用户名: 密码: 验证码:
焊点排布对结构耐撞性影响的研究和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
点焊连接具有强度高、性能稳定、成本低等优点,因此仍被作为车身制造过程中最主要的部件连接方法。车身上往往排布着数千个焊点,由于焊点排布是非连续的,并会形成应力集中区域,这样的连接方式相当于在车辆结构中添加了一定的缺陷。因此,焊点排布情况会对车辆结构的耐撞性、耐久性以及NVH等性能产生一定的影响。
     车辆乘员保护和耐撞性要求车身吸能部件能在有限的变形空间内吸收更多的能量。车身上的典型吸能结构件多数都是由焊点连接形成的帽型结构。这些结构的变形模式及吸能效率决定了车辆在不同的碰撞工况中的耐撞性能。
     论文对焊点排布与典型的吸能结构(包括单帽结构、双帽结构以及曲梁)变形模式之间的关系进行了深入研究。本研究提取出决定焊点排布情况的关键参数,并通过有限元模拟方法得到了不同参数水平下的典型吸能结构变形模式及吸能情况。根据这些计算结果,同时结合塑性铰理论,从结构的变形机理出发分析了焊点排布参数对车辆中典型吸能部件变形稳定性和吸能能力的影响。通过这些研究发现,结构自身的不规则性越显著,焊点排布对其耐撞性能的影响就越小。同时,焊点排布对结构耐撞性的影响与结构所承受的载荷类型以及约束条件也有紧密联系。
     另外,在现有的技术条件下,把车辆造型、性能、加工制造等作为一个整体进行优化设计仍是比较困难的。因此,在车辆设计过程中,性能设计与结构加工制造设计之间的反复循环就成为常出现的问题。在性能设计之后的加工制造设计中,如果需要根据几何上的约束等原因对已有的焊点排布进行调整,就需要重新评估结构的各项性能指标,这样的反复循环会增加设计周期和成本。在对焊点排布与典型的吸能结构变形模式之间的关系进行了深入研究的基础上,本文提出了一种考虑结构加工制造约束的焊点排布优化设计概念,在结构性能设计阶段就将加工制造约束考虑进来,可以有效解决上述问题。同时,利用准确的响应面方法,对实际车身吸能结构在不同焊点排布下的耐撞性指标进行预测,并分析比较了不同边界条件下的焊点排布敏感性情况。
Spot welding is still a commonly used joining method in vehicle structures for its advantages in stiffness, durability and cost. There are usually thousnands of welds on a signle vehicle body. These welds form discrete joining points and produce stress concentration areas on the vehicle structure. The welds to some extent may be considered as imperfections of the vehicle body. Therefore, spot weld layout is an influential factor to the crashworthiness, durability and NVH performance.
     Energy absorbing structures in vehicle body are designed to absorb as much kinetic energy as possible in a limited deformation displacement for protecting the occupants. Most typical energy absorbing structures on vehicle body are close-hat thin-wall sections. The vehicle crash performance is mainly dependent on the deformation mode and energy absorbing efficiency of these structures.
     In this thesis, the relationship between spot weld layout and deformation mode of typical energy absorbing structures, such as single-hat, double-hat and curved tubes, is studied. Key parameters of spot weld layout have been determined. Using finite element analysis, the deformation mode and energy absorbing characteristics under different spot weld layout design parameters have been studied. With the simulation results and the plastic hinge theory, the influence of spot weld layout on the deformation stability and energy absorbing capability of the structures has been discussed. It is found that, as the extent of the imperfections increases in the structures, the spot weld layout design would exert less influence on the structural performance. Meanwhile, the influence of spot weld layout is also closely related to the loading types and the boundary constraint conditions on the structure.
     In the automotive industry, with the current technologies, it is still not possible to consider all the vehicle design aspects, such as styling, performance, manufacturability, etc., in a single design optimization process. Iterations between design for performance and design for manufacturing are typical. After the performance design, the spot weld layout in vehicle body often needs to be adjusted due to certain kind of geometrical constraints in welding process, and thus the structural performances would have to be reassessed accordingly. Such design iterations are a barrier to increasing the vehicle development efficiency and shortening the development cycle. In this thesis, a new approach has been proposed for the concept of Design for Manufacturing. The manufacturing constraints of welding are included into the structural performance design stage. With such a concept, the structural design would achieve performance in a manufacturable way and aforementioned issue could be resolved. In the meantime, the crash performance of energy absorbing structures under different spot weld layouts can be predicted through the response surfaces generated in the study. And the sensitivity of spot weld layout under different boundary conditions has also been presented.
引文
[1] WHO. World report on road traffic injury prevention: summary, 2004.
    [2]王韶华,俞晶鑫.国家正碰标准与欧洲正碰标准的比较.中国汽车安全技术国际研讨会.2008.
    [3]公安部交通管理局.中华人民共和国道路交通事故汇编.北京:群众出版社, 2003.
    [4]公安部交通管理局.中华人民共和国道路交通事故汇编.北京:群众出版社, 2004.
    [5] CMVDR294:关于正面碰撞乘员保护的设计规则. 1999.
    [6] GB11551-2003:乘用车正面碰撞的乘员保护. 2003.
    [7]公安部交通管理局. 2009年全国道路交通事故情况. 2010 [2010-01-18]. http://www.mps.gov.cn/n16/n85753/n85870/2450243.html.
    [8] Huang M, Loo M. A Study on Ride-Down Efficiency and Occupant Responses in High Speed Crash Tests. SAE Paper No. 950656, 1995.
    [9] Huang M. Vehicle Crash Mechanics. CRC Press, 2002.
    [10] Prasad P, Belwafa J E. Vehicle Crashworthiness and Occupant Protection. Sponsored by American Iron and Steel Institute, 2004.
    [11] Reddy T Y, Reid S R, Carney III J F. Veillette J R. Crushing Analysis of Braced Metal Ring Using the Equivalent Structure Technique. International Journal of Mechanical Sciences, 1987, 29:655-668.
    [12] Lu G.The Equivalent Structure Technique including Axial Force Effect in the Plastic Large Deformation Analysis of Structure. International Journal of Mechanical Engineering Education, 1993, 21:54-64.
    [13] Andrews K R F, England G L, Ghani E. Classification of the Axial Collapse of Circular Tubes under Quasi-static Loading. International Journal of Mechanical Sciences, 1983, 25:687-696.
    [14] Guillow S R, Lu G, Grzebieta R H. Quasi-static Axial Compression of Thin-walled Circular Aluminum Tubes. International Journal of Mechanical Sciences, 2001, 43:2103-2123.
    [15] Wierzbicki T, Abramowicz W. On the Crushing Mechanics of Thin-walled Structures. Journal of Applied Mechanics, 1983, 50(4):727-34.
    [16] Langseth M, Hopperstand O S. Static and Dynamic Axial Crushing of Square Thin-walled Aluminum Extrusions. International Journal of Impact Engineering. 1996, 18(7/8):949-68.
    [17] Langseth M, Hopperstand O S, Berstad T. Crashworthiness of Aluminum Extrusions: Validation of Numerical Simulation, Effect of Mass Ratio and Impact Velocity. International Journal of Impact Engineering, 1999, 22(8):829-54.
    [18] Nannucci P R, Marshall N S, Nurick G N. A Computational Investigation of the Progressive Buckling of Square Tubes with Geometric Imperfections. // 3rd Asia–Pacific Conference on Shock and Impact Loads on Structures, Singapore, 1999.
    [19] Gibson L J, Ashby M F. Cellular Solids, Structure and Properties. Second edition. Cambridge University Press, Cambridge, UK, 1997.
    [20] Zhou Q. Applications of Cellular Materials and Structure in Vehicle Crashworthiness and Occupant Protection. // Engineering Plasticity and Impact Mechanics, World Scientific, Singapore, 2001.
    [21] Chung J,Waas A M. Compressive Response of Honeycombs under Inplane Uniaxial Static and Dynamic Loading, part 1: Experiments. American Institute of Aeronautics and Astronautics Journal, 2002, 40:966-973.
    [22] Chung J,Waas A M. Compressive Response of Honeycombs under Inplane Uniaxial Static and Dynamic Loading, part 2: Simulations. American Institute of Aeronautics and Astronautics Journal, 2002, 40:974-980.
    [23] White M D, Jones N. Experimental Quasi-static Axial Crushing of Top-hat and Double-hat Thin-walled Sections. International Journal of Mechanical Sciences, 1999, 41:179-208.
    [24] Alexander J M. An Approximate Analysis of the Collapse of thin Cylindrical Shells under Axial Loading. Quarterly Journal of Mechanics and Applied Mathematics, 1960, 13(1):10-15.
    [25] Pugsley A G, Macaulay M. The Large-scale Crumpling of Thin Cylindrical Columns. Quarterly Journal of Mechanics and Applied Mathematics, 1960, 13(1):1-9.
    [26] Abramowicz W. The Effective Crushing Distance in Axially Compressed Thin-walled Metal Columns. International Journal of Impact Engineering, 1983, 1(3): 309-317.
    [27] Abramowicz W, Jones N. Dynamic Axial Crushing of Circular Tubes. International Journal of Impact Engineering, 1984, 2(2): 263–281.
    [28] Abramowicz W, Jones N. Dynamic Axial Crushing of Square Tubes. International Journal of Impact Engineering, 1984, 2(2): 179-208.
    [29] Wierzbicki T. Crushing Behavior of Plate Intersections. // Structural Crashworthiness, Butterworths, London, 1983:66-95.
    [30] Abramowicz W, Jones N. Dynamic Progressive Buckling of Circular and Square Tubes. International Journal of Impact Engineering, 1986, 4(4):243-270.
    [31] Wierzbicki T, Abramowicz W. The Mechanics of Deep Plastic Collapse of Thin Walled Structures. // Structural Failure, John, New York, 1989:281-329.
    [32] Niknejad A, Liaghat G H, Behravesh A H, Moslemi Naeini H. Experimental Investigation of the Maximum Axial Force in the Folding Process of Aluminum Square Columns. World Academy of Science, Engineering and Technology, 2009, 52:36-40.
    [33] Wang R X, Sinclair A N, Spelt J K. Strength of Adhesive Joints with Adherend Yielding: II. Peel Experiments and Failure. The Journal of Adhesion, 2003, 79:49-66.
    [34] Darwish S M, Davies R. Investigation of Heat Flow Through Bonded and Brazed Metal Cutting Tools. International Journal of Machine Tools and Manufacture, 1989, 29(2):229-37.
    [35] Darwish S M, Ghanya A. Critical Assessment of Weld-bonded Technologies. Journal of Materials Processing Technology, 2000, 105:221-229.
    [36] Kim C H, Choi J K, Kang M J, Park Y D. A Study on the CO2 Laser Welding Characteristics of High Strength Steel up to 1500 MPa for Automotive Application. Journal of Achievements in Materials and Manufacturing Engineering, 2010, 39(1): 79-86.
    [37] Ohkubo Y, Akamatsu T, Shirasawa K. Mean Crushing Strength of Closed-hat Section Members. SAE Paper No.740040, 1974.
    [38] Aya N, Takahashi K. Energy Absorption Characteristics of Vehicle Body Structure, part 1. Japanese Society Automotive Engineers Bulletin, 1976, 7: 65-74.
    [39] Tani M, Funahashi A. Energy Absorption by the Plastic Deformation of Body Structural Members. SAE Paper No. 780368, 1978.
    [40] Bannerman D C, Kindervater C M. Crash Impact of Simulated Composite and Aluminium Helicopter Fuselage Elements. // Proceedings of Ninth European Rotorcraft Forum, Stressa, Italy, 1983.
    [41] Ohkami Y, Shimamura M, Takada T, Tomizawa K, Motormura K, Usada M. Collapse of Thin Walled Curved Beam with Closed Hat Section, Part 1: Study on Collapse Characteristics. SAE Paper No. 900460, 1990.
    [42] Abe K, Ohta M, Takagi M, Nishigaki H, Ishiyama S, Matsukawa F, Mizuno M. Collapse of Thin Walled Curved Beam with Closed Hat Section, Part 2: Simulation by Plane Plastic Hinge Model. SAE Paper No. 900461, 1990.
    [43] Fay P A, Suthurst G D. Redesign of Adhesively Bonded Box Beam Sections for Improved Impact Performance. International Journal of Adhesion and Adhesives, 1990, 10(3):128-138.
    [44] Rivett R M, Riches S T. Drop Weight Impact Testing of Spot Welded, Weld Bonded and Adhesively Bonded Box Beam Sections. Welding Institute Report, January, 1986.
    [45] Belingardi G, Chiara A, Vadori R. Experimental Verification of the Axial Crushing Behaviour of Thin Walled Columns with Different Sections. // Proceedings of 3rd International Conference on Innovation and Reliability in Automotive Design and Testing, 1992, 1:59-68.
    [46] Omar T A, Kan C D, Bedewi N E. Crush behavior of Spot Welded Hat Section Components with Material Comparison. // Crashworthiness and Occupant Protection in Transportation Systems, 1996, 218: 65-78.
    [47] McGregor I J, Seeds A D, Nardini D. The Design of Impact Absorbing Members for Aluminium Structured Vehicles. SAE Paper No. 900796, 1990.
    [48] White M D, Jones N. Experimental Study into the Energy Absorbing Characteristics of Top-hat and Double-hat Sections Subjected to Dynamic Axial Crushing. Proceedings of the Institution of Mechanical Engineers 1999, 213:259-78.
    [49] White M D, Jones N, Abramowicz W. A Theoretical Analysis for the Quasi-static Axial Crushing of Top-hat and Double-hat Thin-walled Sections. Journal of Mechanical Sciences, 1999, 41:209-33.
    [50] White M D, Jones N. A Theoretical Analysis for the Dynamic Axial Crushing of Top-hat and Double-hat Thin-walled Sections. // Proceedings of the Institution of Mechanical Engineers, 1999, 213:307-25.
    [51] Schneider F, Jones N. Influence of Spot-weld Failure on Crushing of Thin-walled Structural Sections. International Journal of Mechanical Sciences, 2003, 45:2061-2081.
    [52] Schneider F, Jones N. Impact of Thin-walled High-strength Steel Structural Sections. Journal of Automobile Engineering, 2004, 218:131-58.
    [53] Tarigopula V, Langseth M, Hopperstad O S, Clausen A H. Axial Crushing of Thin-walled High-strength Steel Sections. International Journal of Impact Engineering, 2006, 32:847-882.
    [54] Schneider F, Jones N. Observations on the Design and Modelling of Some Joined Thin-walled Structural Sections. Thin-Walled Structures 2008, 46:887-897.
    [55] Stander, N, Craig, K J. On the Robustness of a Simple Domain Reduction Scheme for Simulation-based Optimization, Engineering Computations, 2002, 19(4): 431-450.
    [56] Stander N. Goel T. Metamodel Sensitivity to Sequential Sampling Strategies in Crashworthiness Design. // Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Canada, 2008.
    [57] Simpson T W. A Concept Exploration Method for Product Family Design. Ph.D. Thesis, Georgia Institute of Technology, 1998.
    [58] Stander N, Roux W J, Giger M, Redhe M, Fedorova N, Haarhoff J, Crashworthiness Optimization in LS-OPT: Case Studies in Metamodeling and Random Search Techniques. Proceedings of the 4th European LS-DYNA Conference, 2003,Germany.
    [59] Stander N, Reichert R, Frank T. Optimization of Nonlinear Dynamic Problems Using Successive Linear Approximations. American Institute of Aeronautics and Astronautics Journal, 2000.
    [60] Schramm U, Thomas H. Crashworthiness Design Using Structural Optimization. American Institute of Aeronautics and Astronautics Journal, 1998, 197-205.
    [61] Redhe M, Nilsson L, Bergman F, Stander N. Shape Optimization of a Vehicle Crash-box Using LS-OPT. // Proceedings of the 5th European LS-DYNA Conference, 2004
    [62] Pereira C E L, Bittencourt M. L. Topological sensitivity analysis in large deformation problems. Structural and Multidisciplinary Optimization, 2008, 37:149-163.
    [63] Yang R J, Wang N, Tho C H, Bobineau J P, Metamodeling Development for Vehicle Frontal Impact Simulation. // Proceedings of ASME Design Engineering Technical Conferences, 2001.
    [64] Gu L, Yang R J, Li G, Tyan T, Vehicle Structure Optimization for Crash Pulse. // Proceedings of ASME 2004 Design Engineering Technical Conferences, Utah, USA, 2004.
    [65] Kurtaran H, Eskandarian A, Marzougui D, Bedewi N E, Crashworthiness Design Optimization Using Successive Response Surface Approximations. Computational Mechanics, 2002; 29: 409-421.
    [66] Roux W J, Stander N, Haftka R T, Response Surface Approximations for Structural Optimization. // 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 1998:517-534.
    [67] Fang H, Rais-Rohani M, Liu Z, Horstemeyer M F. A Comparative Study of Metamodeling Methods for Multi-objective Crashworthiness Optimization, Computers and Structures, 2005, 83:2121-2136.
    [68] Kodiyalam S, Yang R J, Gu L. Tho C H. Multidisciplinary Design Optimization of a Vehicle System in a Scalable, High Performance Computing Environment, Structural and Multidisciplinary Optimization, 2004, 26: 256-263.
    [69] Lee S H, Kim H Y, Oh S I, Cylindrical Tube Optimization Using Response Surface Method Based on Stochastic Process, Journal of Materials Processing Technology, 2002, 130-131:490–496.
    [70] Gu L, Li G, Yang R J. An Excel Based Robust Design Tool for Vehicle Structural Optimization. SAE Paper No. 2004-01-1124, 2004.
    [71] Chuang C H, Li G, Yang R J. An Optimization and Trade-Off Process for Crashworthiness with Multiple Responses. SAE Paper No. 2007-01-1543, 2007.
    [72] Marklund P O, Nilsson L. Optimization of a Car Body Component Subjected to Side Impact. Structural and Multidisciplinary Optimization, 2001, 21:383-392.
    [73] Sobieszczanski-Sobieski, Kodiyalam S, Yang R Y. Optimization of Car Body under Constraints of Noise, Vibration, and Harshness (NVH), and Crash. Structural and Multidisciplinary Optimization, 2001, 22:295-306.
    [74] Hardee E, Chang K H, Tu J, Choi K K, Grindeanu I, Yu X M. A CAD-based Design Parameterization for Shape Optimization of Elastic Solids. Advances in Engineering Software, 1999, 30:185-199.
    [75] Garcia M J, Steven G P. Fixed Grid Finite Element Analysis in Structural Design and Optimization. // Proceeding 2nd ASMO/AIAA Internet Conf. Approx. Fast Reanal. Engrg. Optim., 2000. Available from: .
    [76] Woon S Y, Tong L, Querin O M, Steven G P. Knowledge-based Algorithms in Fixed-grid GA Shape Optimization. International Journal for Numerical Methods in Engineering, 2003, 58: 643-660.
    [77] Choi K K, Chang K H. A Study of Design Velocity Field Computation for Shape Optimal Design, Finite Elements in Analysis and Design, 1994, 15:317-341.
    [78] Hyperworks, Version 10.0, Altair Incorporation, 2009.
    [79] Kim N H, Chang Y. Eulerian. Shape Design Sensitivity Analysis and Optimization with a Fixed Grid. Computer Methods in Applied Mechanics and Engineering, 2005, 194:3291-3314.
    [80] Bennett J A, Botkin M E. Structural Shape Optimization with Geometric Description and Adaptive Mesh Refinement. American Institute of Aeronautics and Astronautics Journal, 1985, 3: 458-464.
    [81]李红建,邱少波,林逸,张君媛,刘静岩.汽车车身复杂钣金件的拓扑优化设计.汽车工程, 2003,25:303-307.
    [82] Sheppard S D, Strange M. Fatigue Life Estimation in Resistance Spot Welds: Initiation and Early Growth. Fatigue & Fracture of Engineering Materials & Structures, 1992, 15(6): 531-549.
    [83] Menassa R J, DeVries W R, Optimization Methods Applied to Selecting Support Positions in Fixture Design. Transactions of the ASME, Journal of Engineering for Industry, 1991, 113:412-418.
    [84] Jiang T, Chirehdast M, A System Approach to Structural Topology Optimization: Designing Optimal Connections. Transactions of the ASME, Journal of Mechanical Design, 1997, 119:40-47.
    [85] Chaea S W, Kwona K Y, Leeb T S. An Optimal Design System for Spot Welding Locations. Finite Elements in Analysis and Design, 2002, 38:277-294.
    [86] Xiang Y J, Wang Q, Fan Z J, Fang H B. Optimal Crashworthiness Design of a Spot-welded Thin-walled Hat Section. Finite Elements in Analysis and Design, 2006, 42:846-855.
    [87] Yamaguchi A, Wakana G, Obayashi K, Okabe T, Müller-Bechtel M. Spot-weld Layout Optimization for Body Stiffness by Topology Optimization. SAE Paper No. 2008-01-0878, 2008.
    [88] Rui Y, Yang R J, Chen C J, Agrawal H. Fatigue Optimization of Spot Welds. // Proceedings of the Body Design and Engineering, 1996, Detroit, Michigan.
    [89] Zhang Y, Taylor D. Optimisation of Spot-welded Structures. Finite Elements in Analysis and Design, 2001; 37:1013-1022.
    [90] Livermore Software Technology Coporation (LSTC). LS-DYNA Theoretical Manual. 2006.
    [91] Livermore Software Technology Coporation (LSTC). LS-DYNA Keyword User's Manual (Version 971). 2007.
    [92] Xia Y, Zhou Q, Wang P C, Johnson N L, Gayden X Q, Fickes J D. Development of a High-efficiency Modeling Technique for Weld-bonded Steel Joints in Vehicle Structures, Part II: Dynamic Experiments and Simulations. International Journal of Adhesion and Adhesives, 2008, 29:427-433.
    [93] Myers R H, Montgomery D C. Response Surface Methodology. New York: John Wiley & Sons Inc. 1995.
    [94] Venter G, Haftka R T. Minimum-bias Based Experimental Design for Constructing Response Surfaces in Structural Optimization. // 38th AIAA/ASME/ASCE/AHS/ASC, Structures, Structural Dynamics and Materials Conference, Kissimmee, 1997.
    [95] Roux W J. Structural Optimization using Response Surface Approximations. PhD thesis, University of Pretoria, 1997.
    [96] Redhe M, Forsberg J, Jansson T, Marklund P O, Nilsson L. Using the Response Surface Methodology and the D-optimality Criterion in Crashworthiness Related Problems. Structural and Multidisciplinary Optimization, 2002, 24:185-194.
    [97] Mullerschon H, Witowski K, Marko T. Application Examples of Optimization and Reliability Studies in Automotive Industry. // Proceedings of NAFEMS World Congress, 2009.
    [98] Gustafsson E, Stromberg N. Shape Optimization of Casting by Using Successive Response Surface Methodology. Structural and Multidisciplinary Optimization, 2008, 35:11-28.
    [99] Hormann M, Schulz A, Rust W. Structural Optimization using LS-OPT: Basics and Examples. // 21st CAD-FEM Users’Meeting, 2003, Germany.
    [100]胡震东,黄海,贾光辉.超高速撞击条件下铝合金材料参数识别方法.北京航空航天大学学报,2008,34:999-1002.
    [101] Livermore Software Technology Coporation (LSTC). LS-OPT User’s Manual, Version 4.1. 2010.
    [102] NHTSA Vehicle Models and Related Reports, http://www.ncac.gwu.edu/vml/models.html
    [103] Avalle M, Chiandussi G, Belingardi. Design Optimization by Response Surface Methodology: Application to Crashworthiness Design of Vehicle Structures. Structural and Multidisciplinary Optimization, 2002, 24:325-332.
    [104]曾攀.有限元分析及应用.清华大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700