用户名: 密码: 验证码:
锶光钟磁场的分析、制作与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原子光钟是一种基于激光冷却原子的新型量子频标,理论上不确定度可达10-18量级,有望成为新一代时间频率基准。在研制光钟的过程中,要求有温度尽量低且数量尽量多的冷原子样品。实验上采取两级激光冷却获得冷原子样品,一级冷却利用偶极跃迁(5s~2 )~1S_0→(5s5p)~1P_1,相应辐射波长461nm,二级冷却利用(5s~2)~1S_0→(5s5p)~3P_1跃迁,相应辐射波长689nm。目前,我们已完成锶原子的一级冷却实验,即实现了Blue MOT。在一级冷却的基础上进行二级冷却需对锶原子光钟系统中所用到的磁场部分做进一步的优化,以便能够获得数量更多、温度更低的冷原子样品,本文工作主要分为两部分:
     1.优化锶原子光钟系统中的塞曼减速器磁场部分,包括分析三种不同的塞曼减速器磁场部分的实现方案,讨论塞曼减速器减速区的长度对减速效果和原子俘获数量的影响。在理论上计算并模拟优化改进过的塞曼减速器磁场部分,并制作实验品进行测量,给出结果。
     2.针对在一级冷却基础上进行二级冷却要在较短的时间内以一定的时序控制俘获冷原子的磁光阱磁场的要求,设计了一种简单实用的磁光阱磁场控制装置。并设计讨论了利用计算机实现锶原子光钟系统中控制与现实的可行性,给出思路。
Atom optical clock is a new quantum frequency standard based on laser cooling atomic, with the uncertainty of 10-18, which is considered as a new International time and frequency reference. In the process of developing optical clock, atomic samples with lower temperature and larger quantity are needed. In the experiment, the atomic sample is obtained by two-stage laser cooling .The first-stage cooling uses dipole transition (5s~2)~1S_0→(5s5p)~1 P_1, with the according radiation wavelength 461nm. The second-stage uses the level transition (5s_2)_1S_0→(5s5p)~3P_1, with the according radiation wavelength 689nm. At present, we have accomplished the first cooling experiment, that’s Blue MOT. In order to obtain atomic samples with larger quantity and lower temperature, further development is needed in doing the second cooling on the basis of the first one to the magnetic part in the Sr atom optical clock system. The main work of this thesis are as follows in two parts.
     1. Optimize the Zeeman reduction gear magnetic field in the Sr optical clock system. It may contain the analysis of three different implementations of the Zeeman reduction gear magnetic field, the discussion of the affection of the length of the Zeeman reduction gear magnetic field to the slowing effect and the number of atoms trapped .Then we may compute、simulate and optimize the already developed Zeeman reduction gear magnetic field. And we may make test items, do the measurement and have the results.
     2. We have developed a simple and practical MOT magnetic field control device, under the requirement of controlling and trapping the cold atoms with certain sequence in time ,in the process of the second cooling on the basis of the first cooling. Then we develop and discuss the feasibility of using the computers to do the controlling of Sr optical clock system.
引文
[1]漆贯荣.时间科学基础[M],北京:高等教育出版社, 2006.
    [2]黄秉英,周渭.测试计量技术手册[K],第11卷时间频率.中国计量出版社, 1996, 10.
    [3]张首刚.新型原子钟发展现况[J],时间频率学报, 2009, 32.
    [4]黄秉英.新一代原子钟[M],武汉大学出版社, 2006, 1-4.
    [5] Arnaud Lecallier, Yann Le Coq, Giovanni Rovera, et al. Accuracy Evaluation of an Optical Lattice Clock with Bosonic Atoms [J]. Optics Letters, 2007.1:1-18.
    [6] Masao Takamoto, Feng-Lei Hong, Ryoichi Higashi, et al. An optical lattice clock [J]. Nature, 2005, 435: 321.
    [7]郭文阁,范琦等.相干布局囚禁原子钟技术及其进展[J],时间频率学报, 2007, 30(1):45-52.
    [8] A. D. Ludlow, T. Zelevinsky, G. K. Campbell et al. Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock[J]. Science, 2008, 319(5871): 1805.
    [9]王义遒,王庆吉,傅济时,等.量子频标原理[M],北京:科学出版社, 1986.
    [10] Hollberg L, Oates C W, Wilers G, et al. J. Phys. B: At. Mol. Opt. Phys, 2005,38:S469.
    [11]王义遒,原子的激光冷却与陷俘[M],北京:北京大学出版社, 2007.
    [12] Balykin V I. Adv. Atom. Mol. Opt. Phys, 1999, 41: 181.
    [13] Udem T, Reichert J, Holzwarth R, et al. Phys. Rev. Lett. , 1999. 82: 3568.
    [14] Diddams S, Jones R, Ye J, et al. Phys. Rev. Lett. ,2000, 82: 5102.
    [15] Ye J, Ma L S, Hall J L. Phys. Rev. Lett. ,2001, 87: 270801.
    [16] Takayuki Kurosu, Fujio Shimizu, Japan. J. Appl. Phys. , 1990, 29: L2127.
    [17] Martin M. Boyd. High Precision Spectroscopy of Strontium in an Optical Lattice: Towards a New Standard for Frequency and Time[D],2007.
    [18]王心亮.用于87Sr冷原子光晶格钟原子冷却装置的塞曼减速器研究[D],西北大学硕士论文, 2008.
    [19]刘海峰,刘长虹.全部采用国产材料和设备实现磁光阱超高真空系统[J],陕西天文台台刊, 1997,第20卷。
    [20]赵亚楠. 461mm半导体激光器稳频及其在锶光钟装置中的应用[D],中科院研究生院硕士论文, 2009.
    [21]田晓.锶光晶格钟一级冷却的实现[D],中科院研究生院硕士论文, 2010.
    [1] The nobel prize in physics 1997, 1997. Nobel Prize Website, accessed 5/21/2010.
    [2] T. Hansch, A. Schawlow, Cooling of gases by laser radiation [J]. Opt.Commun., 1975, 13(1): 68
    [3] Phillips W D, Prodan J V, Metcalf H J. J.Opt. Soc. Am. B,1985, 2: 1751.
    [4] Metcalf H J, van der Straten P. Laset cooling and trapping[M]. New York: Springer, 1999.
    [5]王义遒,原子的激光冷却与陷俘[M],北京大学出版社, 2007.
    [6] William D. Phillips. Laser cooling and trapping of neutral atoms[J], Reviews of Modern Physics, Vol. 70, No. 3, July 1998.
    [7] Kenneth J.Gunter. Design and implementation of a Zeeman slower for 87Rb[D], Paris, Ecole Normale Superieure,2004.
    [8] Letokhov V S, Minogin V G, Pavlik B D, Opt. Commun., 1976, 19: 72.
    [9] Wolfgang Ketterle, Alex Martin, Michael A. Joffe, and David E. Pritchard et al., Slowing and cooling atoms in isotropic laser light [J]. Phys. Rev.Lett., 1992, 69: 2483.
    [10] Barelaan H, Padua S, Yang D H, et al. Slowing of 85Rb atoms with isotropic light [J]. Phys. Rev. A, 1994, 49: 2780.
    [11] M. Zhu, C. W. Oates, J. S Hall. Continuous high-flux monovelocity atomic beam based on a broadband laser-cooling technique [J]. Phys. Rev. Lett., 1991, 67:46.
    [12]曾谨言.量子力学导论[M],北京:北京大学出版社, 2001.
    [13] W.D.Phillips, H. Metcalf, Phys. Rev. Lett. 48, 596(1982).
    [14] Metcalf Bergeman, Erez. Magnetostatic trapping fields for neutral atoms[J]. Phys.Rev. A, 35:1535-1546,1987.
    [15] Liu Spiegel. Mathematical Handbook of formulas and tables. McGraw Hill, 2rd edition[M],1999.
    [16] Margaret Lynn Harris. Design and Construction of an Improved Zeeman SLower[D], Duck University,2003.
    [17] D.尤金,郑建松,彭冉冉译. Mathematica使用指南[M],北京:科学出版社,2002.
    [18]王心亮,阮军等. 87Sr原子束的塞曼减速器磁场[J],时间频率学报, 2008, 31(2): 92-97.
    [19] Ovchinnikov Y B. A Zeeman slower based on magnetic dipoles [J]. Opt.Comm. 2007, 276: 261
    [20] Y.B.Ovchinnikov. A permanent Zeeman slower for Sr atomic clock[J]. Eur. Phys. J. Special Topics 163,95-100(2008).
    [21]王心亮.用于87Sr冷原子光晶格钟原子冷却装置的塞曼减速器研究[D],西北大学硕士论文, 2008.
    [22] T. A.Savard. Raman Induced Resonance Imaging of Trapped Atoms[D]. Ph.D Dissertation at Duke University,1998.
    [23] J.D.Kraus,安绍萱译,电磁学[M].北京:人民邮电出版社, 1979年3月, P289.
    [1] Raab E L, Prentiss M, Cable A, etal. Phys. Rev. Lett. , 1987,59:2631.
    [2] Chu S. Rev. Mod. Phys. , 1998,70:685.
    [3]王义遒,原子的激光冷却与陷俘[M],北京大学出版社, 2007.
    [4]林丰杰.超冷铷原子光耦极阱之设置,国立中正大学硕士论文[D], 2002.
    [5]杨澜升.铷原子之双磁光阱系统,国立中正大学硕士论文[D], 2002.
    [6]刘涛,铯原子磁光阱及光学偶极俘获的实验与理论研究[D],山西大学博士论文, 2004.
    [7]吴慧,锶光钟原子的塞曼减速与蓝光磁光阱[D],中科院研究生院硕士论文, 2009.
    [8]张礼.近代物理学进展[M],第一版,北京:清华大学出版社, 1997.
    [9]李师群.激光冷却和捕陷中性原子[J],大学物理, 1999, 18(1): 1-5.
    [10] Todd P.Meyrath. Electromagnet Design Basics for Cold Atom Experiments[J], Atom Optics Laboratory Center for Nonlinear Dynamics University of Texas at Austin,2001.
    [11] Metcalf Berfeman, Erez. Magnerostatic trapping fields forneutral atoms[J]. Phys.Rev.A, 1987, 35:1535-1547.
    [12]闫树斌.用于腔量子电动力学实验的铯原子双磁光阱及其冷原子输运研究,山西大学博士论文[D], 2006.
    [13] Van Duzer Ramo, Whinnery. Fields and Waves in Communication Electronics[M]. Wiley, 3rd edition,1994.
    [14]王心亮.用于87Sr冷原子光晶格钟原子冷却装置的塞曼减速器研究,西北大学硕士论文[D], 2008.
    [15] Martin M. Boyd. High Precision Spectroscopy of Strontium in an Optical Lattice: Towards a New Standard for Frequency and Time[D]. B.S., University of Washington, 2002, 23.
    [16]田晓,王心亮,常宏,张首刚.利用塞曼减速法实现锶同位素的磁光阱俘获[J],光学学报2010, 30(3): 898-902
    [17]赵传勋,声光调制器原理及其应用[J],光学仪器,第四期第六卷.
    [1] Phillips W D, Metcalf H J 1982 Phys. Rev.Lett. 48 596
    [2] Prodan J V, Phillips W D, Metcalf H J 1982 Phys. Rev.Lett. 49 1149
    [3] Chu S, Hollberg L, Bjorkholm J E, et al. Phys. Rev. Lett. , 1985, 55: 48.
    [4] Lett P D, Watts R N, Westbrood C I, et al. J. Phys. Rev. Lett. , 1988,61:169.
    [5] Ma H Y, Cheng H D, Zhang W Z, et al. 2009 Acta Phys. Sin. 58 1569.
    [6]王心亮,陈洁,王叶兵,等.利用塞曼扫频法实现对减速原子束速度分布的直接测量[J],时间频率学报,已收录.
    [1]赵亚楠. 461nm半导体激光器稳频及其在锶光钟装置中的应用[D],中科院研究生院硕士论文, 2009.
    [2]刘丹丹.用于新型原子钟的外腔半导体激光器数字自动稳频系统研究[D],中科院研究生院硕士论文, 2010.
    [3]黄璐璐,李志华等. VC++6.0环境下GPIB虚拟仪器的设计[J],传感器与仪器仪表, 2004.5(20): 75-77.
    [4] P.J. Deitel, H.M. Deitel. Visual C# 2008 How to Program[M], Third Edition,北京:电子工业出版社,2009.
    [5]张兵,杨玥.基于Visual C#和Measurement Studio融合的虚拟示波器设计开发[J],企业技术开发, 2010, VOL29 no.1.
    [6]庄三少.数据显示类[CP], 2006.
    [7]钱能. C++程序设计教程[M],第二版,北京:清华大学出版社, 2005.
    [8]贾桂华. Visual C++实现虚拟仪器软件设计[J],信息与电子工程, 2004.1(2): 37-44.
    [1]李师群.激光冷却和捕陷中性原子[J],大学物理, 1999, 18(1).
    [2]王义遒.原子的激光冷却与陷俘[M],北京:北京大学出版社, 2007.
    [3]李天初.从长度单位米到时间单位秒:稳频激光-飞秒光梳-铯原子喷泉钟-光钟[J],计量学报, 2006, 27(1).
    [4]杨福家.原子物理学(第四版)[M],北京:高等教育出版社, 2008.
    [5] R Victor Jones. The Interaction of Radiation and Matter: Semiclasscal Theory[G], 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700