模拟研究[J].中国石油大学学报(自然科学版),2007,31(2):144-147
    [101]A.M. Atta, O.E. El-Azabawy, H.S. Ismail, et al. Novel dispersed magnetite core-shell nanogel polymers as corrosion inhibitors for carbon steel in acidic medium[J]. Corrosion Science,2011, 53(5):1680-1689
    [102]M.A. Amin, S.S. Abd EI-Rehim, E.E.F. El-Sherbini, et al. Polyacrylic acid as a corrosion inhibitor for aluminium in weakly alkaline solutions. Part I:Weight loss, polarization, impedance EFM and EDX studies[J]. Corrosion Science,2009,51(3):658-667
    [103]Y. Liu, D. Zhang, C. Chen, et al. Adsorption orientation of sodium of polyaspartic acid effect on anodic films formed on magnesium alloy[J]. Applied Surface Science,2011,257(17):7579-7585
    [104]许奕春,汤兵,付丰连,等.绿色聚天冬氨酸复配缓蚀剂对A3碳钢的缓蚀抑雾作用[J].物理化学学报,2010,26(5):1225-1232
    [105]毛海英,徐章法.聚天冬氨酸阻垢缓蚀剂的量子化学研究[J].工业用水与废水,2007,38(5):12-15
    [106]G. Achary, Y.A. Naik, S.V. Kumar, et al. An electroactive co-polymer as corrosion inhibitor for steel in sulphuric acid medium[J]. Applied Surface Science,2008,254(17):5569-5573
    [107]常春英,滑晓赞,吕贻忠.氧化铁对腐殖酸的吸附机制研究[J].中国农业大学学报,2010,15(1):79-83
    [108]张军,胡松青,王勇,等.1-(2-羟乙基)-2-烷基-咪唑啉缓蚀剂缓蚀机理的理论研究[J].化学学报,2008,66(22):2469-2475
    [109]夏明珠,雷武,王风云.膦酰基羧酸调聚物缓蚀性能的量子化学研究[J].计算机与应用化学,2008,25(2):219-212
    [110]H. Gerengi, K. Darowicki, G. Bereket, et al. Evaluation of corrosion inhibition of brass-118 in artificial seawater by benzotriazole using Dynamic EIS[J]. Corrosion Science,2009,51(11): 2573-2579
    [111]董泉玉,张强,李自托,等.羧酸类铜缓蚀剂与苯并三氮唑在海水中协同效应的研究[J].腐蚀与防护,2004,25(10):426-428
    [112]J.F. Walsh, H.S. Dhariwal, A. Gutierrez-Sosa et al. Probing molecular orientation in corrosion inhibition via a NEXAFS study of benzotriazole and related molecules on Cu(100)[J]. Surface Science,1998,415(3):423-432
    [113]蒋伏广,陆柱.钼酸锂与苯并三氮唑对碳钢在溴化锂溶液中缓蚀作用的协同效应[J].华东理工大学学报,2004,30(2):153-156
    [114]邓杨.苯并三氮唑类衍生物缓蚀剂的合成及其应用研究[D].中南大学,2010
    [115]张曙光,陈瑜,王风云.苯并三氮唑及其羧酸酯衍生物对铜缓蚀机理的分子动力学模拟研究[J].化学学报,2007,65(20):2235-2242
    [116]张曙光,陈瑜,王风云.苯并三氮唑及其衍生物与氧化亚铜晶体相互作用的MD模拟[J].中国腐蚀与防护学报,2007,27(6):348-353
    [117]K.F. Khaled. Molecular simulation, quantum chemical calculations and electrochemical studies for inhibition of mild steel by triazoles[J]. ElectrochimicaActa,2008,53:3484-3492
    [118]S. Zhang, Z. Tao, W. Li, et al. The effect of some triazole derivatives as inhibitors for the corrosion of mild steel in 1 M hydrochloric acid[J]. Applied Surface Science,2009,255:6757-6763
    [119]WangYu, Fang Daining, Soh AiKah, LiuBin. A molecular mechanies approaeh for analyzing tensile nonlinear deformation behavior of single-wailed earbon nanotobes[J]. Acta Mechanica Sinica,2007,23:663-671
    [120]严波,赖城明.应用分子图形学、分子力学、量子化学及静电势研究农药分子结构与性能的关系(Ⅲ)—一种获得有机分子优势构象的简单方法[J].高等学校化学学报,1992,13(12):1555-1557
    [121]陈皓侃,李保庆,李文.分子力学和分子动力学方法研究不同变质程度烟煤的分子结构[J].燃料化学学报,2000,28(5):459-462
    [122]黄艳芳,马正飞,刘晓勤等.LTA和FAU型分子筛吸附CO2力场的研究[J].计算机与应用化学,2010,27(6):759-764
    [123]黄世强,朱申敏,程时远.聚合物分子模拟中的力场[J].高分子材料科学与工程,1999,15(4):18-22
    [124]A.K. Rappe, C.J. Casewit, Colwell K S, et al. UFF, a full Pe riodic table force field for moleular mechanics and moleeular dynamics simulations[J]. Journal of the American Chemical Society, 1992,114(25):10024-10035
    [125]A.K. Rappe, W.A. Goddard. Charge equilibration for molecular dynamics simulations[J]. The Journal of Physical Chemistry,1991,95(8):3358-3363.
    [126]T. Liljefors. Molbuild-an interactive computer graphics interface to molecular mechanics [J]. Journal of Molecular Graphics,1983,1(4):111-117
    [127]J.R. Hill, J. Sauer. Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations.1. Dense and microporous silica[J]. Journal of Physical Chemistry,1994,98(4): 1238-1244
    [128]S.L. Mayo, B. D.Olafson, W.A. Goddard. DREIDING:a generic forcefield[J]. Journal of Physical Chemistry,1990,94(26):8897-8909
    [129]P. Dauber-Osguthorpe, V.A. Roberts, D.J.Osguthorpe. Structure and energetics of ligand binding to proteins:Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system[J]. Proteins:Structure, Function, and Bioinformatics,1998,4(1):31-37
    [130]H. Sun. COMPASS:An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds[J]. Journal of Physical Chemistry B, 1998,102 (38):7338-7364.
    [131]H. Sun, P.Ren, J.R. Fried. The COMPASS force field:parameterization and validation for phosphazenes[J]. Computational and Theoretical Polymer Science,1998,8 (1):229-246
    [132]M.G. Martin. Comparison of the AMBER, CHARMM, COMPASS, GROMOS, OPLS, TraPPE and UFF force fields for prediction of vapor-liquid coexistence curves and liquid densities[J]. Fluid Phase Equilibria,2006,248(1):50-55
    [133]杨小震.分子模拟玉高分子材料[M].科学出版社,2002,7
    [134]Yizhuang Xu, Zhida Chen, Jinguang Wu, Xiuzhen Wang, Ren Jingqing, Xie Datao, Li Lemin, Xu Guangxian. Fraetal phenomena in molecular meehanics calculation[J]. Science in China (Series B),1997,40(4):419-427
    [135]艾竹茗,韦枉.对芘LB膜的分子力学与分子图形学研究[J].计算机与应用化学,1994,11(2):134-136
    [136]Housaindokht Mohammad Reza, Bozorgmehr Mohammad Reza, Monhemi Hassan. Structural behavior of Candida antarctica lipase B in water and supercritical carbon dioxide:A molecular dynamic simulation study [J]. The Journal of Supercritical Fluids,2012,63; 180-186
    [137]GJ. Dienes, Paskin Arthur. Moleculardynamicsimulations of crack propagation[J]. Journal of Physics and Chemistry of Solids,1987,48(11):1015-1033
    [138]Zhang Li, Hao Ge-Fei, Tan Yin, Xi Zhen, Huang Ming-Zhi, Yang Guang-Fu. Bioactive conformation analysis of cyclic imides as protoporphyrinogen oxidase inhibitor by combining DFT calculations, QSAR and molecular dynamicsimulations[J]. Bioorganic & Medicinal Chemistry,2009,17(14):4935-4942
    [139]朱伟.高能体系结构和性能的分子动力学研究[D].南京理工大学,2008
    [140]P. Liu, Y. Wang. A tight-binding moleculardynamicsimulation of the Cu(110) surface covered with oxygen[J]. Surface Science,1999,440(1-2):81-86
    [141]M.A. Villarreal, M. Perduca, H.L. Monaco, GG. Montich. Binding and interactions of L-BABP to lipid membranes studied by moleculardynamicsimulations[J]. Biochimica et Biophysica Acta-Biomembranes,2008,1778(6):1390-1397
    [142]M.E. Casida. Time-dependent density-functionaltheory for molecules and molecular solids[J]. Journal of Molecular Structure:THEOCHEM,2009,914(1-3):3-18
    [143]A. Nagy. Density functional theory and application to atoms and molecules[J]. Physics Reports, 1998,298(1):1-79。
    [144]S. Krebs. A review on the derivation of the spin-Restricted Hartree-Fock (RHF) Self-Consistent Field (SCF) equations for open-shell systems. Description of different methods to handle the off-diagonal Lagrangian multipliers coupling closed and open shells[J]. Computer Physics Communications,1999,116(2-3):137-277
    [145]S.E. Hill, C.R.A. Catlow. A Hartree-Fock periodic study of bulk ceria[J]. Journal of Physics and Chemistry of Solids,1993,54(4):411-419
    [146]V.B. Soubbotin, Vinas X. Extended Thomas-Fermi approximation to the one-body density matrix[J]. Nuclear Physics A,2000,665(3-4):291-317
    [147]J.F. Dobson, H.M. Le. High-frequency hydrodynamics and Thomas-Fermi theory[J]. Journal of Molecular Structure:THEOCHEM,2000,501-502:327-338
    [148]R. Kumar, M.K. Sharma, R.K. Gupta. Fusion reaction cross-sections using the Wong model within Skyrme energy density based semiclassical extended ThomasFermi approach[J]. Nuclear Physics A,2011,870-871:42-57
    [1]杨士林,黄君礼,张玉玲,陶虎春.聚天冬氨酸液相催化合成及其阻垢性能研究[J].哈尔滨工业大学学报,2004,36(10):1361-1364
    [2]高玉华,刘振法,田彩莉,等.聚天冬氨酸的改性对阻垢分散性能的影响[J].工业水处理,2010,30(2):57-59
    [3]高玉华,刘振法,郭茹辉,王延吉.聚大冬氨酸衍生物的合成及阻垢性能[J].化工学报,2009,60(8):2107-2111
    [4]陶虎春,韩宁,倪晋仁.聚天冬氨酸阻垢效能方程的研究[J].工业水处理,2008,28(2):66-69
    [5]方健,李杰.有机膦酸化合物阻垢缓蚀性能的量子化学研究[J].同济大学学报,2002,30(4):521-527.
    [6]J.H. ter Horst, K.E. Wong Fong Sang, C.H de Vreugd, R.M. Geertman, G.J. Witkamp, G.M. van Rosmalen. Adsorption behaviour of polyelectrolytes on calcium fluoride:Part II:molecular modeling of the adsorption behaviour[J]. Colloids and Surfaces A,1999,154(3):273-284
    [7]M.C. van der Leeden, G.M. van Rosmalen. Adsorption Behavior of Polyelectrolytes on Barium Sulfate Crystals[J]. Journal of Colloidand Interface Science,1995,171(1):142-149
    [8]L.A. Bromley, A.M. Buckley, M. Chlad, R.J. Davey. Interactions at the Inorganic/Organic Interface:Discriminatory Binding of Hydroxybenzenes by Lepidocrocite Surfaces[J]. Journal of Colloid and Interface Science,1994,164(2):498-502
    [9]S. Mann. Biomineralization:a novel approach to crystal engineering[J]. Endeavour,1991,15(3): 120-125
    [10]J.S. Gill, R.G. Varsanik. Computer modeling of the specific matching between scale inhibitors and crystal structure of scale forming minerals[J]. Journal of Crystal Growth,1986,76(1):57-62
    [11]P.V. Coveney, R. Davey, J.L.W. Griffin, Y. He, J.D. Hamlin, S. Stackhouse, A. Whiting. A new design strategy for molecular recognition in heterogeneous systems:A universal crystal-face growth inhibitor for barium sulfate[J]. Journal of American Chemical Society,2000,122(46): 11557-11558
    [12]J.L.W. Griffin, P.V. Coveney, A. Whiting, R. Davey. Design and synthesis of macrocyclic ligands for specific interaction with crystalline ettringite and demonstration of a viable mechanism for the setting of cement[J]. Journal of the Chemical Society, Perkin Transactions 2,1999,2:1973-1981
    [13]P.V. Coveney, R.J. Davey, J.L.W. Griffin, A. Whiting. Molecular design and testing of organophosphonates for inhibition of crystallisation of ettringite and cement hydration[J]. Chemical Communications,1998,14:1467-1468
    [14]R.J. Davey, S.N. Black, L.A. Bromley, D. Cottier, B. Dobbs. Molecular design based on recognition at inorganic surfaces[J]. Nature,1991,353(10):549-550
    [15]张曙光,石文艳,雷武,等.水溶性聚合物与方解石晶体相互作用的MD模拟[J].物理化学学报,2005,21(11):1198-1204
    [16]石文艳,王风云,夏明珠,等.羧酸共聚物与方解石晶体相互作用的MD模拟[J].化学学报,2006,64(17):1817-1823
    [17]W.Y. Shi, C. Ding, J.L. Yan, X.Y. Han, Z.M. Lv, W. Lei. Molecular dynamics simulation for interaction of PESA and acrylic copolymers with calcite crystal surfaces[J]. Desalination,2012, 291:8-14
    [18]G. Burns, A.M. Glazer. Space Groups for Solid State Scientists,2nd; Academic Press:San Diego, 1990
    [19]J.P. Zeng, S.G. Zhang, X.D. Gong. Molecular Dynamics Simulation of Interaction between Calcite Crystal and Phosphonic Acid Molecules[J]. Chinese Journal of Chemistry,2010,28(3):337-343
    [20]周本省.工业水处理技术[M].化学工业出版社,北京,2002.
    [21]严瑞瑄.水处理剂应用手册[M].化学工业出版社,北京,2003.
    [22]J. Zeng, F. Wang, C. Zhou, X. Gong. Molecular Dynamics Simulation on Scale Inhibition Mechanism of Polyepoxysuccinic Acid to Calcium Sulphate[J]. Chinese Journal of Chemical Physics,2012,25(2):219-225
    [23]D.W. Heermann. Computer Simulation Methods In the Theoretical Physics[J]. Translated by K.C. Qin, Peking University Press, Beijing,1996
    [24]F. Fraternali. Restrained and unrestrained molecular dynamics simulations in the NVT ensemble of alamethicin[J]. Biopolymers,1990,30(11-12):1083-1099
    [25]L. Xu, P.Kumar, S.V. Buldyrev, S.H. Chen, P.H. Poole. F. Sciortino, H.E. Stanley. Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(46):16558-16562
    [26]H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak. Molecular dynamics with coupling to an external bath[J]. Journal of Chemical Physics,1984,81 (8): 3684-3690
    [27]郭玉宝,杨儒,曹维良,张敬畅.甘氨酸在纳米碳管中的吸附及性质的分子模拟[J].化学物理学报,2004,17(4):437-442.
    [28]杨全红,郑经堂,王茂章,张碧江.微孔炭的纳米孔结构和表面微结构[J].材料研究学报,2000,14(2):113-122.
    [29]R. J. Ross, K.C. Low, J. E. Shannon. Polyaspartate scale inhibitors-bio-degradable alternatives to polyacrylates[J]. Materials Performance,1997,36(4):53-57.
    [30]G. Tang, B. He. Biodegradation of poly(L-aspartic acid-co-valine) and its derivatives[J]. Journal of Applied Polymer Science,2006,102(1):46-51.
    [31]张洪利,梅超群,刘志强,魏丹,张铭.水解聚马来酸酐的绿色合成研究[J].工业水处理,28(5):63-65
    [32]李贵民,贾慧劫,王洪亮.聚天冬氨酸阻碳酸钙垢的机理研究进展[J].内蒙古石油化工,2009,(19):20-22
    [33]许奕春,汤兵,付丰连,等.绿色聚天冬氨酸复配缓蚀剂对A3碳钢的缓蚀抑雾作用[J].物理化学学报,2010,26(5):1225-1232
    [34]M.J. Frisch, G.W. Trucks, H.B. Schlegel. Gaussian 03(Revision B.01), Pittsburgh, PA:Gaussian, Inc.,2003
    [35]周晓蔚,何蓉,宿伟成.聚环氧琥珀酸多元阻垢分散性能的研究[J].工业水处理,2004,24(12):46-49
    [36]夏明珠,王风云,雷武.羧酸聚合物对硫酸盐垢的抑制作用和机理[J].石油学报(石油加工),2008,24(4):460-464
    [37]M.R. Wilson. Molecular dynamics simulations of flexible liquid crystal molecules using a Gay-Berne/Lennard-Jones model[J]. Journal of Chemical Physics,1997,107(20):8654-8663
    [38]U. Dahal, N.P. Adhikari. Molecular dynamics study of diffusion of heavy water in normal water at different temperatures[J]. Journal of Molecular Liquids,2012,167:34-39
    [39]朱伟.高能体系结构和性能的分子动力学研究[D].南京理工大学博士论文,2008.
    [40]J.P. Zeng, J.Y. Zhang, X.D. Gong. Molecular Dynamics Simulation of Interaction between Benzotriazoles and Cuprous Oxide Crystal[J]. Computational and Theoretical Chemistry, 963 (2011):110-114.
    [41]A.R. Leach. Molecular Modelling-Principles and Applications[M]. Harlow, England:Pearson Education Limited,2001
    [42]殷开梁,邹定辉,杨波,张雪红,夏庆,徐端钧.Materiais Studio软件涉及力场中氢键的研究[J].计算机与应用化学,2006,23(12):1335-1340
    [1]H. Li, W. Liu, X. Qi. Evaluation of a novel CaSO4 scale inhibitor for a reverse osmosis system[J]. Desalination,2007,214 (1-3):193-199
    [2]F.H. Butt, F. Rahman, U. Baduruthamal. Evaluation of SHMP and advanced scale inhibitors for control of CaSO4, SrSO4, and CaCO3 scales in RO desalination[J]. Desalination,1997,109(3): 323-332.
    [3]梁志群,李景宁,吴涛,等.聚天冬氨酸对硫酸钙的阻垢性能研究[J].华东师范大学学报,2006,17(2):87-90.
    [4]张玉玲,黄君礼,杨士林,等.聚天冬氨酸与聚丙烯酸对硫酸钙碳酸钙静态阻垢性能的对比研究[J].东华大学学报(自然科学版),2004,30(5):120-123
    [5]雷武,王风云.绿色阻垢剂聚环氧琥珀的合成与阻垢机理初探[J].化工学报,2006,57(9):2207-2213
    [6]张冰如,李风亭.聚环氧琥珀酸的多元阻垢性能[J].工业水处理,2002,22(9):21-24
    [7]M.M. Tlili, P. Rousseau, M. Ben Amor, C. Gabrielli. An electrochemical method to study scaling by calcium sulphate of a heat transfer surface[J]. Chemical Engineering Science,2008,63(3): 559-566.
    [8]夏明珠,王风云,雷武.羧酸聚合物对硫酸盐垢的抑制作用和机理[J].石油学报(石油加工),2008,24(4):460-464
    [9]张曙光,王风云,雷武,夏明珠.水溶性聚合物与硬石膏晶体相互作用的分子动力学模拟[J].化学学报,2007,65(20):2249-2256
    [10]H.M. Jung, GA. Song, Y.K. Lee, J.H. Baek, H.M. Ryoo, G.S. Kim, P.H. Choung, K.M. Woo. Modulation of the resorption and osteoconductivity of a-calcium sulfate by histone deacetylase inhibitors[J]. Biomaterials,2010,31(1):29-37.
    [11]J.P. Zeng, F.H.Wang, C. Zhou, et al. Molecular Dynamics Simulation on Scale Inhibition Mechanism of Polyepoxysuccinic Acid to Calcium Sulphate[J]. Chinese Journal of Chemical Physics,2012,25(2):219-225.
    [12]J.P. Zeng, J.Y. Zhang, X..D. Gong. Molecular Dynamics Simulation of Interaction between Benzotriazoles and Cuprous Oxide Crystal[J]. Computational and Theoretical Chemistry,2011, 963(1):110-114.
    [13]Materials Studio 4.4, Discover/Accelrys Software Inc., San Diego, California,2009
    [14]H. Shindo, T. Igarashi, W. Karino, A. Seo. Stabilities of crystal faces of anhydrite (CaSO4) compared by AFM observation of facet formation processes in aqueous solutions[J]. Journal of Crystal Growth,2010,312(4):573-579
    [15]D. Mainprice, J.L. Bouchez, M. Casey, P. Dervin. Quantitative texture analysis of naturally deformed anhydrite by neutron diffraction texture goniometry[J]. Journal of Structural Geology, 1993,15(6):793-804
    [16]H.J.C. Berendsen, J.P.M. Postma, W.F van Gunsteren. Molecular dynamics with coupling to an external bath[J]. Journal of Chemical Physics,1984,81(8):3684-3690
    [17]郭玉宝,杨儒,曹维良,张敬畅.甘氨酸在纳米碳管中的吸附及性质的分子模拟[J].化学物理学报,2004,17(4):437-442
    [18]杨全红,郑经堂,王茂章,张碧江.微孔炭的纳米孔结构和表面微结构[J].材料研究学报,2000,14(2):113-122
    [19]周利民,张士宾.二水硫酸钙晶体生长及添加剂对它的影响[J].海湖盐与化工,2001,30(2):15-17
    [20]韶晖,冷一欣.聚天冬氨酸及其复配物对硫酸钙的阻垢性能[J].工业水处理,2003,23(7):30~32
    [21]张冰如,李辉,李风亭.聚环氧琥珀酸对碳钢的缓蚀协同效应的研究[J].工业水处理,2006,26(2):53~56
    [22]J.P. Zeng, S.G. Zhang, X.D. Gong. Molecular Dynamics Simulation of Interaction between Calcite Crystal and Phosphonic Acid Molecules[J]. Chinese Journal of Chemistry,2010,28(3): 337-343
    [23]石文艳,王风云,夏明珠,等.羧酸共聚物与方解石晶体相互作用的MD模拟[J].化学学报,2006,64(17):1817-1823
    [24]张曙光,石文艳,雷武,夏明珠,王风云.水溶性聚合物与方解石晶体相互作用的MD模拟[J].物理化学学报,2005,21(11):1198-1204
    [25]周晓蔚,何蓉,宿伟成.聚环氧琥珀酸多元阻垢分散性能的研究[J].工业水处理,2004,24(12):46-49
    [26]朱伟.高能体系结构和性能的分子动力学研究[D].南京理工大学博十论文,2008
    [27]肖鹤鸣,居学海.高能体系中的分子间相互作用.北京:科学出版社,2003
    [28]A.R. Leach. Molecular Modelling-Principles and Applications[M]. Harlow, England:Pearson Education Limited,2001
    [29]殷开梁,邹定辉,杨波,张雪红,夏庆,徐端钧.Materiais Studio软件涉及力场中氢键的研究[J].计算机与应用化学,2006,23(12):1335-1340
    [1]A. Zach-Maor, R. Semiat, A. Rahardianto, Y. Cohen, S. Wilson, S.R. Gray. Diagnostic analysis of RO desalting treated wastewater[J]. Desalination,2008,230,(1-3):239-247.
    [2]J.F. Kneller. Anionic polymers containing N-vinyl-2-pyrrolidone or other vinyl amides and maleic anhydride or maleic acid as scale inhibitors for preventing or reducing calcium phosphate and other scales. US 4,740,314[P],1988
    [3]L. Ling, Y. Zhou, J. Huang, Q. Yao, G. Liu, P. Zhang, W. Sun, W. Wu. Carboxylate-terminated double-hydrophilic block copolymer as an effective and environmental inhibitor in cooling water systems[J]. Desalination,2012,304:33-40.
    [4]A. Antony, J.H. Low, S. Gray, A.E. Childress, P. Le-Clech, G. Leslie. Scale formation and control in high pressure membrane water treatment systems:A review[J]. Journal of Membrane Science,2011,383(1-2):1-16.
    [5]张建枚,杨文忠,尹晓爽.AA/AHPSE共聚物的合成及其阻垢分散性能研究[J].工业水处理,2009,29(2):56-58
    [6]王京,陆婉珍.不同阻垢剂对方解石和磷酸钙表面电位的影响[J].岩矿测试,1998,17(4):241-248.
    [7]X. Zhou, Y. Sun, Y. Wang. Inhibition and dispersion of polyepoxysuccinate as a scale inhibitor[J]. Journal of Environmental Sciences,2011,23(Supplement):S159-S161.
    [8]B.R. Zhang, L. Zhang, F.T. Li, W. Hu, P.M. Hannam. Testing the formation of Ca-phosphonate precipitates and evaluating the anionic polymers as Ca-phosphonate precipitates and CaCO3 scale inhibitor in simulated cooling water[J]. Corrosion Science,2010,52 (12):3883-3890.
    [9]李效红,董波,武福平,常青.PMAH-AM-MA的合成及其阻垢性能研究[J].净水技术,2001,20(4):16-18.
    [10]张玉玲,黄君礼,杨士林,陶虎春,朱艳彬.聚天冬氨酸与聚丙烯酸对硫酸钙、碳酸钙静态阻垢性能的对比研究[J].东华大学学报,2004,30(5):120-124.
    [11]张素芳,舒远杰,唐绍明.改性聚环氧琥珀酸对冷却水中钙盐的阻垢性能[J].中国给水排水,2008,24(21):42-44
    [12]夏明珠,王风云,雷武,等.羧酸聚合物对磷酸钙的阻垢作用和机理[J].化学学报,2008,66(4):476-480.
    [13]R. Gao, F.E.D. van Halsema, E.J.M. Temminghoff, H.P. van Leeuwen, H.J.F. van Valenberg, M.D. Eisner, M. Giesbers, M.A.J.S. van Boeke. Modelling ion composition in simulated milk ultrafiltrate (SMUF). I:Influence of calcium phosphate precipitation[J]. Food Chemistry,2010, 122(3):700-709.
    [14]J.P. Zeng, F.H. Wang, C. Zhou, X.D. Gong. Molecular Dynamics Simulation on Scale Inhibition Mechanism of Polyepoxysuccinic Acid to Calcium Sulphate[J]. Chinese Journal of Chemical Physics,2012,25(2):219-225.
    [15]J.P. Zeng, J.Y. Zhang, X.D. Gong. Molecular Dynamics Simulation of Interaction between Benzotriazoles and Cuprous Oxide Crystal[J]. Computational and Theoretical Chemistry,2011, 963(1):110-114.
    [16]Materials Studio 4.4, Discover/Accelrys Software Inc., San Diego, California,2009
    [17]M. Nabil Salimi, Rachel H. Bridson, Liam M. Grover, Gary A. Leeke. Effect of processing conditions on the formation of hydroxyapatite nanoparticles[J]. Powder Technology,2012,218: 109-118.
    [18]A.M. Pietak, J.W. Reid, M.J. Stott, M. Sayer. Silicon substitution in the calcium phosphate bioceramics[J]. Biomaterials,2007,28 (28):4023-4032
    [19]A.J. Nathanael, S.I. Hong, D. Mangalaraj, P.C.Chen. Large scale synthesis of hydroxyapatite nanospheres by high gravity method[J]. Chemical Engineering Journal,2011,173(3):846-854
    [20]S. Peroos, Z. Du, N.H. Leeuw. A computer modelling study of the uptake,structure and distribution of carbonate defects in hydroxy-apatite[J]. Biomaterials,2006,27(9):2150-2161
    [21]M. Iijima, J. Moradian-Oldak. Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix[J]. Biomaterials,2005,26(13):1595-1603
    [22]X. Lu, Y. Wang, J. Wang, S. Qu, J. Weng, R. Xin, Y. Leng. Calcium phosphate crystal growth under controlled environment through urea hydrolysis[J]. Journal of Crystal Growth,2006,297(2): 396-402
    [23]B. Rai, T.K. Rao, Shailaja Krishnamurthy, R. Vetrivel, J. Mielczarski, J.M. Cases. Molecular Modeling of Interactions of Alkyl Hydroxamates with Calcium Minerals[J]. Journal of Colloid and Interface Science,2002,256(1):106-113
    [24]R. Bhowmik, K.S. Katti, D. Katti. Molecular dynamics simulation of hydroxyapatite-polyacrylic acid interfaces[J]. Polymer,2007,48:664-674
    [25]H. Zhang, X. Lu, Y. Leng, L. Fang, S. Qu, B. Feng, J. Weng, J. Wang. Molecular dynamics simulations on the interaction between polymers and hydroxyapatite with and without coupling agents[J].Acta Biomaterialia,2009,5 (4):1169-1181
    [26]J. Zeng, A. Wang, X. Gong, J. Chen, S. Chen, F. Xue. Molecular dynamics simulation of diffusion of Vitamin C in water solution [J]. Chinese Journal of Chemistry,2012,30 (1):115-120.
    [27]H.J.C. Berendsen, J.P.M. Postma, W.F van Gunsteren. Molecular dynamics with coupling to an external bath[J]. Journal of Chemical Physics.1984,81(8):3684-3690
    [28]高利军,郭宁,牟庆平,王宗廷,卓润生,汪汉卿.聚天冬氨酸衍生物的合成及性能研究[J].石油化工,2003,32(9):792-795
    [29]张建刚,张丽,丁庆伟,陈高华,张钒.水处理阻垢剂聚天冬氨酸的改性研究[J].辽宁化工,2005,34(1):20-22
    [30]林保平,李俊文,龙荷云.聚电解质对磷酸钙垢抑制能力研究[J].工业水处理,1996,16(1):20-21
    [31]J.M. Brown, J.F. Mcdowell, K. Chang. Methods of controlling scale formation in aqueous systems. US 5,062,962[P].1991
    [32]J.P.Zeng, S.G. Zhang, X.D. Gong, F.Y. Wang. Molecular Dynamics Simulation of Interaction between Calcite Crystal and Phosphonic Acid Molecules[J]. Chinese Journal of Chemistry,2010, 28(3):337-343
    [33]郑邦乾,朱清泉.高分子阻垢剂及其阻垢机理[J].油田化学,1984(2):181-188
    [34]石文艳,王风云,夏明珠,等.羧酸共聚物与方解石晶体相互作用的MD模拟[J].化学学报,2006,64(17):1817-1823
    [35]王世娟,符嫦娥,杨维本.含聚乙二醇长侧链的无磷阻垢剂合成与阻磷酸钙性能[J].精细化工,2011,28(12):1209-1213
    [36]符嫦娥,薛小旭,杨维本,周钰明.双亲水嵌段共聚物MA-b-APEC自组装阻止磷酸钙垢析出[J].水处理技术,2011,37(10):42-45
    [37]符嫦娥,周钰明,薛蒙伟,谢洪涛,吴文导,孙伟.研究论文新型无磷无氮阻垢剂的阻磷酸钙垢及分散Fe(Ⅲ)性能[J].化工学报,2011,62(2):525-531
    [38]朱伟.高能体系结构和性能的分子动力学研究[D].南京理工大学博士论文,2008。
    [39]张曙光,石文艳,雷武,夏明珠,王风云.水溶性聚合物与方解石晶体相互作用的MD模拟[J].物理化学学报,2005,21(11):1198-1204
    [40]A.R. Leach. Molecular Modelling-Principles and Applications. Harlow, England:Pearson Education Limited,2001
    [41]殷开梁,邹定辉,杨波,张雪红,夏庆,徐端钧.Materiais Studio软件涉及力场中氢键的研究[J].计算机与应用化学,2006,23(12):1335-1340
    [1]舒红英,唐星华,覃毅.无磷阻垢剂的研究进展[J].江西化工,2006,3:17-20.
    [2]H. Zhang, J.David. Study on Corrosion Inhibition Performance of PASP Composite on A3 Carbon Steel in Seawater[J]. Applied Mechanics and Materials,2012,164(33):33-36.
    [3]C.C. Plerce, P.D.Deck, R. Crovetto. Methods for inhibiting corrosion in aqueous media:US, 8021607[P].2011
    [4]R. Cui 1, N. Gul, C. Lil. Poly aspartic acid as a green corrosion inhibitor for carbon steel[J]. Materials Science,2010,62 (4):362-369.
    [5]A.M. Al-Sabagh, H.M. Abd-El-Bary, R.A. El-Ghazawy, et al. Corrosion inhibition efficiency of linear alkyl benzene derivatives for carbon steel pipelines in 1M HCl[J]. Egyptian Journal of Petroleum,2011,20(2):33-45.
    [6]E.A. Flores, O. Olivares, N.V. Likhanova, et al. Sodium phthalamates as corrosion inhibitors for carbon steel in aqueous hydrochloric acid solution [J]. Corrosion Science,2011,53(12):3899-3913.
    [7]张曙光.有机阻垢缓蚀剂作用机理的理论研究[D].南京理工大学,2006
    [8]周本省.工业水处理技术第2版[M].北京:化学工业出版社,2002
    [9]陆柱,蔡兰坤,陈中兴,等.水处理药剂第1版[M].北京:化学工业出版社,2002
    [10]王睿,张岐,丁洁,等.阻垢剂作用机理研究进展[J].化学工业与工程,2001,18(2):79-86,92
    [11]Y.M. Tang, X.Y. Yang, W.Z. Yang, et al. Experimental and molecular dynamics studies on corrosion inhibition of mild steel by 2-amino-5-phenyl-1,3,4-thiadiazole[J]. Corrosion Science, 2010,52:242-249
    [12]Y.M. Tang, X.Y. Yang, W.Z. Yang, et al. A preliminary investigation of corrosion inhibition of mild steel in 0.5 M H2SO4 by 2-amino-5-(n-pyridyl)-1,3,4-thiadiazole:Polarization, EIS and molecular dynamics simulations[J]. Corrosion Science,2010,52:1801-1808
    [13]张曙光,陈瑜,王风云.苯并三氮唑及其羧酸酯衍生物对铜缓蚀机理的分子动力学模拟研究[J].化学学报,2007,65(20):2235~2242
    [14]张曙光,陈瑜,王风云.苯并三氮唑及其衍生物与氧化亚铜晶体相互作用的MD模拟[J].中国腐蚀与防护学报,2007,27(6):348-353
    [15]K.F.Khaled. Molecular simulation, quantum chemical calculations and electrochemical studies for inhibition of mild steel by triazoles[J]. ElectrochimicaActa,2008,53:3484-3492
    [16]S. Zhang, Z. Tao, W. Li, et al. The effect of some triazole derivatives as inhibitors for the corrosion of mild steel in 1 M hydrochloric acid[J]. Applied Surface Science,2009,255:6757-6763
    [17]H.Sun. COMPASS:An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds[J]. Journal of Physical Chemistry B, 1998,102 (38):7338-7364
    [18]J.P. Zeng, F.H. Wang, C.Zhou. et al. Molecular Dynamics Simulation on Scale Inhibition Mechanism of Polyepoxysuccinic Acid to Calcium Sulphate[J]. Chinese Journal of Chemical Physics,2012,25(2):219-225.
    [19]J.P. Zeng, J.Y. Zhang, X.D. Gong. Molecular Dynamics Simulation of Interaction between Benzotriazoles and Cuprous Oxide Crystal[J]. Computational and Theoretical Chemistry,2011, 963(1):110-114
    [20]马瑞廷,姜承志,丁保宏.水解聚马来酸酐缓蚀分散性能的研究[J].腐蚀科学与防护技术,2004,16(2):87-89
    [21]张冰如,李辉,李风亭.聚环氧琥珀酸对碳钢的缓蚀协同效应的研究[J].工业水处理,2006,26(2):53-56
    [22]J.P. Zeng, S.G. Zhang, X.D. Gong, et al. Molecular Dynamics Simulation of Interaction between Calcite Crystal and Phosphonic Acid Molecules[J]. Chinese Journal of Chemistry,2010,28(3): 337-343
    [23]J.P. Zeng, A.M. Wang, X.D. Gong, et al. Molecular dynamics simulation of diffusion of Vitamin C in water solution[J]. Chinese Journal of Chemistry,2012,30 (1):115-120
    [1]N. Khalil. Quantum chemical approach of corrosion inhibition[J]. Electrochimica Acta,2003, 48(18):2635-2640
    [2]F Kandemirli, S Sagdinc. Theoretical study of corrosion inhibition of amides and thiosemi-carbazones[J]. Corrosion Science,2007,49(5):2118-2130
    [3]L.M. Rodriguez-Valdez, A. Martinez-Villafane, D. Glossman-Mitnik. CHIH-DFT theoretical study of isomeric thiatriazoles and their potential activity as corrosion inhibitors[J]. Journal of Molecular Structure:THEOCHEM,2005,716(1-3):61-65
    [4]L. M. Rodriguez-Valdez, A. Martinez-Villafafie, D. Glossman-Mitnik. Computational simulation of the molecular structure and properties of heterocyclic organic compounds with possible corrosion inhibition properties [J]. Journal of Molecular Structure:THEOCHEM,2005, 713(1-3):65-70
    [5]S.G. Zhang, W. Lei, M.Z. Xia, F.Y. Wang. QSAR study on N-containing corrosion inhibitors: Quantum chemical approach assisted by topological index[J]. Journal of Molecular Structure: THEOCHEM,2005,732(1-3):173-182
    [6]夏明珠,王风云,雷武,金敬杰.4-羟基苯并三氮唑合成新工艺[J].石油化工,2008,37(1):187-190
    [7]周建华,李景宁,罗志勇.1-羟甲基苯并三氮唑对铜的缓蚀性能研究[J].华南师范大学学报(自然科学版).2009,3:70-73.
    [8]周建华,李景宁,罗志勇.1-羟甲基苯并三氮唑复配物的缓蚀性能研究[J].广东化工,2008,35(7):9-11.
    [9]M. Finsgar, A. Lesar, A. Kokalj, I. Milosev. A comparative electrochemical and quantum chemical calculation study of BTAH and BTAOH as copper corrosion inhibitors in near neutral chloride solution[J]. ElectrochimicaActa,2008,53(28):8287-8297
    [10]M. Graff, J. Bukowska, K. Zawada. Surface enhanced Raman scattering (SERS) of 1-hydroxybenzotriazole adsorbed on a copper electrode surface[J]. Journal of Electroanalytical Chemistry,2004,567(2):297-303
    [11]D. Zhang, L. Gao, G. Zhou. Inhibition of copper corrosion in aerated hydrochloric acid solution by heterocyclic compounds containing a mercapto group[J]. Corrosion Science, 2004,46(12):3031-3040
    [12]N. Huynh, S.E. Bottle, T. Notoya, D.P. Schweinsberg. Inhibitive action of the octyl esters of 4-and 5-carboxybenzotriazole for copper corrosion in sulphate solutions[J]. Corrosion Science, 2000,42 (2):259-274
    [13]张胜涛,薛茗月,王艳波,等.苯并三氮唑缓蚀剂在铜表面覆盖行为的研究[J].腐蚀科学与防护技术,2006,18(5):313-316
    [14]董泉玉,张强,李自托,杨从贵,程怡,王学涛,王巍,孙桐檀.羧酸类铜缓蚀剂与苯并三氮唑在海水中协同效应的研究[J].腐蚀与防护,2004,25(10):426-428.
    [15]高洁,卢会杰,樊耀亭,等.苯并三氮唑的三脚架化合物及其配合物研究[J].郑州大学学报(理学版),2003,35(1):83-86.
    [16]陈瑜,夏明珠,雷武,张曙光,王风云.苯骈三氮唑及其羧基烷基酯衍生物缓蚀性能的量子化学研究[J].材料保护,2006,39(7):4-9.
    [17]刘林法,刘金祥,张军,尤龙,于立军,乔贵民.缓蚀剂膜抑制腐蚀介质扩散行为的分子动力学模拟[J].高等学校化学学报,2010,31(3):537-541.
    [18]张曙光,陈瑜,王风云.苯并三氮唑及其羧酸酯衍生物对铜缓蚀机理的分子动力学模拟研究[J].化学学报,2007,65(20):2235-2242.
    [19]张曙光,陈瑜,王风云.苯并三氮唑及其衍生物与氧化亚铜晶体相互作用的MD模拟[J].中国腐蚀与防护学报,2007,27(6):348-353.
    [20]Materials Studio 4.4, Discover/Accelrys Software Inc., San Diego, California,2007
    [21]H.Sun. COMPASS:An ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds[J]. Journal of Physical Chemistry B,1998, 102(38):7338-7364
    [22]H. Sun, P. Ren, J.R. Fried. The COMPASS force field:parameterization and validation for phosphazenes[J]. Computational and Theoretical Polymer Science,1998,8 (1):229-246
    [23]M.G Martin. Comparison of the AMBER, CHARMM, COMPASS, GROMOS, OPLS, TraPPE and UFF force fields for prediction of vapor-liquid coexistence curves and liquid densities[J]. Fluid Phase Equilibria,2006,248(1):50-55
    [24]Burns G.; Glazer, A.M. Space Groups for Solid State Scientists,2nd; Academic Press:San Diego, 1990
    [25]T. D.Golden, M.G Shumsky; Y. Zhou, R.A. VanderWerf, R.A. Van Leeuwen, J.A. Switzer. Electrochemical Deposition of Copper(I) Oxide Films[J]. Materials Chemistry,1996,8(10): 2499-2504
    [26]Y. Chang, H.C. Zeng. Manipulative Synthesis of Multipod Frameworks for Self-Organization and Self-Amplification of Cu2O Microcrystals[J]. Crystal growth & design,2004,4(2):273-278
    [27]J.J. Teo, Y. Chang, H.C. Zeng. Fabrications of Hollow Nanocubes of Cu2O and Cu via Reductive Self-Assembly of CuO Nanocrystals[J]. Langmuir,2006,22(17):7369-7377
    [28]Y.M. Sui, W.Y. Fu, H.B. Yang, Y. Zeng, Y. Zhang, Q. Zhao, Y. Li, X.M. Zhou, Y.Leng, M.H. Li, G.T. Zou. Low Temperature Synthesis of Cu2O Crystals:Shape Evolution and Growth Mechanism[J]. Crystal growth & design,2010,10(1):99-108
    [29]D.W. Heermann. Computer Simulation Methods In the Theoretical Physics, Translated by Qin, K.C., Peking University Press, Beijing,1996.
    [30]F. Fraternali. Restrained and unrestrained molecular dynamics simulations in the NVT ensemble of alamethicin[J].Biopolymers,1990,30(11-12):1083-1099
    [31]L. Xu, P. Kumar, S.V. Buldyrev, S.H. Chen, PH. Poole, F. Sciortino, H.E. Stanley. Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(46):16558-16562
    [32]H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak. Molecular dynamics with coupling to an external bath[J]. Journal of Chemical Physics,1984,81(8):3684-3690
    [33]M.P. Allen, D.J. Tildesley. Computer Simulation of liquids, Oxford University Press, Oxford,1987.
    [34]M. Tuckerman. B.J. Berne, GJ. Martyna. Reversible multiple time scale molecular dynamics[J]. Journal of Chemical Physics,1992,97(3):1990-2001.
    [35]M.G Paterlini, D.M. Ferguson. Constant temperature simulations using the Langevin equation with velocity Verlet integration[J]. Chemical Physics,1998,236(1-3):243-252
    [36]P.F. Batcho, T. Schlick. Special stability advantages of position-Verlet over velocity-Verlet in multiple-time step integration[J]. Journal of Chemical Physics,2001,115(9):4019-4029
    [37]J. Hautman. M.L. Klein. An Ewald summation method for planar surfaces and interfaces[J]. Molecular Physics,1992,75(2):379-395
    [38]U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G Pedersen. A smooth particle mesh Ewald method[J]. Journal of Chemical Physics,1995,103(19):8577-8593
    [39]T.M. Nymand, P. Linse. Ewald summation and reaction field methods for potentials with atomic charges, dipoles, and polarizabilities[J]. Journal of Chemical Physics,2000,112(14):6152-6160
    [40]黄玉成,胡应杰,肖继军,殷开梁,肖鹤鸣.TATB基PBX结合能的分子动力学模拟[J].物理化学学报,2005,21.(4):245-249.
    [41]S.F. Boys, F. Bernardi. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors[J]. Molecular Physics,2002,100(1): 65-73
    [42]J.P. Zeng, S.G Zhang, X.D. Gong,.F.Y. Wang. Molecular dynamics simulation of interaction between calcitecrystal and phosphonic acid molecules[J]. Chinese Journal of Chemistry,2010, 28(3):337-343
    [43]王丽娟,刘够生,宋兴福等.十二烷基吗啉选择性吸附氯化钠的分子模拟[J].物理化学学报,2009,25(5):963-969.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700