用户名: 密码: 验证码:
人工内耳淋巴液模拟环境对嗅球神经干细胞体外培养的实验性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     感音神经性耳聋作为临床上的一种常见疾病,严重影响着现代社会人们的生活,临床上应用助听器及人工耳蜗植入技术从一定程度上改善了患者的听力。但在临床应用领域具有一定的局限性。干细胞替代治疗作为一种取代受损毛细胞及相关听觉通路神经元的潜在手段,越来越受到人们的关注。目前,多个实验室致力于将干细胞或前体细胞(NSC/NPCS)移植进入耳蜗、听觉通路并且希望通过干细胞的植入取代受损的毛细胞、螺旋神经元或听觉通路其他神经元而促进听觉功能恢复。移植物进入宿主体内大多发生细胞凋亡(又称程序性的死亡),是由于免疫排斥因素、移植区微环境等原因造成。例如胚胎干细胞、成体干细胞或复合型干细胞通过圆窗或中阶分别进入外淋巴液环境或内淋巴液环境,在较短时间内出现大量干细胞坏死和凋亡,仅有少量细胞生存。了解内外淋巴液环境与移植干细胞的关系能够提供有效途径去了解和探测内耳淋巴液环境作为移植环境对于移植物的影响,并可以进一步通过调控对微环境和移植物造成影响,为进一步医学探索提供依据,因此研究内外淋巴液环境与干细胞机理有助于找到有效的移植途径。
     方法:
     1.胚胎大鼠嗅球NSC/NPCS的分离、培养、鉴定。
     取E12.5-14.SD大鼠胚胎的嗅球组织,体外培养嗅球神经干细胞并传代,显微镜下观察嗅球神经干细胞的生长状况,并且用Nestin等抗体对培养的嗅球神经干细胞进行鉴定。
     2.人工内耳淋巴液模拟环境对胚胎大鼠嗅神经干细胞影响的研究
     运用MTT法在内耳淋巴液模拟环境体外培养12h/24h/48h后对细胞活力进行观察;观察不同时间点流式细胞仪测定NSCs/NPCs的凋亡率、早晚期凋亡细胞比率变化;观察Caspase-3酶的活性变化;并运用光学显微镜、透射电镜对内耳淋巴液离子环境引起的NSCs/NPCs形态学的变化进行分析。
     3.改变内外淋巴液离子组分浓度对嗅球干细胞凋亡机制的研究
     用含有5mM,30mM,50mM,70mM,150mM钾离子浓度的类似内淋巴液培养基,观察干细胞在以上溶液处理24h后的变化。运用MTT法对不同钾离子浓度类似内淋巴液培养基处理24h的细胞活力进行观察;观察流式细胞仪测定的细胞凋亡率、早晚期凋亡比率变化;观察Caspase-3酶的活性变化;Hoechst3342-PI染色观察凋亡形态学变化;并运用光学显微镜、透射电镜对内耳淋巴液离子环境引起的NSCs/NPCs形态学的变化进行分析。
     结果:
     含有外淋巴液的培养基在所有时间段的细胞活力、生存率、活细胞数均好于内淋巴液组;外淋巴液组在48h时细胞凋亡率才出现明显的上升趋势,而内淋巴液组在12h时就出现凋亡率的大幅度上升;对24h内外淋巴液光镜和电镜的形态学观察发现:内淋巴液组出现的是局部细胞突发性死亡,以细胞坏死为主而外淋巴液组则是缓慢出现的凋亡细胞小体,并且周围细胞大多正常。
     不同浓度的钾离子造成嗅球干细胞生存凋亡状况的不同,其中150mM的细胞活力最低,坏死细胞和晚期凋亡细胞数最多且活细胞比率最少,而5mM和30mM组细胞的活力以及活细胞数是最多的。并且K+>50mM后Caspase-3随着钾离子浓度的升高而升高激活,提示细胞培养基中的钾离子浓度与Caspase-3的激活相关。其中30mM组细胞活力在各组中最好,且凋亡率低,我们考虑与文献上所报道的细胞外液中的高钾离子浓度(25mM)可以促进干细胞分化增殖,并且减少凋亡具有相关性。本实验发现干细胞的增殖和分化很大程度上被培养基中钾离子的浓度所决定,K+浓度不同对嗅球干细胞的活性影响就不同。K+浓度的变化与干细胞凋亡、坏死的发生密切相关,30mM的细胞外K+浓度可以减少凋亡细胞发生的比率,而>50mM浓度时,高钾离子不但不能增加细胞活力,减少凋亡发生,而且成为细胞凋亡坏死的相关因素之一。
     结论:
     1.从孕12.5-14.5大鼠胚胎嗅球组织中可以分离并且培养出具有干细胞增殖、分化能力且能够稳定传代的NSCs/NPCs。
     2.内淋巴液环境与外淋巴液环境相比对于干细胞的生存更为不利;干细胞在内耳中大量死亡、坏死并且大多数不能迁移到内耳毛细胞所在的位置可能与内耳的淋巴液环境中高钾的环境有关。
     3.钾离子浓度的变化可以引发干细胞凋亡和坏死,并且细胞外液中过高的钾离子浓度,不再是凋亡的抑制因素,可以成为细胞剧烈性坏死的促发因素之一。
Objective
     Sensorineural hearing loss (SNHL) is one of the most common disabilities. Hearing depends largely on hair cells (HCs) and their associated spiral ganglion neurons (SGNs), and defects in these cells produce permanent deafness. In mammalian, the cochlear HCs and SGNs do not regenerate or repair naturally following severe injury. Recently, several mammalian stem cell lines have suc-cessfully via the scala tympani, scala media and the scala vestibuli compartments transplanted into the perilymph (extracellular-like fluid, high Na+ low K+) and endolymph (intracellular-like fluid, high K+ low Na+), arrived at different posi-tions of inner ear, survived and differentiated into a variety of cell types. How-ever, It was reported that the survival rate of the cell grafts was comparatively low, the majority of transplanted stem cells may appotosis or die after trans-planted into new enviroment, it is hard to find the engrafted cells integrate into the cochlea epithelium and differentiate into new hair cell via inner ear fluids, indicating that inner fluids microenviroment especially the endolymph might be an challenging factor of transplanted cells survival. Moreover, until recently, the effect of inner ear fluids especially endolymph on the engrafted cells is still un-clear. In our experiment, we observated the inner ear lymphatic simulation envi-roment how affects the fates of NSCs in vitro culture experimental study and ex-plore high K+ how affect the survival and apoptosis feature of NSCs.
     Methods:
     1.Isolation and identification of neural stem cells derived from the olfactory bulb.
     We obtained the neural stem cells from the olfactory bulb of E12.5-14.5 SD rats embryos, observed the survival and passage ability, and then identified of neural stem cells derived from the olfactory bulb
     2. This study was designed to firstly investigate the effect of artificial endo-lymph and perilymph on neural precursor cells(NPCs) from the aspect of survival and apoptosis features.
     We had obtained and culture NSCs from olfactory bulb at the embryonic day 12.5–14.5 and prepare artifical PL, artifical EL. Then NSCs were exposed to artifical PL and artifical EL medium 24h and observed the changes.
     3. This study was designed to investigate the effect of artificial endolymph with altering potassium concentration medium on neural stem cells(NSCs) from the aspect of survival and apoptosis features.
     5mM, 30 mM, 50 mM, 70 mM, 150 mM potassium concentration of artifi-cial endolymph like solution cultured NSCs 24h consecutively. Cell viability, apoptosis rate and morphology changes were observed.
     Results:
     1.NSCs can obtained from olfactory bulb neural stem cells of SD rats em-bryos, the cell spheres in vitro culture, survived well and were stained nestin positive.
     2. The cell viability and survival rate of NSCs of artificial EL medium was lower than artificial PL solutions medium. Also, most of cells were late apoptotic and necrotic cells in artificial EL medium .
     3. The results indicated that under the condition of 150mM and 70 mM po-tassium concentration solutions medium, the cell viability and survival rate of NPCs was lower than 5 mM and 30 mM potassium concentration solutions. Also, most of cells were late apoptotic and necrotic cells.
     Conclusion:
     1. These indicated that those cells were stained with neural stem cells marker. They hold the self-renewal ability and could generate daughter cells through asymmetric cell divisions.
     2. The endolymph is a challengeing environment for engraft stem cells.
     3. The high potassium concentration of endolymph might play an unex-pected role in the aspect of survival and apoptosis of transplanted stem cells and neural progenitor cells into inner ear.
引文
[1] Gretchen Vogel,et al .Breakthrough of the year Reprogramming Cells [J]. Science 2008;12(322):1766-1767
    [2] Reynolds BA,Weiss S,et al Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system [J]. Science 1992;255(5052):1707-10.
    [3] Weiss S,Reynolds BA,Vescovi AL,Morshead C,Craig CG,van der Kooy D.Is there a neural stem cell in the mammalian forebrain? [J]. Trends Neurosci 1996;19(9):387-93.
    [4] Gage HF. Mammalian neural stem cells [J]. Science 2000;287(5457):1433-1438.
    [5] Eriksson PS, Perfilieva E, Bjork Eriksson T, et al, Neurogenesis in the adult human hippocampus [J]. Nat Med 1998;(4):1313– 1317.
    [6] Shihabuddin LS, Horner PJ, Rag J, et al . Adult Spinal Cord Stem Cells Generate Neu-rons after Transplantation in the Adult Dentate Gyrus[J]. Neurosci 2000, 20(23):8727-8735.
    [7] Lendahl U,Zimmerman LB,McKay RD.CNS stem cells express a new class of interme-diate filament protein[J].Cell 1990;60(4):585-95.
    [8] T. Deacon, J. Dinsmore, L.C. Costantini, J. Ratliff, O. Isacson, Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation[J]. Exp. Neurol.1998;149(1):28-41.
    [9] M.S. Rao, Multipotent and restricted precursors in the central nervous system[J]. Anta Res 1999 257(4):137-48.
    [10] L.S. Shihabuddin, J. Ray, F.H. Gage, Stem cell technology for basic science and clinical applications[J]. Arch. Neurol. 56 (1999) 29–32.
    [11] A.L. Vescovi, E.A. Parati, A. Gritti, etal , Isolation and cloning of mutipotential stem cellsfrom the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation[J]. Exp. Neurol. 156 (1999) 71–83.
    [12] S.R. Whittemore, E.Y. Snyder, etal ,Physiological relevance and functional morphology potential of central nervous system-derived cell lines[J]. Molecular Neurobiology 12(1996) 1559-1182
    [13] Winkler C, Kirik D, Bjorklund A, etal , Cell transplantation in Parkinson’s disease: How can we make it work?. Trends Neurosci 2005 Feb;28(2):86-92.
    [14] Wayne Murrell, Andrew Wetzig, Michael Donnellan, etal ,Olfactory mucosa is a poten-tial source for autologous stem cell therapy for Parkinson’s disease[J]. STEM CELLS 2008 Aug;26(8):2183-92.
    [15] Ader M,Schachner M,Bartsch U, etal , Integration and differentiation of neural stem cells after transplantation into the dysmyelinated central nervous system of adult mice[J].Eur J Neurosci 2004;20(5):1205-10.
    [16] Aboody KS, Brown A, Rainov NG, et al , Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas[J]. Proc Nat Acad Sci USA 2000 Nov 7;97(23):12846-51.
    [17] Naumann A, Dennis J, StaudenmaierR, et a.l Mesenchymal stem cells-a new pathway for tissue engineering in reconstructive surgery[J]. Laryngorhinootologie 2002 Jul;81(7):521-7.
    [18]柴岗,张艳,刘伟,等.组织工程骨在颅颌面骨缺损临床修复中的应用.中华医学杂志, 2003, 83: 1676-1681.
    [19] Ramon CA, Perez J, Nieto SM. In vitro enfolding of olfactory neurites by P75NGF re-ceptor positive ensheathingcells from adult rat olfactory bulb[J]. Eur J Neurosci, 1993, 51(9):1172-1180.
    [20] Li Y, Field PM, Raisman G. Repair of adult rat corticospinal tract by transplants of ol-factory ensheathing cells[J].Science 1997;(277): 2000-2002.
    [21] Ramon CA, Corderd MI, Santos BF, et al, Functional recovery of paraplegic rats motor axon regeneration in their spinal cords by olfactory ensheathing glia[J]. Neuron 2000 Feb;25(2):425-35.
    [22] F.J. Roisena, K.M. Kluebera, C.L. Lua, et al, Adult human olfactory stem cells[J]. Brain Research 2001(890):11–22
    [23] Carlos Vicario-Abejo′n, Mar?′a J Yusta-Boyo, Carmen Ferna′ndez-Moreno, et al, Lo-cally born olfactory bulb stem cells proliferate in response to insulin-related factors and re-quire endogenous insulin-like growth factor-I for differentiation into neurons and glia[J]. The Journal of Neuroscience, 2003 Feb 1;23(3):895-906.
    [24] Leimeister C, Schumacher N, Gessler M. Expression of Notch pathway gene in the em-bryonic mouse metanephors suggests a role in porximal tubule development[J].Gene Expr Pattenrs 2003 Oct;3(5):595-8.
    [25] Lewis AK, Frantz GD, Carpenter DA, et al. Distinct expression patterns of notch family receptors and ligands during development of the mammalian inner ear[J],.Mech Dev 1998 Nov;78(1-2):159-63.
    [26] Zheng J, Gao WQ. Over expression of math1 induces robust production of extra hair cells in postnatal rat inner ears[J]. Nat Neurosci.3(6)580-586
    [27] Kageyama R, Ohtsuka T. The Notch-Hes pathway in mammalian neural development[J].Cell Res 1999 Sep;9(3):179-188
    [28] Zheng J, Shou J, Guillemot F, et al. Hes1 is a negative regulator of inner ear hair cell differentiation[J]. Development 2000(127):4551-4560
    [29] Bryant J, Goodyear RJ, Richardson GP, et al. Sensory organ development in the inner ear:molecular and cellular mechanism[J]. Br Med BULL 2002(63):39-57
    [30] Ito J,KojimaK,Kawaguchi S·Survival ofneural stem cells in the cochlear[J]. ActaOto-laryngo, 2001;121(2): 140-142·
    [31] Hu Z,Wei D,Johansson CB, et al.Survival and neural differentiation of adult neural stem cells transplanted into the mature inner ear[J]. Exp Cell Res 2005;302(1):40-7.
    [32] Hu Z,Ulfendahl M,Olivius NP.Central, et al. Migration of neuronal tissue and embry-onic stem cells following transplantation along the adult auditory nerve[J].Brain Res 2004;1026(1):68-73.
    [33] Parker MA,Corliss DA,Gray B, et al.Neural stem cells injected into the sound-damaged cochlea migrate throughout the cochlea and express markers of hair cells,supporting cells,and spiral ganglion cells[J].Hear Res,2007(232):29-43.
    [34] LiH, Roblin G, LiuH, et a.l Generation of hair cells by stepwise differentiation of em-bryonic stem cells[J]. Proc Natl Acad Sci USA 2003(100): 13495-13500.
    [35] Chen Y,Qiu J,Chen F,Liu S.Migration of neural precursor cells derived from olfactory-bulb in cochlear nucleus exposed to an augmented acoustic environment[J].Hearing Res 2007;228(1-2):3-10.
    [36]唐钥王月,安惠民.耳蜗内淋巴环境阳离子成分稳态的研究进展[J ].听力学及言语疾病杂志,2003 ,11 (1) :71~721
    [37] Ono T. Origin of the endolymphatic DC potential in the cochlea and ampulla of the grinea pig[J ]. Arch Otorhinolaryngol ,1990;248 (2) :99~1011
    [38] Seidman, M.D., Quirk, W.S., Shirwany, N.A., Mechanisms of alterations in the micro-circulation of the cochlea[J]. Ann. N.Y. Acad. Sci. 1999(884):226–232.
    [39] Marchbanks, R.J., Reid, A. Cochlear and cerebrospinal fluid pressure: their in-ter-relationship and control mechanisms[J]. Br.J. Audiol. 1990(24):179-187.
    [40] Zenner H.P., Reuter G., Zimmermann U , et al. Transitory endolymph leakage induced hearing loss and tinnitus: depolarization, biphasic shortening and loss of electromotility of outer hair cells[J]. Eur. Arch. Otorhinolaryngol. 1994(251):143–153.
    [41] Couloigner V., Loiseau A., Sterkers O., Amiel , et al. Eject of locally applied drugs on the endolymphatic sac potential[J]. Laryngoscope 1998(108):592-598.
    [42] Ikeda, K., Morizono, T., The ionic and electric environment in the endolymphatic sac ofthe chinchilla: relevance to the longitudinal flow[J]. Hear Res 1991(54):118-122.
    [43] Albers, F.W.J., de Groot, et al. Ultrastructure of the stria vascularis and Reissner's mem-brane in experimental hydrops[J]. Acta Otolaryngol.(Stockh.) 1987 Sep-Oct;104(3-4):202-10.
    [44] Cohen, J., Morizono, T., Changes in EP and inner ear ionic concentrations in experi-mental endolymphatic hydrops[J]. Acta Otolaryngol. (Stockh.) 1984 Nov-Dec;98(5-6):398-402.
    [45] Komune, S., Huangfu, M., Snow, J.B, et al.Mechanism of the production of the negative endocochlear potential[J]. Otolaryngol Head Neck Surg. 1983 Aug;91(4):427-34
    [46] Lundquist P.G., Kimura R.,Wersall, J, et al.Experiments in endolymph circulation[J]. Acta Otolaryngol.1964;188:SUPPL 188:198+.
    [47] Wangemann, P., K+ cycling and the endocochlear potential[J]. Hear.Res. 2002 Mar;165(1-2):1-9.
    [48] Cohen JJ. Programmed cell death in the innune system[J].Adv Immu-nol,1991;(50):55-85
    [49] Kerr JFR, Wyllie AH, Curne AR. Apoptosis: a basic biological phenormenon with wid-eranging implication in tissure kinetics[J]. Brit J Cancer, 1972;(26):239-257
    [50] Moerman AM,Mao X,Lucas, et al. Characterization of a neuronal kappaB-binding factor distinct from NF-kappaB[J]. Brain Res Mol Brain Res 1999(67):303-315.
    [51] Lee EG,Boone DL,Chai S, et al.A:Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice[J]..Science 2000(289):2350-2354.
    [52] Grell M,Zimmermann G,Gottfried E, et al, Induction of cell death by tumour necrosis factor(TNF)receptor 2,CD40 and CD30:a role for TNF-R1 activation by endogenous mem-brane-anchored TNF[J].Embo J 1999;(18):3034-3043.
    [53] Weiss T,Grell M,Hessabi B, Enhancement of TNF receptor p60-mediated cytotoxicity by TNF receptor p80:requirement of the TNF receptor-associated factor-binding site[J] J Immunol,1997;(158):2398-2404.
    [54] Duckett CS,Thompson CB:CD30-dependent degradation of TRAF2:implications for negative regulation of TRAF signaling and the control of cell survival[J].Genes Dev 1997;(11):2810-2821.
    [55] Rothstein TL,Wang JK,Panka DJ, etal, Protection against Fas-dependent Th1-mediated apoptosis by antigen receptor engagement in B cells.Nature 1995;(374):163-165.
    [56] Chen X,Kandasamy K,Srivastava RK:Differential roles of RelA(p65)and c-Rel subunits of nuclear factor kappa B in tumor necrosis factor-related apoptosis-inducing ligand signal-ing[J].Cancer Res 2003;(63):1059-1066.
    [57] Ravi R,Bedi GC,Engstrom LW, etal, Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-kappaB[J].Nat Cell Biol 2001;(3):409-416.
    [58] Higashitsuji H,Nagao T,Nonoguchi K, etal, A novel protein overexpressed in hepatoma accelerates export of NF-kappa B from the nucleus and inhibits p53-dependent apop-tosis[J].Cancer Cell 2002;(2):335-346.
    [59] Bakalkin G,Yakovleva T,Terenius L, NF-kappa B-like factors in the murine brain.Developmentally-regulated and tissue-specific expression[J].Brain Res Mol Brain Res 1993;(20):137-146.
    [60] Cauley K,Verma IM:Kappa B enhancer-binding complexes that do not contain NF-kappa B are developmentally regulated in mammalian brain[J].Proc Natl Acad Sci U S A 1994;(91):390-394.
    [61] Schmidt-Ullrich R,Memet S,Lilienbaum A,etal, NF-kappaB activity in transgenic mice:developmental regulation and tissue specificity[J].Development 1996;(122):2117-2128.
    [62] Kaltschmidt C,Kaltschmidt B,Baeuerle PA, etal, :Brain synapses contain inducible forms of the transcription factor NF-kappa B[J].Mech Dev 1993;(43):135-147.
    [63] Kaltschmidt C,Kaltschmidt B,Neumann H, etal, Constitutive NF-kappa B activity in neurons[J].Mol Cell Biol 1994;(14):3981-3992.
    [64] Snapper CM,Zelazowski P,Rosas FR, etal, B cells from p50/NF-kappa B knockout mice have selective defects in proliferation,differentiation,germ-line CH transcription,and Ig class switching[J].J Immunol 1996 Jan 1;156(1):183-91.
    [65] Moerman AM,Mao X,Lucas MM, etal, Characterization of a neuronal kappaB-binding factor distinct from NF-kappaB[J].Brain Res Mol Brain Res 1999,(67):303-315.
    [66] Alcamo E,Mizgerd JP,Horwitz BH, etal, Targeted mutation of TNF receptor I rescues the RelA-deficient mouse and reveals a critical role for NF-kappa B in leukocyte recruit-ment[J].J Immunol 2001;(167):1592-1600.
    [67] Chen L,Fischle W,Verdin E, etal, Duration of nuclear NF-kappaB action regulated by reversible acetylation[J].Science 2001;(293):1653-1657.
    [68] O'Neill LA,Kaltschmidt C. NF-kappa B:a crucial transcription factor for glial and neu-ronal cell function[J].Trends Neurosci 1997;(20):252-258.
    [69] Denk A,Wirth T,Baumann B:NF-kappaB transcription factors:critical regulators of hematopoiesis and neuronal survival[J].Cytokine Growth Factor Rev 2000;(11):303-320.
    [70] Perkins ND,Felzien LK,Betts JC, etal, Regulation of NF-kappaB by cyclin-dependentkinases associated with the p300 coactivator[J].Science 1997;(275):523-527.
    [71] Yu, S.P., Canzoniero, L.M., Choi, D.W., Ion homeostasis and apoptosis. Curr. Opin[J]. Cell Biol. 2001;(13):405–411.
    [72] Yu, S.P., Choi, D.W., K+ efflux mediated by delayed rectifier K+ channels contributes of neuronal death. In: Alzheimer’s Disease and Related Disorders[J]. Wiley, New York, 1999.pp:371–382.
    [73] Yu, S.P., Choi, D.W., Ions, cell volume, and apoptosis. Proc. Natl.Acad. Sci. U.S.A. 2000;(97):9360–9362.
    [74] Xiao A Y., Homma M., Wang X.Q, Wang, X.,etal, Role of K+ efflux in apoptosis in-duced by AMPA and kainate in mouse cortical neurons[J]. Neuroscience 2001;(108), 61–67.
    [75] Xiao A Y., Wei L., Xia S., Rothman S., etal, Ionic mechanism of ouabain-induced con-current apoptosis and necrosis in individual cultured cortical neurons[J]. J. Neurosci. 2002(22):1350–1362.
    [76] Birgit Mazurek, Nyamaa Amarjargal, Heidemarie Haupt, High potassium concentrations protect inner and outer hair cells in the newborn rat culture from ischemia-induced damage[J]. Hearing Research 215 (2006) 31–38
    [77] Akinobu Kakigi *, Taizo Takeda E?ect of artificial endolymph injection into the co-chlear duct on th endocochlear potential[J]. Hearing Research 1998;(116)113-118
    [78]陈福权,邱建华,王锦玲,刘顺利,米文娟.大鼠嗅球神经干细胞培养[J].中华耳鼻咽喉科杂志,2004;39(11):687-90.
    [79]陈福权,邱建华,王锦玲,刘顺利,米文娟.大鼠嗅上皮神经干细胞的分离及培养[J].临床耳鼻咽喉科杂志,2006;20(14):656-9.
    [80]陈福权,王锦玲,邱建华,刘顺利,米文娟.胚胎大鼠嗅神经干细胞的培养及分化特性[J].中华神经外科疾病研究杂志,2004;3(04):344-7.
    [81] Ikeda K, Kusakari J , Takasaka T Ionic changes in cochlear endolymph of the guinea pig induced by acoustic injury[J]. Hear Res, 1988;(32):103–110.
    [82] Konishi T, Hamrick PE,Walsh PJ.Ion transport in guinea pig cochlea. I. Potassium and sodium transport[J]. Acta Otolaryngol (Stockh) , 1978;(86), 22–34.
    [83] Gallo V.Kingsbury A.Balazs R The role of depolarization in the survival and differentia-tion of cerebellar granule cells in culture[J].J.Neurosci1987 Jul;7(7):2203-13.
    [84] Miller TM.Johnson EM Metabolic and genetic analyses of apoptosis in potas-sium/serum-deprived rat cerebellar granule cells[J].J.Neurosci 1996 Dec 1;16(23):7487-95.
    [85] D Mello SR.Galli c.Ciotti T Induction of apoptosis in cerebellar granule neurons by lowpotassium:Inhibition of death by insulin-like growth factor 1 and cAMP[J]. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10989-93
    [86] Berry, M. D. N8-Acetyl spermidine protects rat cerebellar granule cells from low K+-induced apoptosis. J. Neurosci. Res[J].. (1999). 55: 341–351
    [87] Beck, H., Blumcke, I., Kral, T., Clusmann, H., Schramm, J., Wiestler, O.D., Heine-mann,U., Elger, C.E., Properties of a delayed rectifier potassium current in dentate granule cells isolated from the hippocampus of patients with chronic temporal lobe epilepsy[J]. Epilepsia 1996.37, 892–901.
    [88] Liu, Z.W., Lei, T., Zhang, T., Yang, Z., Peroxynitrite donor impairs excitability of hip-pocampal CA1 neurons by inhibiting voltage-gated potassium currents. Toxicol. Lett[J]. 2007. 175, 8–15.
    [89] Ikeda, K., Morizono, T., The ionic and electric environment in the endolymphatic sac of the chinchilla: relevance to the longitudinal£ow. Hear. Res[J]. 1991. 54, 118-122.
    [90] Chiasson BJ, Tropepe V, Morshead CM, van der Koy D Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependy-mal cells have stem cell characteristics. J Neurosci[J]. (1999) 19:4462–4471.
    [91] Boyer, C., Lehouelleur, J., Sans, A., Potassium depolarization of mammalian vestibular sensory cells increases [Ca2+]i through voltagesensitive calcium channels. Eur. J. Neuro-sci[J].1998.10, 971–975.
    [92] Dallos, P., Overviwe: cochlear neurophysiology. In: Dallos, P., Popper, A.N., Fay, R. (Eds.), Springer Handbook of Auditory Research: The Cochlea[J]. Springer, Berlin, 1996. pp. 1–43.
    [93] Okano, Y., Iwai, H., Effect of the high potassium medium on cultured cochlear epithelial cells[J]. Arch. Otorhinolaryngol. 1975.209, 121–125.
    [94] Denk A,Wirth T,Baumann B:NF-kappaB transcription factors:critical regulators of he-matopoiesis and neuronal surviva[J].l.Cytokine Growth Factor Revn 2000,11:303-320.
    [95] Isaev NK, Stelmashook EV, Halle A, Harms C, Inhibition of Na(+),K(+)-ATPase activ-ity in cultured rat cerebellar granule cells prevents the onset of apoptosis induced by low po-tassium[J]. Neurosci Lett. 2000 Mar 31;283(1):41-4.
    [96] Ishaque,A.et al. Role of Ca2+,Mg2+and K+ ions in determining apoptosis and extent of suppression afforded by bcl-2 during hybridoma cell culture[J]. Apoptosis. 1999.4,335–355.
    [97] Schwartz LM, Smith SW, Jones ME, Osborne BA Do all programmed cell deaths occur via apoptosis? [J]. Proc Natl Acad Sci USA (1993) 90:980–984
    [98] Zhivotovsky B Caspases: the enzymes of death[J].Essays Biochem (2003)39:25–40
    [99]陈阳,陈福权,邱建华,刘顺利,米文娟.毒性损伤大鼠耳蜗核移植嗅球神经前体细胞的初步观察[J].中华神经外科疾病研究杂志,2007;6(01):44-7.
    [100] Gorman AM, Orrenius S, Ceccatelli SApoptosis in neuronal cells: role of caspases[J].. Neuroreport (1998) 9:R49–R55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700