用户名: 密码: 验证码:
锶光钟的原子冷却及互组跃迁谱线测量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
时间频率作为表征物质运动的最基本物理量,在日常生活、国民经济和基础科学研究中起着重要作用。锶原子光钟是目前性能参数最好的原子钟,其不确定度和稳定度指标都已进入10-18量级,较现有铯原子喷泉钟基准钟高出2~3个数量级,且有望成为下一代国际秒的定义。锶原子的冷却与俘获是整个光钟研究中最基础的一步,它为光钟提供具有高品质因子钟跃迁谱线的原子参考源。本实验研究工作主要是围绕着锶冷原子样品的制备而逐步进行展开,本论文介绍的内容主要有:锶原子的两级冷却与俘获、二级冷却689nm激光线宽压窄、窄线宽互组跃迁谱线探测和锶原子四种同位素跃迁绝对频率的测量几部分:
     (1)实验完成锶原子的461nm一级宽带冷却及冷原子相关参数的详细测量,初步实现了689nm二级窄线宽冷却与俘获。实验测得88Sr原子一级冷却温度为5mK,在加入两再抽运707nm和679nm激光后俘获冷原子数目为3.1×108,蓝色MOT的冷原子俘获率为2.8×109s-1,同时在理论和实验上研究了再抽运激光频率失谐和光强波动对俘获冷原子数目的影响,提出了一种可将两再抽运光的频率直接锁定在三重态原子跃迁吸收谱线上的技术方法。初步实现二级红色MOT,利用释放再捕获的方法测得二级窄线宽冷却原子的转载效率大于20%。理论计算了可消除钟跃迁两能级a. c. Stark频移差的“魔术”光波长值,得出蓝色光晶格“魔术”光波长值(389.9nm、359.8nm、345.2nm和335.8nm)及红色“魔术”光波长值813.4nm。
     (2)研制了689nm窄线宽激光系统。为了能够满足二级窄线宽冷却对冷却激光线宽的要求,实验利用PDH稳频技术将半导体激光器频率锁定在精细度为12000的高稳ULE参考腔上,激光线宽被压窄至150Hz以下。利用飞秒光频梳对窄线宽激光器的性能进行测试评估,在1秒处的频率稳定度为2.8×10-13,16秒平坦处的稳定度约为4.4×10-14。同时在实验上测试了不同阶次横模匹配情况下ULE腔的精细度,并结合腔内损耗理论分析了精细度与横模阶次的关系。
     (3)实验首次全面完成了对锶原子四种同位素互组跃迁线绝对光频率值的测量,其中对于87Sr(F=9/2→F’=7/2)和84Sr两跃迁的频率值是首次通过实验测量给出的数据结果。光纤飞秒光频梳(Menlo FC1500)的重复频率和偏置频率锁定在外参考氢钟(sigma-Tau)的10MHz射频频率源上,利用光频梳对窄线宽锶原子互组跃迁谱的绝对频率进行了测量,分别给出了锶原子四种同位素(88Sr、87Sr、86Sr和84Sr)六组互组跃迁线的绝对光频值。
     (4)首次提出并完成了一种可精确测量锶原子束横向速度分布的实验方法。利用两束独立但可同相位扫描的探测光和泵浦光,在锶原子束中观测到具有速度选择的高分辨锶原子互组跃迁谱。实验获得了测量精度为0.13m/s(对应的热学温度90μK),测得原子束的速度分布线型为一特殊“伞”形状,无法用常用的Maxwell-Boltzmann线型分布或是Lorentzian线型分布进行分析,我们在理论上进行了模拟计算并与实验结果取得了很好的吻合。相比较常用的激光诱导荧光测速方法,选择Lamb-dip测速方法可消除探测激光线宽、谱线功率增宽、同位素远失谐共振等其它谱线加宽的影响。实验对原子速度分布的精确测量能为原子钟钟频误差分析提供可靠的实验参数依据。
     (5)实验获得线宽为55kHz的高信噪比窄线宽锶原子互组跃迁谱线。在此高分辨光谱基础上对原子谱线加宽的各个因素进行了详细分析,实验上观测窄线宽原子塞曼分裂谱,并利用改变极化角度的方法来消除其中的交叉峰。同时观测了锶原子互组跃迁原子相干谱线,利用窄线宽激光探测V型三能级Zeeman子能级中EIT谱线,并获得了在单光子失谐但双光子共振情况下的EIT谱线。实验测得透明窗口线宽约为450kHz,为探索将原子相干技术应用到锶原子钟跃迁探测提供实验研究基础。
The measurement of time and frequency has always been fundamental in themankind’s everyday life, the foundation of the national economy, even an importantrole in scientific research. New kinds of clocks are revolutionizing time keeping withenormous consequences for science and technology, they are called optical clocks andas a new generation of atomic clocks based on optical transitions. Now, optical clocksbased on strontium neutral atoms are the new generation of frequency standards withstability and accuracy at the10-18level. Accuracy for the SI (International System ofUnits) second is currently defined by the Cs primary standard. However, strontiumoptical clocks have now achieved a lower systematic uncertainty. This systematicuncertainty will become accuracy once the SI second has been redefined. The coolingand trapping of strontium is the basis of the entire optical clock, it provides highquality factor Q of strontium atomic transition reference. This thesis mainly describesthe laser cooling and trapping of strontium: the first-stage broadband Doppler coolingusing the strong dipole allowed1S0→1P1transition at461nm with a natural width of32MHz, strontium atoms in this so called “Blue MOT” are Doppler cooled to a finaltemperature at~5mK level; the second-stage narrow-line cooling using theintercombination transition1S0→3P1which has a natural linewidth of7.6kHz, atomsin this so called “Red MOT” are cooled to a final temperature at~μK level. Thecontents of this thesis can be summarized as following:
     (1) The detailed experimental measurement of broadband cooling in the “Blue MOT”,radiation at461nm resonant with the dipole allowed transition1S0→1P1which isindeed very robust and for a typical choice of laser, the atoms are cooled reaching afinal temperature at about5mK. The first cooling transition is not perfectly closed,due to a small leakage towards the4d1D2state. In order to recycle the atoms stored inthe metastable states two repumping lasers, respectively at707nm and679nm can beused to pump these atoms. The experimental and theoretical investigations of thefrequency and power fluctuation of repumping lasers, impact on the cooling andtrapping of strontium atoms. More than3.1×108atoms have been trapped with the capture rate2.8×109s-1when the two repumping lasers added. An optical latticeconfinement can be employed to load atoms in so as to cancel Doppler、recoilfrequency shift and broadening resulting from thermal motional effects. However, theconservative force of optical dipole traps is much weaker than dissipative force ofDoppler cooling. The optical dipole trap depth of lattice is about only tens of μK.Owing to the singlet-triplet spin-forbidden narrow transition1S30P1at689nm(27.6kHz), it has a low Doppler cooling limit of180nK, which can be used assecond-stage cooling transition to cool mK atoms down to a few μK. The preliminaryexperimental results of second-stage narrow-line cooling of “Red MOT” have beenimplemented. About20%strontium atoms in the blue MOT are transferred to the redMOT using the release and recapture method. The theoretical calculation of "magic"wavelength with a.c. Stark shift cancellation has been introduced, the blue-detunedlattice “magic” wavelengths values (389.9nm,359.8nm,345.2nm and335.8nm) whilered-detuned lattice “magic” wavelength value813.4nm.
     (2) A linewidth reduction of the689nm laser from MHz to sub-kHz level is necessary,as a result of its nature linewidth of only7.6kHz. The laser linewidth is reduced lessthan150Hz by locking to the resonance of a high finesse cut-out ULE cavity withstandard Pound–Drever–Hall technique. The finesse of ULE cavity is12000measured in experiment using the cavity ring down technique. Combining afiber-based optical frequency comb, the Allan deviation for beat signal of stablenarrow689nm laser with fiber optical frequency comb is obtained, with a stability of2.8×1013at1s averaging time. The floor of the Allan deviation is about4.4×1014atan averaging time of16s. The finesse was measured using cavity ring downtechniques in different transverse modes of the cavity.
     (3) The optical frequency measurements are performed for four natural isotopes88Sr,86Sr,87Sr and84Sr, using a fiber frequency comb (Menlo FC1500) generatorreferenced to H maser(sigma-Tau)with the repetition rate and the carrier offsetenvelope frequency are locked to the H maser. The absolute optical frequencymeasurement values of84Sr and87S(rF=9/2→F’=7/2)was also given for the first time.
     (4) We have demonstrated that Lamb dip holes with velocity selection can be used forvelocimetry. We report measurements of the transverse velocity distribution ofalkaline-earth strontium atoms in a collimated atomic beam, using the stable narrow689nm laser corresponding to1S30P1intercombination transition. The use of anultrastable laser system and the narrow intercombination transition line of Sr atomswith the resolution of the measured velocity can reach0.13m/s, corresponding to90μK in energy units. The velocity or momentum distribution of the thermal atomicbeam is most likely to be Maxwell-Boltmann distribution or Lorentzian distribution.The experimental result of the distribution shape is in agreement well with thetheoretical predictions. The atomic beams have been widely used in the determinationof atomic structures, measurement of physical constants, studies of chemical reactionsand atomic frequency standards. Especially, for the second order Doppler effect andatomic clock frequency error analysis. In all these applications, measurement of thevelocity distribution of the atomic beams is both necessary and highly important.
     (5) We observe the intercombination transition spectroscopy of alkaline-earthstrontium, the saturation spectroscopy has been conducted with the minimumsub-Doppler width is55kHz, using a stable narrow689nm laser which is locked to ahigh fineness ultralow expansion (ULE) reference cavity. Experimental results andtheoretical explanations of spectra broadening factors have been introduced, such aspower broadening and collisional broadening. In the presence of external magneticfield, we observed a single, triplet or quintuplet spectral line with the differentpolarization angle. A new technique for elimination of crossover resonance is alsodemonstrated by changing the polarization pattern. The EIT effect is also investigatedexperimentally in the strontium atomic beam, using the V-type Zeeman three sublevelssystem of intercombination transition line with the linewidth of transparent window450kHz. It has provided a proposed EIT-based clock scheme using coherent couplingbetween the two states of optical clock transition.
引文
[1]漆贯荣.时间科学基础[M].高等教育出版社,2006.
    [2] L. Essen and J. V. L. Parry. A atomic standard of frequency and time interval[J], Nature.,1955,176280.
    [3] S. Bize, P. Wolf, M. Abgrall, L. Cacciapuoti, A. Clairon, J. Grunert, Ph. Laurent, P. Lemonde1,A.N. Luiten, I. Maksimovic, C. Mandache, H. Marion, F. Pereira Dos Santos, P. Rosenbusch,C. Salomon, G. Santarelli, Y. Sortais, M.E. Tobar, C. Vian, S. Zhang. Cold Atom Clocks,Precision Oscillators and Fundamental Tests[J], Lect. Notes Phys.,2004,648,189–207.
    [4]王正明.高精度守时对原子钟性能的要求.天文学进展[J],26,3,2008:288
    [5] T. M. Fortier et al. Precision Atomic Spectroscopy for Improved Limits on Variation of the FineStructure Constant and Local Position Invariance[J], Phys. Rev. Lett.,2007,98(7),070,801.
    [6] Lemonde, P. Optical lattice clocks[J], Eur. Phys. J. Special Topics,2009,172,81.
    [7] C. W. Chou, D. B. Hume, T. Rosenband, D. J. Wineland. Optical Clocks and Relativity[J],Science.,2010,329(5999),1630-1633.
    [8] T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R.E. Drullinger, T. M. Fortier, J. E. Stalnaker. Frequency ratio of Al+and Hg+single-ion opticalclocks; metrology at the17th decimal place[J], Science.,2008,319(5871),1808-1812.
    [9] A. Bauch. Caesium atomic clocks:function, performance and applications[J], Meas. Sci.Technol.2003,14,1159-1173.
    [10] Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T. Frequency comparison oftwo high-accuracy Al+optical clocks[J], Phys. Rev. Lett.,2010,104,70802.
    [11] M. Kasevich, E. Riis, S. Chu, and R. De Voe. rf spectroscopy in an atomic fountain[J], Phys.Rev. Lett.,1989,63(6),612-615.
    [12] S. A. Diddams et al. An Optical Clock Based on a Single Trapped199Hg+Ion[J], Science.,2001,293(5531),825.
    [13] H. Marion, F. Pereira Dos Santos, M. Abgrall, S. Zhang, Y. Sortais, S. Bize, I. Maksimovic, D.Calonico, J. Grunert, C. Mandache, P. Lemonde, G. Santarelli, Ph. Laurent, A. Clairon, and C.Salomon. A search for the variation of fundamental constants using atomic fountains[J], Phys.Rev. Lett.2003,90,15080
    [14] BIPM Annual Report on Time Activities,vol.4,2009,Bureau International Des Poids EtMesures
    [15]马龙生,光钟[J],2008,37,716-719.
    [16] K. Predehl et al. A920-Kilometer Optical Fiber Link for Frequency Metrology at the19thDecimal Place[J], Science.,2012,336(6080),441-444.
    [17] V. Gerginov, N. Nemitz, S. Weyers, R. Schroder, D. Griebsch, R. Wynands, Uncertaintyevaluation of the caesium fountain PTB-CSF2[J], Metrologia,2009,47,65-79
    [18] A. A. Madej, P. Dube, Z. Zhou, J. E. Bernard, and M. Gertsvolf.88Sr+445-THz Single-IonReference at the10-17Level via Control and Cancellation of Systematic Uncertainties and ItsMeasurement against the SI Second[J], Phys. Rev. Lett.,2012,109,203.
    [19] S. Falke, M. Misera, U. Sterr, C. Lisdat. Delivering pulsed and phase stable light to atoms of anoptical clock[J], Applied Physics B: Lasers and Optics.,2012,107(2),301-311.
    [20] U. Sterr et al. The optical calcium frequency standards of PTB and NIST[J], ComptesRendus Physique.,2004,5(8),845-855.
    [21] A. Taichenachev, V. Yudin, V. Ovsiannikov, V. Palchikov, C. Oates. Frequency Shifts in anOptical Lattice Clock Due to Magnetic-Dipole and Electric-Quadrupole Transitions[J], Phys.Rev. Lett.,2008,101,19.
    [22]黄秉英.新一代原子钟[M].武汉大学出版社,2008.
    [23]王义遒,王庆吉,傅济时,董太乾.量子频标原理[M].科学出版社,1986.
    [24] A. Ludlow. The Strontium Optical Lattice Clock: Optical Spectroscopy with Sub-HertzAccuracy[D]. University of Colorado,2008.
    [25] H. S. Margolis et al. Hertz-Level Measurement of the Optical Clock Frequency in a Single88Sr+Ion[J], Science.,2004,306,1355-1358.
    [26]周子超,魏荣,史春艳,吕德胜,李唐,王育竹. Progress of the87Rb fountain clock[J], ChinesePhysics Letter.,2009,26(12):123201.
    [27] A. Yamaguchi et al. Stability Transfer between Two Clock Lasers Operating at DifferentWavelengths for Absolute Frequency Measurement of Clock Transition in87Sr[J], AppliedPhysics Express.,2012,5,163.
    [28]阮军.守时型铯原子喷泉钟关键技术的研究和实现[D].中科院研究生院,2012.
    [29] T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L.Campbell, Ye J. Comparison of two independent Sr optical clocks with1×10-17stability at103s[J], Phys. Rev. Lett.,2012,109,230801
    [30] N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro,C. W. Oates, A. D. Ludlow. An atomic clock with10-18instability[J], Science.,2013,341(6151),1215-1218.
    [31] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang,S. L. Bromley, and J. Ye. A New Generation of Atomic Clocks: Accuracy and Stability at the10-18Level[J], Nature.,2014,71,506.
    [32] R. Le Targat, L. Lorini, Y. Le Coq, M. Zawada, J. Guéna, M. Abgrall, M. Gurov, P. Rosenbusch,D. G. Rovera, B. Nagórny, R. Gartman, P. G. Westergaard, M. E. Tobar, M. Lours, G. Santarelli,A. Clairon, S. Bize, P. Laurent, P. Lemonde, J. Lodewyck. Experimental realization of anoptical second with strontium lattice clocks[J], Nature Commun.,2013,4,2109.
    [33] H. Katori. Optical lattice clocks and quantum metrology [J], Nat. Photonics.,2011,5,203.
    [34] I. Courtillot, A. Quessada-Vial, A. Brusch, D. Kolker, G.D. Rovera, and P. Lemonde Accuratespectroscopy of Sr atoms[J], Eur. Phys. J. D.,2005,33,161-171
    [35] H. Katori, M. Takamoto, V. Pal'chikov, V. Ovsiannikov. Ultrastable Optical Clock with NeutralAtoms in an Engineered Light Shift Trap[J], Phys. Rev. Lett.,2003,91(17),173,005.
    [36] T. Ido, and H. Katori. Recoil-free spectroscopy of neutral Sr atoms in the Lamb-Dickeregime[J], Phys. Rev. Lett.,2003,91,053001.
    [37] M. Takamoto, F. L. Hong, R. Higashi, and H. Katori. An optical lattice clock[J], Nature,2005435,321.
    [38] Andrei Derevianko. Colloquium: Physics of optical lattice clocks[J], Rev. Mod. Phys.,2011,83(2),331-347.
    [39] Krzysztof Szymaniec, Sang Eon Park, Giuseppe Marra and Witold Cha upczak. First accuracyevaluation of the NPL-CsF2primary frequency standard[J], Metrologia.,2010, vol47,363–376.
    [40] J. Ye, H. J. Kimble, H. Katori. Quantum State Engineering and Precision Metrology UsingState-Insensitive Light Traps[J], Science.,2008,320(5884),1734-1738.
    [41] A. D. Ludlow et al. Sr Lattice Clock at1×10-16Fractional Uncertainty by Remote OpticalEvaluation with a Ca Clock[J], Science.,2008,319(5871),1805-1808.
    [42] S. Blatt et al. New Limits on Coupling of Fundamental Constants to Gravity Using87Sr OpticalLattice Clocks[J], Phys. Rev. Lett.,2008,100(14),140,801.
    [43] S. Falke et al. The87Sr optical frequency standard at PTB[J], Metrologia.,2011,48(5),399-407.
    [44] J. Lodewyck, P. Westergaard, P. Lemonde. Nondestructive measurement of the transitionprobability in a Sr optical lattice clock[J], Phys. Rev. A.,2009,79(6).
    [45] F. L. Hong et al. Measuring the frequency of a Sr optical lattice clock using a120km coherentoptical transfer[J], Optics letters.,2009,34(5),692-694.
    [46] P. Lemonde and P. Wolf. Optical lattice clock with atoms combined in a shallow trap[J], Phys.Rev. A.,2005,72(3),033,409.
    [47] N. Lemke et al. Spin-1/2optical lattice clock[J], Phys. Rev. Lett.,2009,103(6),063,001.
    [48] Xu X Y, Loftus T H, Dunn J W, Greene C H, Hall J L, Gallagher A, Ye J. Single-stagesub-Doppler cooling of alkaline earth atoms[J], Phys. Rev. Lett.,2003,90,193002-193005.
    [49] A.V.Taichenachev,V. I. Yudin, C.W. Oates, C.W. Hoyt,Z.W. Barber, and L. Hollberg. MagneticField-Induced Spectroscopy of Forbidden Optical Transitions with Application to Lattice BasedOptical Atomic Clocks,2006, Phys. Rev. Lett.96,083001.
    [50] Akatsuka, T., M. Takamoto, and H. Katori. Three-dimensional optical lattice clock withbosonic88Sr atoms,2010, Phys. Rev. A81,023402
    [51] M. Takamoto, T. Takano, H. Katori. Frequency comparison of optical lattice clocks beyond theDick limit[J], Nature Photonics.,2011,5(5),288-292.
    [52] M. D. Swallows et al. Operating a87Sr optical lattice clock with high precision and at highdensity[J], IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.,2012,59(3),416-425.
    [53] T. Middelmann et al. Tackling the Blackbody Shift in a Strontium Optical Lattice Clock[J],IEEE Transactions on Instrumentation and Measurement.,2011,2550-2557.
    [54] M. Safronova, S. G. Porsev, U. Safronova, M. Kozlov, C. W. Clark. Blackbody-radiation shiftin the Sr optical atomic clock[J], Phys. Rev. A.,2013,87(1),012,509.
    [55] Q. Wang, B. Lin, Y. Zhao, Y. Li, S. Wang, M. Wang, E. Zang, T. Li and Z. Fang.Magneto-Optical Trapping of88Sr atoms with689nm Laser[J], Chin. Phys. Lett.,2011,28,033201.
    [56]林弋戈.应用于锶原子光晶格钟的窄线宽激光技术研究[D].北京理工大学,2013.
    [57] Y. Lin, Q. Wang, Y. Li, B. Lin, S. Wang, F. Meng, Y. Zhao, J. Cao, E. Zang, T. Li, Z. Fang.Magnetic field induced spectroscopy of88Sr atoms probed with a10Hz linewidth laser[J],Chin. Phys. Lett.2013,30,014206
    [58] V. I. Yudin et al. Atomic Clocks with Suppressed Blackbody Radiation Shift[J], Phys. Rev.Lett.,2011,107(3),030,801.
    [59]张靖.原子物理学讲义[M].山西大学光电研究所,2006.
    [60] Pierre Meystre. Atom optics[M]. Springer2001
    [61]王义遒.原子的激光冷却与陷俘[M].北京大学出版社,2007,358.
    [62] Y. Castin, H. Wallis, J. Dalibard. Limit of Doppler cooling[J], J. Opt. Soc. Am. B.,1989,6(11),2046-2057.
    [63] W. D. Phillips, J. V. Prodan, and H. J. Metcalf. Laser cooling and electromagnetic trapping ofneutral atoms[J], J. Opt. Soc. Am. B.,1985,2(11),1751.
    [64] R. Santra, K. Christ, C. Greene. Properties of metastable alkaline-earth-metal atoms calculatedusing an accurate effective core potential[J], Phys. Rev. A.2004,69(4),042,510.
    [65] X. Xu, H. Loftus, L. Hall, Alan Gallagher, J. Ye. Cooling and trapping of atomic strontium[J], J.Opt. Soc. Am. B.,2003,20,968.
    [66]王心亮,马喆,王靖斌,田晓,高峰,张首刚,常宏,利用补偿线圈提高塞曼减速器效率的理论及实验研究[J],量子光学学报,2011,17,124-129.
    [67] A. Ludlow et al. Systematic study of the87Sr clock transition in an optical lattice[J], Phys. Rev.Lett.,2006,96(3),033,003.
    [68] R. Le Targat et al. Accurate optical lattice clock with87Sr atoms[J], Phys. Rev. Lett.,2006,97(13),130,801.
    [69] S. Bize, et al. Cold atom clocks and applications[J], Journal of Physics B: Atomic, Molecularand Optical Physics.,2005,38, S449.
    [70] M. Takamoto, H. Katori. Coherence of Spin-Polarized Fermions Interacting with a Clock Laserin a Stark-Shift-Free Optical Lattice[J], Journal of the Physical Society of Japan.,2008,78(1),013,301.
    [71] B. J. DeSalvo, M. Yan, P. G. Mickelson, Y. N. Martinez de Escobar, and T. C. Killian.Degenerate fermi gas of87Sr[J], Phys. Rev. Lett.,2010,105,030402.
    [72] Y. N. Martinez de Escobar, P.G. Mickelson, M. Yan, B. J. DeSalvo, S. B. Nagel, and T. C.Killian. Bose-Einstein Condensation of84Sr[J], Phys. Rev. Lett.,2009,103,200402.
    [73] Loftus T H, Ido T, Boyd M M, Ludlow A D, Ye J. Narrow line cooling and momentum-spacecrystals[J], Phys. Rev. A.,2004,70,63413-63426
    [74] T. Mukaiyama, H. Katori, T. Ido, Y. Li, and M. Kuwata-Gonokami. Recoil-limited laser coolingof87Sr Atoms near the Fermi Temperature[J], Phys. Rev. Lett.,2003,90,11.
    [75] S. Stellmer, M. K. Tey, B. Huang, R. Grimm. Bose-Einstein condensation of strontium[J], Phys.Rev. Lett.,2009,103(20),200..
    [76] M. K. Tey, S. Stellmer, R. Grimm, F. Schreck. Double-degenerate Bose-Fermi mixture ofstrontium[J], Phys. Rev. A.,2010,82,011,608.
    [77] T. Akatsuka, M. Takamoto, H. Katori. Optical lattice clocks with non-interacting bosons andfermions[J], Nature Physics.,2008,4(12),954-959.
    [78] K. Gibble. Decoherence and Collisional Frequency Shifts of Trapped Bosons and Fermions[J],Phys. Rev. Lett.,2009,103(11),113,202.
    [79] J. Sherman et al. High-Accuracy Measurement of Atomic Polarizability in an Optical LatticeClock[J], Phys. Rev. Lett.,2012,108(15),153,002.
    [80] H. Katori, T. Ido, Y. Isoya, M. Kuwata-Gonokami. Magneto-Optical Trapping and Cooling ofStrontium Atoms down to the Photon Recoil Temperature[J], Phys. Rev. Lett.,1999,82(6),1116-1119.
    [81] T. Binnewies et al. Doppler cooling and trapping on forbidden transitions[J], Phys. Rev. Lett.,2001,87(12),123,002.
    [82] R. Maruyama, R. Wynar, M. Romalis, A. Andalkar, M. Swallows, C. Pearson, E. Fortson.Investigation of sub-Doppler cooling in an ytterbium magneto-optical trap[J], Phys. Rev.A.,2003,68(1),011,403.
    [83]阎树斌.用于腔量子电动力学实验的铯原子双磁光阱及其冷原子输运研究[D].山西大学,2006.
    [84] M. G. Tarallo et al. Generation of a laser beam for gravitational wave detectors by means of anonspherical Fabry-Perot resonator[J], Applied Optics.,2007,46(26),6648-6654.
    [85] F. Gerbier and J. Dalibard. Gauge fields for ultracold atoms in optical superlattices[J], NewJournal of Physics.,2010,12,033,007.
    [86] J. Weiner, V. S. Bagnato, S. Zilio, P. S. Julienne. Experiments and theory in cold and ultracoldcollisions[J], Reviews of Modern Physics.,1999,71,85.
    [87] N. D. Lemke et al. p-Wave cold collisions in an optical lattice clock[J], Phys. Rev. Lett.,2011,107(10),103,902.
    [88] C. Lisdat, J. S. R. Vellore Winfred, T. Middelmann, F. Riehle, U. Sterr. Collisional Losses,Decoherence, and Frequency Shifts in Optical Lattice Clocks with Bosons[J], Phys. Rev. Lett.,2009,103(9),090,801.
    [89] P. G. Westergaard et al. Lattice-Induced Frequency Shifts in Sr Optical Lattice Clocks at the10-17Level[J], Phys. Rev. Lett.,2011,106(21),210,801.
    [90] J. Simon et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice[J],Nature.,2011,472(7343),307-312.
    [91] D L.Handbook of chemistry and physics[M].2010.CRC Press,2010:136-137
    [92] Takamoto, M., H. Katori, S. I. Marmo, V. D. Ovsiannikov, and V. G. Pal’chikov. Prospects forOptical Clocks with a Blue-Detuned Lattice[J], Phys. Rev. Lett.2009,102,063002.
    [93] Z. Yu and C. J. Pethick. Clock Shifts of Optical Transitions in Ultracold Atomic Gases[J], Phys.Rev. Lett.,2010,104(1),010,80.
    [94] Katori, H., T. Ido, and M. Kuwata-Gonokami. Optimal Design of Dipole Potentials forEfficient Loading of Sr Atoms[J], J. Phys. Soc. Jpn.1999,68,2479.
    [95] Courtillot I, Quessada A, Kovacich R P, Zondy J J, Landragin A, Clairon A, Lemonde P.Efficient cooling and trapping of strontium atoms[J], Opt. Lett.,2003,28,468-470
    [96]高峰,常宏,王心亮,田晓,张首刚.锶原子Doppler冷却中再抽运光对原子俘获影响,理论和实验研究[J],物理学报.,2011, Vol60,050601.
    [97] Z. Xiong, Y Long, H. Xiao, X. Zhang, L. He, and B. Lv. Maximized cooling efficiency for aZeeman slower operating at optimized magnetic field profile[J],Chin. Opt. Lett.20119,010201.
    [98]吴慧.锶光钟原子的塞曼减速与蓝光磁光阱[D].中科院研究生院,2009.
    [99]王心亮.用于87Sr冷原子光晶格钟原子冷却装置的塞曼减速器研究[D].西北大学,2008.
    [100]达道安.真空设计手册(第三版)[M].国防工业出版社.
    [101]常宏,张首刚,王心亮,田晓.基准原子钟的发展及国家授时中心光学原子钟的研制进展[J],中国科学2010,40,616-622.
    [102]田晓,王心亮,常宏,张首刚,利用塞曼减速法实现锶同位素的磁光阱俘获[J],光学学报2010,30(3),898-902.
    [103]田晓,王心亮,马喆,高峰,张首刚,常宏.锶原子多普勒冷却温度的测量[J],量子光学学报,2010,16,289-293.
    [104]高峰,王叶兵,田晓,许朋,常宏.锶原子三重态谱线的观测及在光钟中的应用[J],物理学报.2012,61,173201.
    [105]王叶兵,陈洁,田晓,高峰,常宏.锶原子互组跃迁谱的实验研究[J],物理学报.2012,61,020601.
    [106] Ido T, Loftus T H, Boyd M M, Ludlow A D, Holman K W, Ye J. Precision spectroscopy anddensity-dependent frequency shifts in ultracold Sr[J], Phys. Rev. Lett.,2005,94,153001.
    [107] W. Itano et al. Quantum projection noise: Population fluctuations in two-level systems[J],Phys. Rev. A.1993,47(5),3554-3570.
    [108] Eric D. Black. An introduction to Pound–Drever–Hall laser frequency stabilization[J], Am. J.Phys.,2001,69,79-87.
    [109] M. Notcutt, L.-S. Ma, J. Ye, and J. L. Hall. Simple and compact1-Hz laser system via animproved mounting configuration of a reference cavity[J], Optics letters.,2005,30(1),1815-1817.
    [110] B. Young, F. Cruz, W. Itano, J. Bergquist. Visible Lasers with Subhertz Linewidths[J], Phys.Rev. Lett.,1999,82(19),3799-3802.
    [111] A. D. Ludlow et al. Compact, thermal-noise-limited optical cavity for diode laser stabilizationat1×10-15[J], Optics letters.,2007,32(6),641-643.
    [112] R. Grimm, M. Weidemuller, Y. B. Ovchinnikov. Optical dipole traps for neutral atoms[J],Advances in Atomic, Molecular and Optical Physics.,2000,42,95,170.
    [113] Y. Y. Jiang et al. Making optical atomic clocks more stable with10-16level laserstabilization[J], Nature Photonics.,2011,5(3),158-161.
    [114] T. Kessler et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal opticalcavity[J], Nature Photonics.,2012,6(10),687-692.
    [115]蓝信钜激光技术(第三版)[M].科学出版社.
    [116] L.-S. Ma, P. Jungner, J. Ye, J. L. Hall. Delivering the same optical frequency at two places:accurate cancellation of phase noise introduced by an optical fiber or other time varying path[J],Optics letters.,1994,19(21),1777-1779.
    [117] Zhang Jing, Chenguang Ye, Feng Gao, Min Xiao. Phase-sensitive manipulations of squeezedvacuum field in an optical parametric amplifier inside an optical cavity[J], Phys. Rev. Lett.,2008,101,233602.
    [118] M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, J. Ye. Broadband Cavity RingdownSpectroscopy for Sensitive and Rapid Molecular Detection[J], Science.,2006,311(5767),1595-1599.
    [119] G. D. Cole, W. Zhang, M. J. Martin, J. Ye, M. Aspelmeyer. Tenfold reduction of Browniannoise in high-reflectivity optical coatings [J], Nature Phononics,2013,7,644.
    [120] D. Meiser, J. Ye, D. Carlson, M. Holland. Prospects for a Millihertz-Linewidth Laser[J], Phys.Rev. Lett.,2009,16,102.
    [121] M. Notcutt, L. Ma, A. Ludlow, S. Foreman, J. Ye, J. Hall. Contribution of thermal noise tofrequency stability of rigid optical cavity via Hertz-linewidth lasers[J], Phys. Rev. A.2006,73(3),031,804(R)
    [122] M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, R. L. Byer. Dynamic response ofa Fabry-Perot interferometer[J], J. Opt. Soc. Am. B.1999,16(4),523-532.
    [123] C. Salomon, D. Hils, J. L. Hall. Laser stabilization at the millihertz level[J], J. Opt. Soc. Am.B.1988,5,1576-1587.
    [124] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward.Laser phase and frequency stabilization using an optical resonator [J], Appl. Phys. B,1983,31,97-105.
    [125] T. Legero, T. Kessler, U. Sterr. Tuning the thermal expansion properties of optical referencecavities with fused silica mirrors[J], J. Opt. Soc. Am. B.,2010,27(5),914.
    [126] S. Seel, R. Storz, G. Ruoso, J. Mlynek, S. Schiller. Cryogenic Optical Resonators: A New Toolfor Laser Frequency Stabilization at the1Hz Level[J], Phys. Rev. Lett.,1997,78(25),4741-4744.
    [127] S. Webster and P. Gill. Force-insensitive optical cavity[J], Optics letters.,2011,36(18),3572.
    [128] S. Vogt et al. Demonstration of a transportable1Hz-linewidth laser[J], Applied Physics B:Lasers and Optics.,2011,104(4),741-745.
    [129] C. A. Swenson. Recommended Values for the Thermal Expansivity of Silicon from0to1000K[J], Journal of Physical and Chemical Reference Data.,1983,12(2),179-182.
    [130] S. A. Webster, M. Oxborrow, P. Gill. Vibration insensitive optical cavity[J], Phys. Rev. A.,2007,75(1),011,801(R).
    [131] J.-P. Richard, J. J. Hamilton. Cryogenic monocrystalline silicon Fabry-Perot cavity for thestabilization of laser frequency[J], Review of Scientific Instruments.,1991,62,2375-2378.
    [132] R. W. Fox. Temperature analysis of low-expansion Fabry-Perot cavities[J], Optics Express.,2009,17(17),15,023.
    [133] J. Millo et al. Ultrastable lasers based on vibration insensitive cavities[J], Phys. Rev. A.,2009,79(5).
    [134] G. White. Reference materials for thermal expansion: certified or not[J], ThermochimicaActa.,1993,218,83-99.
    [135] C. Taylor, M. Notcutt, E. K. Wong, A. Mann, D. Blair. Measurement of the thermal expansioncoefficient of an all-sapphire optical cavity[J], Instrumentation and Measurement, IEEETransactions.,1997,46(2),183-185.
    [136] R. W. P. Drever et al. Laser phase and frequency stabilization using an optical resonator[J],Applied Physics B.,1983,31,97-105.
    [137] T. Day, E. Gustafson, R. Byer. Sub-hertz relative frequency stabilization of two-diodelaser-pumped Nd:YAG lasers locked to a Fabry-Perot interferometer[J], IEEE Journal ofQuantum Electronics.,1992,28(4),1106-1117.
    [138] R. Jason Jones, I. Thomann, J. Ye. Precision stabilization of femtosecond lasers tohigh-finesse optical cavities[J], Phys. Rev. A.,2004,69(5),051,803.
    [139]高峰,刘辉,许朋,王叶兵,田晓,常宏.用于互组跃迁谱测量的窄线宽激光系统[J],物理学报.2014
    [140] O. Mor, A. Arie. Performance analysis of Drever-Hall laser frequency stabilization using aproportional integral servo[J], Quantum Electronics, IEEE Journal.1997,33(4),532-540.
    [141] E. Bava, G. Galzerano, C. Svelto. Amplitude and frequency noise sensitivities of opticalfrequency discriminators based on Fabry-Perot interferometers and the frequency modulationtechnique[J], Review of Scientific Instruments.,2006,77(12),123,106.
    [142] D. Hils, J. L. Hall. Response of a Fabry-Perot cavity to phase modulated light[J], Review ofScientific Instruments.,1987,58,1406-1412.
    [143] P. R. Saulson. Thermal noise in mechanical experiments[J], Physical Review D.,1990,42,2437-2445.
    [144] T. Kessler, T. Legero, U. Sterr. Thermal noise in optical cavities revisited[J], J. Opt. Soc. Am.B.,2012,29(1),178-184.
    [145] K. Numata, A. Kemery, J. Camp. Thermal-Noise Limit in the Frequency Stabilization ofLasers with Rigid Cavities[J], Phys. Rev. Lett.,2004,93(25),250,602.
    [146] V. B. Braginsky, S. P. Vyatchanin. Thermo dynamical fluctuations in optical mirror coatings[J],Physics Letters A.,2003,312,244-255.
    [147] M. Evans, S. Ballmer, M. Fejer, P. Fritschel, G. Harry, G. Ogin. Thermo-optic noise in coatedmirrors for high-precision optical measurements[J], Physical Review D.,2008,78(10),102,003.
    [148] M. L. Gorodetsky. Thermal noises and noise compensation in high-reflection multilayercoating[J], Physics Letters A.,2008,372(46),6813-6822.
    [149] I. P. Kaminow, E. H. Turner. Electrooptic light modulators[J], Applied Optics.,1966,5(10),1612-1628.
    [150] H Q Chen, Y Y Jiang, Z Y Bi and L S Ma. Progress and trend of narrow linewidth lasers[J],Science China Technological Sciences,2013,56,1589-1596.
    [151] D. Romanini, A.A. Kachanov, N. Sadeghi, F. Stoeckel. CW cavity ring down spectroscopy[J],Chem. Phys. Lett.1997,264,316.
    [152] L. Chen et al. Vibration-induced elastic deformation of Fabry-Perot cavities[J], Phys. Rev. A.,2006,74(5),053,801.
    [153] S. D. Penn et al. High quality factor measured in fused silica[J], Review of ScientificInstruments.,2001,72(9),3670-3673.
    [154] G. Rempe, R. J. Thompson, H. J. Kimble, R. Lalezari. Measurement of ultralow losses in anoptical interferometer[J], Optics letters.,1992,17(5),363-365.
    [155] T. M. Fortier et al. Generation of ultrastable microwaves via optical frequency division[J],Nature Photonics.,2011,5(7),425-429.
    [156] V. B. Braginsky, S. P. Vyatchanin. Thermodynamical fluctuations in optical mirror coatings[J],Physics Letters A.,2003,312(3-4),244-255.
    [157] J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, T. W. Hansch. Subhertz linewidth diodelasers by stabilization to vibrationally and thermally compensated ultralow-expansion glassFabry-Perot cavities[J], Phys. Rev. A.,2008,77(5),053.
    [158] C. J. Hood, H. J. Kimble, J. Ye. Characterization of high-finesse mirrors: Loss, phase shifts,and mode structure in an optical cavity[J], Phys. Rev. A.,2001,64(3),33,804.
    [159] H. Kimble, B. Lev, J. Ye. Optical Interferometers with Reduced Sensitivity to ThermalNoise[J], Phys. Rev. Lett.,2008,101(26),260.
    [160] S. Blatt. High Precision Spectroscopy of Strontium in an Optical Lattice: Towards a NewStandard for Frequency and Time[D]. University of Colorado,2007.
    [161]刘辉.锶原子(5s2)1S0-(5s5p)3P1跃迁热原子束荧光谱特性研究[D].中科院研究生院,2013.
    [162]丛东亮.锶原子束二维准直研究以及互组跃迁荧光探测器研制[D].中科院研究生院,2013.
    [163] Dong Ik Kim, Hyug-Gyo Rhee, Jae-Bong Song, and Yun-Woo Lee. Laser output powerstabilization for direct laser writing system by using an acousto-optic modulator[J], Rev. Sci.Instrum.2007,78,103110.
    [164] Ben E. Sherlock and Ifan G. Hughes. How weak is a weak probe in laser spectroscopy?[J],Am. J. Phys.2009,77,111.
    [165] Dicke, R. H., The Effect of Collisions upon the Doppler Width of Spectral Lines [J], Phys.Rev.1953,89,472.
    [166] S. Cundiff, J. Ye. Colloquium: Femtosecond optical frequency combs[J], Rev. Mod. Phys.,2003,75(1),325-342.
    [167]董绍武.守时型原子钟及其应用[J],电子测量与仪器学报.2004,490.[16].
    [168] T. Udem, R. Holzwarth, and T. Hansch. Optical frequency metrology[J], Nature.,2002,416(6877),233-237.
    [169] C. Gohle et al. A frequency comb in the extreme ultraviolet[J], Nature.,2005,436,234-237.
    [170] C. Yost et al. Vacuum-ultraviolet frequency combs from below-threshold harmonics[J],Nature Physics.,2009,5,815-820.
    [171] F. Adler et al. Mid-infrared Fourier transform spectroscopy with a broadband frequencycomb[J], Optics Express.,2010,18(21),861-872.
    [172] D. J. Jones et al. Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers andDirect Optical Frequency Synthesis[J], Science.,2000,288(5466),635-639.
    [173] A. Ruehl et al. Ultrabroadband coherent supercontinuum frequency comb[J], Phys. Rev. A.2011,84(1),806.
    [174] C. Benko et al. Full phase stabilization of a Yb: fiber femtosecond frequency comb viahigh-bandwidth transducers[J], Optics letters.,2012,37(12),2196-2198.
    [175] S. T. Dawkins, J. J. McFerran, A. N. Luiten. Considerations on the measurement of thestability of oscillators with frequency counters[J], IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control.,2007,54,918-925.
    [176] S. Foreman. Femtosecond Frequency Combs for Optical Clocks and Timing Transfer[D],University of Colorado,2007.
    [177] Feng Gao, Hui Liu, Peng Xu, Xiao Tian, Ye Wang, Jie Ren, Haibin Wu, Hong Chang.Precision measurement of transverse velocity distribution of a Strontium atomic beam[J], AIPAdvances.,2014,4,027118.
    [178] N. Poli, F. Y. Wang, M. G. Tarallo, A. Alberti, M. Prevedelli, and G. M. Tino. Precisionmeasurement of gravity with cold atoms in an optical lattice and comparison with a classicalgravimeter[J], Phys. Rev. Lett.2011,1069,038501.
    [179] Holmgren W F, Revelle M C, Lonij V P A and Cronin A D. Absolute and ratio measurementsof the polarizability of Na, K, and Rb with an atom interferometer[J], Phys. Rev. A.,2010,81053607.
    [180] Tikhonov G, Wong K, Kasperovich V and Kresin V V. Velocity distribution measurement andtwo-wire field effects for electric deflection of a neutral supersonic cluster beam[J], Rev. Sci.Instrum.2002,731204.
    [181] ChristenW, Krause T, Kobin B and Rademann K. Precision velocity measurements of pulsedsupersonic jets[J], J. Phys. Chem. A,2011,115,6997–7004.
    [182] Gustavson T L, Bouyer P and Kasevich M A. Precision rotation measurements with an atominterferometer gyroscope[J], Phys. Rev. Lett.1997,78,2046.
    [183] A. Denning, A. Booth, S. Lee, M. Amonson, S. D. Bergeson.Generation of cold low divergentatomic beam of indium by laser ablation[J], Rev. Sci. Instrum.2009,80,047101.
    [184] William F Holmgren, Ivan Hromada, Catherine E Klauss and Alexander D Cronin. Atombeam velocity measurements using phase choppers[J], New J. Phys.2011,13,115007.
    [185] D Milic, M D Hoogerland, K G H Baldwin and R E Scholten. Transverse laser cooling of avelocity-selected sodium atomic beam[J],Quantum Semiclass. Opt.1996,8,629–640.
    [186] A. D. Gazazyan, R. G. Unanyan. On the Possibility of Narrowing the Velocity Distribution ofan Atomic Beam with Laser Radiation[J], Laser Physics,1995,5,1179-1183.
    [187] P. T. Greenland, M A Lauder and D J H Wort. Atomic beam velocity distributions[J], J. Phys.D: Appl. Phys.1985,181223.
    [188]赵建明,赵延霆,黄涛,肖连团,贾锁堂.双抽运光作用电磁感应透明的实验研究[J],物理学报2004,53,1023-1026
    [189] I. Bloch, J. Dalibard, S. Nascimbene. Quantum simulations with ultracold quantum gases[J],Nature Physics.,2012,8(4),267-276.
    [190] Robin Santra, Ennio Arimondo, Tetsuya Ido, Chris H. Greene, Jun Ye. High-AccuracyOptical Clock via Three-Level Coherence in Neutral Bosonic88Sr[J], Phys. Rev. Lett.2005,94,173002.
    [191] Deshui Yu and Jingbiao Chen. Optical Clock with Millihertz Linewidth Based on aPhase-Matching Effect[J], Phys. Rev. Lett.2007,98,050801.
    [192] S. M. Foreman et al. Remote transfer of ultrastable frequency references via fiber networks[J],Review of Scientific Instruments.,2007,78(2),021,101.
    [193] S. Will et al. Time-resolved observation of coherent multi-body interactions in quantum phaserevivals[J], Nature.,2010,465(7295),197-201.
    [194] X. Zhang, C. L. Hung, S. K. Tung, C. Chin. Observation of Quantum Criticality withUltracold Atoms in Optical Lattices[J], Science.,2012,335(6072),1070-1072.
    [195] M. D. Swallows et al. Suppression of Collisional Shifts in a Strongly Interacting LatticeClock[J], Science.,2011,331(6020),1043-1046.
    [196] J. Chan et al. Laser cooling of a nanomechanical oscillator into its quantum ground state[J],Nature.,2011,478(7367),89-92.
    [197] T. R. Schibli et al. Optical frequency comb with submillihertz linewidth and more than10Waverage power[J], Nature Photonics.,2008,2(6),355-359.
    [198] M. J. Thorpe, L. Rippe, T. M. Fortier, M. S. Kirchner, and T. Rosenband. Frequencystabilization to6×10-16via spectral-hole burning[J], Nature Photonics.,2011,5(11),688-693.
    [199] D. Meiser, J. Ye, M. J. Holland. Spin squeezing in optical lattice clocks via lattice-based QNDmeasurements[J], New Journal of Physics.,2008,10(7),073,014.
    [200] A. Daley, M. Boyd, J. Ye, P. Zoller. Quantum Computing with Alkaline-Earth-Metal Atoms[J],Phys. Rev. Lett.,2008,101,17.
    [201] A. Gorshkov et al. Alkaline-Earth-Metal Atoms as Few-Qubit Quantum Registers[J], Phys.Rev. Lett.,2009,102,11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700