用户名: 密码: 验证码:
鄂尔多斯盆地东部上古生界致密储层成岩作用特征及其与天然气成藏耦合关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文借助岩心观察、常规薄片、铸体薄片、扫描电镜、常规压汞测试、恒速压汞测试、岩心核磁共振测试、伊利石K-Ar测年和流体包裹体测温及组分测定等分析化验测试手段,结合盆地埋藏—热演化史及试气成果等资料,对鄂尔多斯盆地东部上古生界致密砂岩储层的成岩作用及成岩相特征进行了深入的研究;根据盆地天然气聚集的实际地质状态推算致密储层物性上下限,将其与储层孔隙致密恢复结果结合来确定储层的致密时间;并与储层内大量天然气富集成藏的时间对比耦合,从而确定上古生界不同类型砂岩储层的成岩—成藏耦合关系。
     研究结果表明,上古生界致密砂岩储层发生多类成岩作用,经历了漫长而复杂的成岩演化,已经演变到了中成岩B期阶段。研究区上古生界致密砂岩储层的成岩作用在粒径、分选程度、矿物组分和孔喉大小等方面显示独特性。依据成岩作用及其孔隙组合特征划分出3类成岩相,分别是硅质胶结+溶蚀孔隙相、混合胶结+溶蚀孔隙相和混合胶结致密相,并对不同成岩相内试气结果给予分析。
     首先采用国内外普遍采取的经验统计法,对致密砂岩气储层界限进行统计分析;从致密砂岩微观孔喉内天然气运移受力状态入手,建立孔喉半径与物性参数之间的线性回归关系,以不同受力状态下孔喉半径界限参数推算相应物性上下限参数。根据鄂尔多斯盆地天然气聚集的实际成藏状态,对其物性上下限进行推算。
     在确定初始孔隙度的基础上,首先恢复压实作用造成的孔隙损失量;然后根据胶结物形成序列及其含量差异,确定不同类型胶结作用造成的孔隙损失量;同理再确定不同类型溶蚀作用造成的孔隙增加量。最终按成岩演化序列将二者结合,从而还原储层砂岩的致密化过程。依据推算的上古生界致密砂岩储层致密上下限确定研究区储层致密时间,将其与储层内天然气大规模聚集富集的时间耦合分析,最终确定研究区上古生界不同类型砂岩储层的成岩—成藏耦合关系。耦合结果显示盒8段和太原组岩屑石英砂岩储层显示“先致密、后成藏”的成岩—成藏关系,山2段石英砂岩储层显示“边致密、边成藏”的成岩—成藏耦合关系。
     针对气源岩的生气强度、盖层封闭状态和储层致密差异等因素,对盆地东部上古生界天然气聚集条件进行详细分析;在良好的气源基础上,不同成岩演化状态的砂岩储层与泥岩隔夹层的三维配套组合控制了其内天然气的聚集程度,从而使气藏显示出三维空间内相邻或叠置的“准连续型聚集”特征。
According to core observation, analysis of casting thin sections and conventional thin sections, scanning electron microscope, conventional mercury injection testing, rate-controlled mercury injection testing, core NMR testing, illite K-Ar aging, temperature and component detection of fluid inclusion and other modern testing method, combined burial and thermal evolution data of Ordos Basin, this paper made a further research on the diagenesis and diagenetic facies of Upper Paleozoic tight sand reservoirs of Eastern Ordos Basin, and predicated the physical upper and lower limit of tight reservoirs on the basis of geological characteristics of gas accumulation. Besides, based on analysis of gas injection periods and rebuilding of pore tighten process, it also can be inferred the correlation between diagenesis and accumulation of Upper Paleozoic tight sand reservoirs with different lithology.
     The results indicate that multi-diagenesis develop in tight reservoirs, which experienced long and complex diagenesis evolution, and up to stage B of middle diagenesis. Furthermore, diagenesis of tight sand reservoirs is uniquely characterized by grain size, sorting degree, mineral component and pore-throat size, etc. According to diagenesis and pore combination, diagenetic facies can be divided into three types, i.e. facie of siliceous cement-dissolved pores, facie of mixed cement-dissolved pores and tight mixed facie, besides, gas testing of different diagenetic facies were still analyzed.
     With empirical approach, found general acceptance, this paper made a research on the reservoir limit of tight gas. Based force state analyzing of gas in micro-pore-throat, a linear regressive correlation between pore-throat radius and physical attributes can be built, and then physical limit also can be calculated by corresponding pore-throat radius in different force
     On the basis of primary porosity restoration, porosity losing, caused by compaction, can be rebuilt, and then porosity losing, caused by different cementation, can also be calculated interms of cement formation sequence and content. Similarly, porosity augment, caused by dissolution, can be calculated so. Coupling analysis was accomplished to the effect between gas injection period and tighten period, defined by calculated limit of tight reservoi, and shown that reservoir tighten period of lithic-quartz sand reservoir, developed in He8Section and Taiyuan Formation, is prior to gas accumulation. However, for quartz sand reservoir of Shan2Section, reservoir tightening is almost simultaneous with gas accumulation.
     Detailed study on accumulation conditions of Upper Paleozoic gas, Eastern Ordos Basin, was carried out, which focuses on the gas-generation intensity, seal closing state and reservoir tight difference. The results show that, with favorable gas generation condition, three-dimensional arrangement, composed by reserve with different diagenesis evolution and mud stone, controls gas accumulation, which lead to "quasi-continuous" reservoir, characterized by bordering or overlaying distribution.
引文
[1]Alaa M, Salem S, Morad S, et al. Diagenesis and reservoir-quality evolution of fluvial sandstones during Progressive burial and uPlift:Evidence from the UPPer Jurassie BoiPeba Member, Reeoneavo Basin, North eastern Brazil[J]. AAPG Bulletin,2000,84(7):1015-1040.
    [2]Aplin A C, Latter S R, Bigger M A, et al. PVTX history of the North Sea's Judy oil field[J]. Journal of Geochemical Exploration,2000,69-70:641-644.
    [3]Beard D C, Weyl P K. Influence of texture on porosity and permeability of unconsolidated sand[J]. AAPG Bulletin,1973,57:349-369.
    [4]Berg R R. Capillary pressures in stratigraphic trap[J]. AAPG Bulletin,1975,59(6):638-650.
    [5]Boles J R, Franks S G. Clay diagenesis in Wilcox sandstones of southwest Texas:implications of smectite diagenesis on sandstone cementation[J]. Journal of Sedimentary Petrology,1979,49:55-70.
    [6]Beard D C, Weyl P K. Influence of texture on porosity and permeability of unconsolidated sand[J]. American Association of Petroleum Geologists Bulletin,1973,57:349-369.
    [7]Bjorlykke K. Fluid flow in sedimentary basins [J]. Sedimentary Geology,1993,86:137-158.
    [8]Burley S D, Mullis J, Matter A. Timing diagenesis in the Tartan reservoir (UK North Sea):constraints from combined cathodoluminescence microscopy and fluid inclusion studies [J]. Marine and Petroleum Geology,1989,6(2):98-120.
    [9]Bymes A P. Aspects of permeability, capillary pressure and relative permeability properties and distribution in low-permeability rocks important to evaluation, damage and simulation [J]. Rocky mountain association of geologists and rocky mountain region of petroleum technology transfer council-petroleum systems and reservoirs of southwest Wyoming symposium,2003:32-66
    [10]Camp W K. Pore-throat sizes in sandstones, tight sandstones, and shales:discussion [J]. AAPG Bulletin,2009,95(8):1443-1447.
    [11]Chilingarian G V. Compactional diagenesis[M]. Elsevier Science Ltd,1981,P108-109,137.
    [12]Chen W, Ghaith A, Ortoleva P. Diagenesis through coupled processes:modeling approach, self-organization, and implication for exploration. In:Meshri I, Ortoleva P, eds. Prediction of reservoir quality through chemical modeling[J]. AAPG Memoir 49. Tulsa:AAPG,1990.103-130.
    [13]Coleman Jr J R. Tight-gas sandstone reservoirs:25 years of searching for "the answer," in S. P. Cumella, K. W. Shanley, and W. K. Camp, eds., Understanding, exploring, and developing tight-gas sands[C]:2005 Vail Hedberg Conference,2008:221-250.
    [14]Curtis C D. Sedmentary geochemistry, environments and process dominated by involvement of an aqueous phase[J]. Geochemistry, Phil. Trans. R.Spc.1977, A286:353-371.
    [15]Curtis C D. Possible link between sandstone diagenesis and depth-related geochemical reactions occurring in enclosing mudstones[J]. J. Geol. Soc. Lond.,1978,135:107-114.
    [16]Dalrymple G B, Lanphere M A. Potassium-argon dating[M]. San Francisco:W H Freeman, 1969:258.
    [17]Deriagin B V, Churaev N V. Wetting films[M].Russian:S. N.,1984,133.
    [18]Dixon B, Flint D. Canadian tight gas:Developing and applying a workable definition[C]. CSUG tight gas definition november 2007:1-10.
    [19]Dong Z, Holditch S A, McVay D A, and Ayers, W.B. Global unconventional gas resource assessment. CSUG/SPE 148365,2011,1-16.
    [20]Ehrenberg S N, Nadeau P H. Formation of diagenetic illite in sandstones of the garn formation, halten banken area, mid-Norwegian continental shelf[J]. Clay Minerals,1989,24:233-253
    [21]Federal Energy Regulatory Commission. Natural gas policy act of 1978[S]. Washington:American Enterprise Institute for Public Policy Research,1980:340-346.
    [22]Gautier D L. Roles of organic matter in sediment diagenesis[J]. SEPM Special Publication 38,1986. 1-188.
    [23]Hamilton P J, Kelley S, Fallick A E. K-Ar dating of illite in hydrocarbon reservoirs[J]. Clay Minerals,1989,24:215-231.
    [24]Hogg A J C, Hamilton P J, Macintyre R M. Mapping diagenetic fluid flow within reservoir:K-Ar dating in the Alwyn area (UK North Sea)[J]. Marine and Petroleum Geology,1993,10:279-294.
    [25]Holditch S. Tight gas sands[J]. SPE J,2006,(1):86-93. [26]Horbury A D., G. Robinson. Diagenesis and basin development [J]. AAPG Studies in Geology,1993, 36.274pp.
    [27]Houseknecht D W. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones [J].AAPG Bulletin,1987,71:633-642.
    [28]Houseknecht D W. Intergranular pressure solution in four quartzose sandstones[J]. Journal of Sedimentary Petrology,1988,58:288-246.
    [29]Hower J, Eslinger E V, Hower M E, et al. Mechanism of burial metamorphism of argillaceous sediments:Ⅰ. Mineralogical and chemical evidence[J]. Geol. Soc. Am. Bull.,1976,87:725-737.
    [30]Kawata Y, Fujita K. Some Predictions of Possible Unconventional Hydrocarbon Availability UntilfJ]. SPE 68755,2001,1-10.
    [31]Law B E, Dickinson WW.A conceptual model for the origin of abnormally pressured gas accumulations in low-permeability reservoirs[J]. AAPG Bulletin,1985(69):1295-1304.
    [32]Law B E. Basin-centered gas systems[J]. AAPG Bulletin,2002,86(11):1891-1919.
    [33]Lee M, Aronson J L, Savin S M. K-Ar dating of time of gas emplacement in Rotliegendes Sandstone, Netherlands[J]. AAPG Bulletin,1985,69:1381-1835.
    [34]Lee M, Aronson J L, Savin S M. Timing and conditions of permian rotliegendes sandstone diagenesis, southern North Sea:K-Ar and oxygen isotopic data[J].AAPG Bulletin,1989,73:195-215.
    [35]Lisk M, Eadington P J, O'Brien G W. Unraveling complex filling histories by constraining the timing of events which modify oil fields after initial charge (in Dating and duration of fluid flow and fluid-rock interaction)[J]. Geological Society Special Publication,1998,144:189-203.
    [36]Lundegard P D. Sandstone porosity loss a "big picture" view of the importance of compaction[J]. Journal of Sedimentary Petrology,1992(62):250-260.
    [37]McDonald D A, Surdam R C. Clastic diagenesis,[J]. AAPG Mem,1984:37.
    [38]Mclimans R K. The application of fluid inclusions to migration of oil and diagenesis in petroleum reservoirs (in Geochemistry of waters in deep sedimentary basins; selected contributions from the Penrose conference)[J]. Applied Geochemistry,1987,2(5-6):585-603.
    [39]Nehring R. Growing and indispensable:the contribution of production from tight-gas sands to U.S. gas production[C]//Cumella S P, Shanley K W, Camp W K, et al. Understanding, exploring, and developing tight-gas sands-2005 Vail Hedberg Conference:AAPG Hedberg Series,2008:5-12.
    [40]Nelson P H, Batzle M L. Single-phase permeability, Petroleum engineering handbook[M]:General engineering:Richardson, Texas, Society of Petroleum Engineers,2006:687-726.
    [41]Nelson P H. Pore-throat sizes in sandstones, tight sandstones, and shales [J]. AAPG Bulletin, 2009,93(3):329-340.
    [42]Newsham K E, Rushing J A, Lasswell P M, et al. A comparative study of laboratory techniques for measuring capillary pressures in tight gas sands[J]. Society of Petroleum Engineers Inc, 2004,89866:1-11.
    [43]Nunn J A. Free thermal convection beneath intracratonic basins:thermal and subsidence effects [J]. Basin Research,1994,6:11-130.
    [44]Pedersen P, Bjorlykke K. Fluid flow in sedimentary basins model of pore water flow in a vertical fracture[J]. Basin Research,1994,6:1-16.
    [45]Pittman E D, R E Larese. Compaction oflithicsands:experimental results and applications [J]. AAPG Bulletin,1991,75:1279-1299.
    [46]Porter E W, James W C. Influence of pressure.salinity, temperature and grain size on silica diagenesis in quart zose sandstones[J]. Chemical Geology,1986,67-81.
    [47]Rogner H H. An Assessment of World Hydrocarbon Resources.lIASA, WP-96-56,1996,43pp.
    [48]Schmidt V, McDonald D A. The role of secondary porosity in the course of sandstone diagenesis. In: Scholle P A, Schluger P R. Aspects of diagenesis[J]. SEPM Special Publication 26,1979,175-207.
    [49]Selley R C. Porosity gradients in the North Sea oil-bearing sandstones[J]. Journal of the Geological Society,1978,135(1):119-132.
    [50]Schmoker J W. Method for assessing continuous-type (unconventional) hydrocarbon accumulations, in D. L. Gautier, G L. Dolton, K. I. Takahashi, and K. L. Varnes, eds.,1995 National Assessment of United States Oil and Gas Resources— Results, methodology, and supporting data:1995, U.S.Geological Survey Digital Data Series DDS-30 (CD-ROM).
    [51]Schmoker J W. Resource-assessment perspectives for unconventional gas systems[J]. AAPG Bulletin,2002(86):1993-1999.
    [52]Schmoker J W. US geological survey assessment concepts for continuous petroleum accumulations[J]. US Geological Survey,2005,1:1-9.
    [53]Schowalter T T. Mechanics of secondary hydrocarbon migration and entrapment[J]. AAPG Bull,1979,163(5):723-760.
    [54]Spencer C W. Geologic aspects of tight gas reservoirs in the Rocky Mountain region[J]. Journal of Petroleum Technology,1985,37(8):1308-1314.
    [55]SPE/AAPG/WPC/SPEE. Petroleum Resource Management System(PRMS)2007[S/OL]. http://www.spe.org/industry/reserves/docs/Petroleum_Resources_Management_System_2007.pdf.
    [56]Sullivan K B, Earle F M. Digenesis of sandsrones at shale contaets and diagenetic heterogeneity, Frio formarion,Texa[J].AAPG Bulletin,1991,75:121-138.
    [57]Surdam R C, Boese S W, Crossey L J. The chemistry of secondary porosity. In:McDonald, Surdam R C (eds). Clastic diagenesis[J]. AAPG Memoir 37,1984.127-151.
    [58]Surdam R C, Crossey L J, Hagen E S, Heasler H P. Organic-inorganic interactions and sandstone diagenesis[J].AAPG Bull.,1989,73:1-23.
    [59]Surdam R C.A new paradigm for gas exploration in anomalously pressured "tight gas sands" in the Rocky Mountain Laramide Basins[C]//AAPG Memoir 67:Seals, traps, and the petroleum system.Tulsa: AAPG,1997.
    [60]Sun S Q, Esteban M. Paleoclimatic controls on sedimentation, diagenesis, and reservoir quality: Lessons from Miocene carbonates[J]. AAPG Bulletin,1994,78:519-543.
    [61]Wolf K H, Chilingar G V. Diagenesis III[M]. Amsterdanl:Elsevier,1992,790
    [62]Wolf K H, Chilingar G V. Diagenesis 1 V[M]. Amsterdanl:Elsevier,1994,519
    [63]DZ/T 0217-2005,中华人民共和国地质矿产行业标准——石油天然气储量计算规范[S].北京:中国标准出版社,2005:1-14.
    [64]SY/T 6168-1995,中华人民共和国石油与天然气行业标准——气藏分类[S].北京:石油工业出版社,1995:1-15.
    [65]SY/T5477-2003,中华人民共和国石油与天然气行业标准——碎屑岩成岩阶段划分规范[S].北京:石油工业出版社,2003:1-13.
    [66]SY/T6832-2011,中华人民共和国石油与天然气行业标准——致密砂岩气地质评价方法[S].北京:石油工业出版社,2011:1-4.
    [67]包茨.天然气地质学[M].北京:科学出版社,1988:151.
    [68]陈安定,张文正.沉积岩成烃热模拟实验研究产物的同位素特征及应用[J].中国科学:B辑,1993,23(2):209-217.
    [69]陈斌,田伟,翟明国,等.太行山和华北其它地区中生代岩浆作用的锆石U-Pb年代学和地球化学特征及其岩浆成因和地球动力学意义[J].岩石学报,2005,21(1):13-24.
    [70]陈景维,柳益群.砂岩成岩作用的主要控制因素[J].西北大学学报,1993,23(1):69-73.
    [71]戴金星,宋岩,张厚福.中国大中型气田形成的主要控制因素[J].中国科学(D辑),1996,26(6):481-487.
    [72]戴金星,裴锡古,戚厚发.中国天然气地质学:卷二[M].北京:石油工业出版社,1996:66-73.
    [73]戴金星,王庭斌,宋岩,等.中国大中型天然气田形成条件与分布规律[M].北京:地质出版社,1997:187.
    [74]戴金星,钟宁宁,刘德汉,等.中国煤成大中型气田地质基础和主控因素[M].北京:石油工业出版社,2000:206-222.
    [75]戴金星,陈践发,钟宁宁,等.中国大气田及其气源[M].北京:科学出版社,2003:93-136.
    [76]戴金星,李剑,罗霞,等.鄂尔多斯盆地大气田的烷烃气碳同位素组成特征及其气源对比[J].石油学报,2005,26(1):18-26.
    [77]窦伟坦,刘新社,王涛.鄂尔多斯盆地苏里格气田地层水成因及气水分布规律[J].石油学报,2010,31(5):767-773.
    [78]丁晓琪,张哨楠,周文,等.鄂尔多斯盆地北部上古生界致密砂岩储层特征及其成因探讨[J].油气地质与采收率,2007,28(4):491-496.
    [79]樊爱萍,杨仁超,冯乔,等.鄂尔多斯盆地上古生界流体包裹体特征及研究[J].山东科技大学学报:自然科学版,2006,25(2):20-22.
    [80]冯增昭.沉积岩石学(上册)[M].北京:石油工业出版社,1993:198-221
    [81]付金华,段晓文,姜英昆.鄂尔多斯盆地上古生界天然气成藏地质特征及勘探方法[J].中国石油勘探,2001,6(4):68-75.
    [82]付金华,魏新善,黄道军.鄂尔多斯大型含煤盆地岩性气藏成藏规律与勘探技术[J].石油天然气学报,2005,27(1):137-141
    [83]付金华,魏新善,任军峰.伊陕斜坡上古生界大面积岩性气藏分布与成因[J].石油勘探与开发,2008,35(6):664-667.
    [84]付锁堂,石小虎,南珺祥.鄂尔多斯盆地东北部上古生界太原组及下石盒子组碎屑岩储集层特征[J].古地理学报,2010,12(5):609-617.
    [85]付广,陈章明,姜振学.盖层封堵能力评价方法及其应用[J].石油勘探与开发,1995,22(3):46-50.
    [86]付广,吕延防,于丹.我国不同类型盆地高效大中型气田形成的主控因素[J].地球科学-中国地质大学学报,2007,32(1):82-88.
    [87]关德师,牛嘉玉.中国非常规油气地质[M].北京:石油工业出版社,1995:60-85.
    [88]高阳,蒋裕强,缪灏,等.河包场地区上三叠统须家河组储层下限研究[J].西部探矿工程,2008,20(12):95-97.
    [89]郝芳,邹华耀,方勇,等.超压环境有机质热演化和生烃作用机理[J].石油学报,2006,37(5):9-17.
    [90]郝蜀民,李良,尤欢增.大牛地气田石炭—二叠系海陆过渡沉积体系与近源成藏模式[J].中国地质,2007,34(4):606-611.
    [91]贺承祖,华明琪.低渗砂岩气藏的孔隙结构与物性特征[J].新疆石油地质,2005,26(3):280-283.
    [92]何东博,王丽娟,冀光,等.苏里格致密砂岩气田开发井距优化[J].石油勘探与开发,2012,39(4):458-464.
    [93]黄思静,侯中建.地下孔隙度和渗透率在时间和空间上的变化及影响因素[J].沉积学报,2001,19(2):224-232.
    [94]黄思静,武文慧,刘洁,等.大气水在碎屑岩次生孔隙形成中的作用——以鄂尔多斯盆地三叠系延长组为例[J].地球科学·中国地质大学学报,2003,28(4):419424.
    [95]胡文瑞.低渗透油气田概论[M].北京:石油工业出版社,2009,1-21.
    [96]胡宗全,朱筱敏.准噶尔盆地西北缘侏罗系储层成岩作用及孔隙演化[J].石油大学报(自然科学版),2002,26(3):16-19.
    [97]惠宽洋,张哨楠,李德敏,等.鄂尔多斯盆地北部下石盒子组-山西组储层岩石学和成岩作用[J].成都理工学院学报,2002,29(3):272-278.
    [98]侯明才,窦伟坦,陈洪德,等.鄂尔多斯盆地苏里格气田北部盒8、山1段成岩作用及有利储层分布[J].矿物岩石,2009,29(4)66-74.
    [99]贾承造,赵文智,邹才能,等.岩性地层油气藏勘探研究的两项核心技术[J].石油勘探与开发,31(3):3-9.
    [100]季汉成,翁庆萍,杨潇.鄂尔多斯盆地东部下二叠统山西组山2段成岩相划分及展布[J].古地理学报,2008,10(4):409-418.
    [101]姜在兴等.沉积学[M].北京:石油工业出版社,2002:132.
    [102]蒋凌志,顾家裕,郭彬程.中国含油气盆地碎屑岩低渗透储层的特征及形成机理[J].沉积学报,2004,22(1):13-18.
    [103]蒋继辉,杨丽芹.鄂尔多斯盆地中部古生界储层覆压物性特征[J].岩性油气藏,2011,23(6):120-123.
    [104]焦养泉,吕新彪,王正海,等.从沉积到成岩两种截然不同的地质环境[J].地球科学-中国地质大学学报,2004,29(5):615-620
    [105]裘亦楠,薛叔浩.油气储层评价技术[M].北京:石油工业出版社,1994:59-64.
    [106]李道品.低渗透砂岩油田开发[M].北京:石油工业出版社,1997:3-8.
    [107]李建忠,郭彬程,郑民,等.中国致密砂岩气主要类型、地质特征与资源潜力[J].天然气地球科学,2012,23(4):607-615.
    [108]李明诚.对油气运聚研究中一些概念的再思考[J].石油勘探与开发,2002,29(2):13-36.
    [109]李明诚,单秀琴,马成华,等.油气成藏期探讨[J].新疆石油地质,2005,26(5):587-591.
    [110]李明诚,李剑.“动力圈闭”——低渗透致密储层中油气充注成藏的主要作用[J].石油学报,2010,31(5):718-722.
    [111]李明瑞,张清,孙六一.根据流体包裹体确定神木地区上古生界气藏成藏期[J].新疆石油地质,2005,26(1):47-49.
    [112]李明瑞,窦伟坦,蔺宏斌,等.鄂尔多斯盆地东部上古生界致密岩性气藏成藏模式[J].石油勘探与开发,2009,36(1):56-61.
    [113]李忠.沉积盆地大尺度成岩作用研究[J].地学前缘,1998,5(3):157-158.
    [114]李忠,寿建峰,王生朗.东濮凹陷砂岩储层成岩作用及其对高压致密气藏的制约[J].地质科学,2000,35(1):96-104.
    [115]李忠,陈景山,关平.含油气盆地成岩作用的科学问题及研究前沿[J].岩石学报,2006,22(8):2113-2122.
    [116]李忠,韩登林,寿建峰.沉积盆地成岩作用系统及其时空属[J].岩石学报,2006,22(8):2151-2164.
    [117]李艳霞,刘洪军,袁东山,等.石油充注对储层成岩矿物演化的影响[J].石油与天然气地质.2003.24(3):274-280.
    [118]李剑,罗霞,单秀琴,等.鄂尔多斯盆地上古生界天然气成藏特征[J].石油勘探与开发,2005,32(4):54-59.
    [119]李幸运,郭建新,张清秀,等.气藏储集层物性参数下限确定方法研究[J].天然气勘探与开发,2008,31(3):33-38.
    [120]李仲东,惠宽洋,李良,等.鄂尔多斯盆地上古生界天然气运移特征及成藏过程分析[J].矿物岩石,2008,28(3):77-83.
    [121]李贤庆,冯松宝,李剑,等.鄂尔多斯盆地苏里格大气田天然气成藏地球化学研究[J].岩石学报,2012,28(3):836-846.
    [122]刘晓峰,解习农.超压释放及其对油气运移和聚集的意义[J].地质科技情报,2001,20(4):51-56.
    [123]李易隆,贾爱林,何东博.致密砂岩有效储层形成的控制因素[J].石油学报,2013,34(1):71-82
    [124]刘宝裙,张锦泉等.沉积成岩作用[M].北京:科学出版社,1992:6-88.
    [125]刘成林,朱筱敏,朱玉新,等.不同构造背景天然气储层成岩作用及孔隙演化特点[J].石油与天然气地质,2005,26(6):746-753.
    [126]刘建清,赖兴运,于炳松,等.成岩作用的研究现状及展望[J].石油实验地质,2006,28(1):65-72.
    [127]刘林玉,柳益群,李文厚,等.吐哈盆地台北凹陷三角洲沉积与成岩作用[J].石油与天然气地质,2002,23(4):402-405.
    [128]刘锐娥,李文厚,拜文华,等.苏里格庙地区盒8段高渗储层成岩相研究[J].西北大学学报(自然科学版),2002,32(6):667-671.
    [129]刘德汉.包裹体研究—盆地流体追踪的有力工具[J].地学前缘,1995,6(2):149-154.
    [130]刘吉余,马志欣,孙淑艳.致密含气砂岩研究现状及发展展望[J].天然气地球科学,2008,19(3):316-319.
    [131]刘小洪,罗静兰,张三,等.榆林-神木地区上古生界盒8段及山2段气层的成岩作用和成岩相[J].石油与天然气地质,2006,27(2):200-208.
    [132]刘新社,席胜利,付金华.鄂尔多斯盆地上古生界天然气生成[J].天然气工业,2000,20(6):19-23.
    [133]刘新社,周立发,侯云东.运用流体包裹体研究鄂尔多斯盆地上古生界天然气成藏[J].石油学报,2007,28(6):37-42.
    [134]刘建章,陈红汉,李剑,等.运用流体包裹体确定鄂尔多斯盆地上古生界油气成藏期次和时期[J].地质科技情报,2005,24(4):60-66.
    [135]刘建章,陈红汉,李剑,等.鄂尔多斯盆地伊-陕斜坡山西组2段包裹体古流体压力分布及演化[J].石油学报,2008,29(2):226-230.
    [136]柳益群,李文厚,曲志浩.黄骋拗陷南区中生界含油砂体的成岩作用和孔隙结构[J].西北大学学报(自然科学版),1995,25(5):507-512.
    [137]柳益群,李文厚.陕甘宁盆地东部上三叠统含油长石砂岩的成岩特点及孔隙演化[J].沉积学报,1996,14(3):87-96.
    [138]柳益群.关于成岩作用与变质作用界线的讨论-从沸石相谈起[J].地质论评,1996,42(3):215-223.
    [139]柳益群,李继红,冯乔,等.鄂尔多斯盆地三叠-侏罗系的成岩作用及其成藏成矿响应[J].岩石学报,2009,25(10):2331-2339.
    [140]卢双舫,付广,王朋岩,等.天然气富集主控因素的定量研究[M].北京:石油工业出版社,2002:1-13.
    [141]吕延防,付广,于丹.中国大中型气田盖层封盖能力综合评价及其对成藏的贡献[J].石油与天然气地质,2005,26(6):742-745
    [142]吕明.莺-琼盆地含气区储层特征[J].天然气工业,1999,19(1):20-24.
    [143]吕正祥,刘四兵.川西须家河组超致密砂岩成岩作用与相对优质储层形成机制[J].岩石学报,2009,25(10):2373-2383.
    [144]陆永潮,向才富,陈平,等.层序地层学在碎屑岩成岩作用研究中的应用—以YA13-1气田下第三系为例[J].石油实验地质,1999,21(2):100-103.
    [145]罗静兰,Morad S,阎世可,等.河流-湖泊三角洲相砂岩成岩作用的重建及其对储层物性演化的影响——以延长油区侏罗系上三盈统砂岩为例[J].中国科学(D辑),2001,31(12):1006-1016.
    [146]罗静兰,张晓莉,张云翔,等.成岩作用对河流-三角洲相砂岩储层物性演化的影响——以延长 油区上三叠统延长组长2砂岩为例[J].沉积学报,2001,19(4):541-547.
    [147]罗静兰,刘小洪,林潼,等.成岩作用与油气侵位对鄂尔多斯盆地延长组砂岩储层物性的影响[J].地质学报,2006,80(5):664-673.
    [148]孟元林,肖丽华,王建国等.粘土矿物转化的化学动力学模型及其应用[J].沉积学报,1996.14(2):110-116.
    [149]孟元林,肖丽华,杨俊生等.成岩演化数值模拟及其应用[J].地学前缘,2000,7(4):430-434.
    [150]孟元林,王志国,杨俊生等.成岩作用过程综合模拟及其应用[J].石油实验地质,2003,25(2):211-215.
    [151]宁宁,陈孟晋,刘锐娥,等.鄂尔多斯盆地东部上古生界石英砂岩储集层成岩及孔隙演化[J].天然气地球科学,2007,18(3):334-338.
    [152]欧光习,李林强,孙玉梅.沉积盆地流体包裹体研究的理论与实践[J].矿物岩石地球化学通报,2006,25(1):1-11.
    [153]戚厚发,孔志平,戴金星,等.天然气地质研究[M].北京:石油工业出版社,1992:8-14.
    [154]裘怿楠,薛叔浩编著.油气储层评价技术[M].北京:石油工业出版社,1994.59-64.
    [155]裘怿楠,薛叔浩,应凤祥.中国陆相油气储集层[M].北京:石油工业出版社,1997.149-217
    [156]邱隆伟,姜在兴,操应长,等.泌阳凹陷碱性成岩作用及其对储层的影响[J].中国科学(D辑),2001,31(9):752-759.
    [157]邱隆伟,姜在兴.碎屑岩的碱性成岩作用[M].北京:地质出版社,2006:1-34.
    [158]任战利.鄂尔多斯盆地热演化史与油气关系的研究[J].石油学报,1995,17(1):17-24.
    [159]任战利,张盛,高胜利,等.鄂尔多斯盆地构造热演化史及其成藏成矿意义[J].中国科学(D辑),2007,37(s1):23-32.
    [160]单秀琴,李剑,胡国艺.利用流体包裹体分析和计算油气的充注史和古流体势:以鄂尔多斯盆地榆林地区上古生界为例[J].石油与天然气地质,2007,28(2):159-165.
    [161]石宝珩,戚厚发,戴金星,等.天然气地质研究论文集[M].北京:石油工业出版社,1989.1-7.
    [162]施继锡,李本超,傅家谟,等.有机包裹体及其与油气的关系[J].中国科学(B辑),1987,(3):318-326.
    [163]史基安,王金鹏,毛明陆,等.鄂尔多斯盆地西峰油田三叠系延长组长6-8段储层砂岩成岩作用研究[J].沉积学报,2003.21(3):373-380.
    [164]寿建峰,张惠良,斯春松,等.砂岩动力成岩作用[M].北京:石油工业出版社,2005:110-153.
    [165]寿建峰,张惠良,沈扬等.中国油气盆地砂岩储层的成岩压实机制分析[J].岩石学报,2006.22(8):2165-2170
    [166]孙玉梅.对石油包裹体研究和应用的几点认识[J].矿物岩石地球化学通报,2006,25(1):29-32.
    [167]孙樯,谢鸿森,郭捷,等.含油气沉积盆地流体包裹体及应用[J].长春科技大学学报,2000,30(1):4245.
    [168]陶士振.自生矿物序次是确定包裹体期次的根本依据[J].石油勘探与开发,2006,33(2):154-160.
    [169]王国勇,刘天宇,石军太.苏里格气田井网井距优化及开发效果影响因素分析[J].特种油气藏,2008,15(5):76-79.
    [170]王琪,史基安,肖立新,等.石油侵位对碎屑岩储集岩成岩序列的影响及其与孔隙演化的关系[J].沉积学报,1998,16(3):97-101.
    [171]王琪,史基安,陈国俊,等.塔里木盆地西部碳酸盐岩成岩环境特征及其对储层物性的控制作用[J].沉积学报,2001,19(4):548-555.
    [172]万玲,孙岩,魏国齐.确定储集层物性参数下限的一种新方法及其应用——以鄂尔多斯盆地中部气田为例[J].沉积学报,1999,17(3):454-457.
    [173]魏柳斌,陈洪德,朱平,等.鄂尔多斯盆地上古生界盒8段南北储层差异性对比[J].断块油气藏,2011,18(3):285-288.
    [174]夏毓亮,林锦荣,刘汉彬,等.中国北方主要产铀盆地砂岩型铀矿成矿年代学研究[J].铀矿地质,2003,19(3):129-136.
    [175]向阳,向丹,羊裔常,等.致密砂岩气藏水驱动态采收率及水膜厚度研究[J].成都理工学院学报,1999,26(4):389-391.
    [176]肖丽华,孟元林,王建国等.碎屑岩成岩温度的数值模拟和成岩阶段的预测[J].中国海上油气,1995,9(6):389-394.
    [177]肖贤明,刘祖发,刘德汉,等.应用储层流体包裹体信息研究天然气气藏的成藏时间[J].科学通报,2002,47(12):957-960.
    [178]许化政.东濮凹陷致密砂岩气藏特征的研究[J].石油学报,1991,12(1):1-28.
    [179]许文良,王冬艳,王清海,等.华北地块中东部中生代侵入杂岩中角闪石和黑云母的40Ar/39Ar定年:对岩石圈减薄时间的制约[J].地球化学,2004,33(3):221-231.
    [180]杨华,付金华,刘新社,等.鄂尔多斯盆地上古生界致密气成藏条件与勘探开发[J].石油勘探与开发,2012,39(3):295-303.
    [181]杨华,刘新社,杨勇.鄂尔多斯盆地致密气勘探开发形势与未来发展展望[J].中国工程科学,2012,14(6):40-48.
    [182]杨小萍,陈丽华.陕北斜坡延长统低渗储集层成岩相研究[J].石油勘探与开发,2001,28(4):38-40.
    [183]杨晓宁,张惠良,朱国华.致密砂岩的形成机制及其地质意义——以塔里木盆地英南2井为例[J].海相油气地质,2005,10(1):31-36.
    [184]杨兴科,杨永恒,季丽丹,等.鄂尔多斯盆地东部热力作用的期次和特点[J].地质学报,2006,80(5):705-711.
    [185]杨智,何生,邹才能,等.鄂尔多斯盆地北部大牛地气田成岩成藏耦合关系[J].石油学报,2010,31(3):373-378.
    [186]应凤祥.我国陆相碎屑岩中的自生矿物[A].中国油气储层研究论文集[V],北京:石油工业出版社,1993:17-22.
    [187]姚泾利,黄建松,郑琳,等.鄂尔多斯盆地东北部上古生界天然气成藏模式及气藏分布规律[J].中国石油勘探,2009,1:10-16.
    [188]袁政文,朱家蔚,王生朗,等.东濮凹陷沙河街组天然气储层特征及分类[J].天然气工业,1990,10(3):6-11.
    [189]余家仁,雷怀玉.华北地区石炭系、二叠系碎屑岩储集层特征[J].新疆石油地质,1998,19(1):50-53.
    [190]曾大乾,李淑珍.中国低渗透砂岩储层类型及地质特征[J].石油学报,1994,15(1):38-46.
    [191]张枝焕,胡文瑄,曾溅辉,等.东营凹陷下第三系流体-岩石相互作用研究[J].沉积学报,2000,18(4):560-566.
    [192]张金亮,林辉,司学强,等.鄂尔多斯盆地王窑地区上三叠统长6油层成岩作用研究[J].中国海洋大学学报,2004.34(4):625-635.
    [193]张金亮,司学强,梁杰,等.陕甘宁盆地庆阳地区长8油层砂岩成岩作用及其对储层性质的影响[J].沉积学报,2004.22(2):45-53.
    [194]张哨楠.致密天然气砂岩储层:成因和讨论[J].石油与天然气地质,2008,29(1):1-10.
    [195]张鼐,田作基,冷莹莹,等.烃和烃类包裹体的拉曼特征[J].中国科学(D辑),2007,37(7):900-907.
    [196]张文忠,郭彦如,汤达祯,等:苏里格气田上古生界储层流体包裹体特征及成藏期次划分[J].石油学报,2009,30(5):685-691.
    [197]赵重远.鄂尔多斯及山西地块地质构造及沉积盆地的形成、演化及其与油气关系[M].北京:石油工业出版社,1988:3-7
    [198]赵伦,赵澄林,涂强.酒东盆地营尔凹陷碎屑岩储层成岩作用特征研究[J].江汉石油学院学报,1998,20(4):12-16
    [199]赵靖舟.油气水界面追溯法与塔里木盆地海相油气成藏期分析[J].石油勘探与开发,2001,28(4):55-58.
    [200]赵靖舟.塔里木盆地烃类流体包裹体与成藏年代分析[J].石油勘探与开发,2002,29(4):21-25.
    [201]赵靖舟.油气成藏年代学研究进展及发展趋势[J].地球科学进展,2002,1 7(3):378-383.
    [202]赵靖舟,罗继红,吴少波,等.成藏动力系统的内涵及其勘探意义[J].中国石油勘探,2002,7(4):15-17
    [203]赵靖舟,王力,孙兵华,等.鄂尔多斯盆地东部构造演化对上古生界大气田形成的控制作用[J].天然气地球科学,2010,21(6):875-881.
    [204]赵靖舟,付金华,姚泾利,等.鄂尔多斯盆地准连续型致密砂岩大气田成藏模式[J].石油学报,2012,33(S 1):37-52.
    [205]赵靖舟.非常规油气有关概念、分类及资源潜力[J].天然气地球科学,2012,23(3):393-406.
    [206]赵国泉,李凯明,赵海玲,等.鄂尔多斯盆地上古生界天然气储集层长石的溶蚀与次生孔隙的形成[J].石油勘探与开发,2005,32(1);53-55.
    [207]赵孟为,Ahrendt H, Wemmer K.K-Ar测年法在确定沉积岩成岩时代中的应用——以鄂尔多斯盆地为例[J].沉积学报,1996,14(3):11-21.
    [208]朱国华.成岩作用与砂层(岩)孔隙的演化[J].石油与天然气地质,1982,3(3):1995-202.
    [209]朱国华.陕北延长统砂体成岩作用与油气富集的关系[J].石油勘探与开发,1985,6:1-9.
    [210]朱家祥,李淑贞.碎屑岩成油组合的成岩作用研究[J].石油实验地质,1988,10(3):223-240.
    [211]朱家祥,李淑贞.苏北高邮凹陷戴一段砂岩矿物和孔隙成岩机理的探讨[J].沉积学报,1989,7(3):39-51.
    [212]朱筱敏,孙超,刘成林,等.鄂尔多斯盆地苏里格气田储层成岩作用与模拟[J].中国地质,2007,34(2):276-282.
    [213]朱宏权,张哨楠.鄂尔多斯盆地北部上古生界储层成岩作用[J].天然气工业,2004,24(2):29-32.
    [214]郑浚茂,庞明.碎屑储集岩的成岩作用研究[M].武汉:中国地质大学出版社,1989:82-84.
    [215]郑浚茂,应凤祥.煤系地层的砂岩储层特征及成岩模式[J].石油学报,1997,18(4):19-24.
    [216]郑荣才,耿威,周刚,等.鄂尔多斯盆地白豹地区长6砂岩成岩作用与成岩相研究[J].岩性油气藏,2007,19(2):1-8.
    [217]钟大康,朱筱敏,张枝焕,等.东营凹陷古近系砂岩次生孔隙成因与纵向分布规律[J].石油勘探与开发,2003,30(6):51-53.
    [218]周文,庄阿龙,费怀义,等.四川盆地川东地区石炭系储产层下限标准的确定方法[J].矿物岩石,1999,19(2):31-36.
    [219]邹才能,陶士振,薛叔浩.”相控论”的内涵及其勘探意义[J].石油勘探与开发,2005,32(6):7-12.
    [220]邹才能,陶士振,周慧,等.成岩相的形成分类与定量评价方法[J].石油勘探与开发,2008,35(5):526-540.
    [221]邹才能,陶士振,袁选俊,等.连续型油气藏形成条件与分布特征[J].石油学报,2009,30(3):324-331.
    [222]邹才能,陶士振,袁选俊,等.“连续型”油气藏及其在全球的重要性:成藏、分布与评价[J].石油勘探与开发,2009,36(6):669-681.
    [223]邹才能,张光亚,陶士振,等.全球油气勘探领域地质特征、重大发现及非常规石油地质[J].石油勘探与开发,2010,37(2):129-145
    [224]邹才能,陶士振,候连华,等.非常规油气地质[M].北京:地质出版社,2011:50-71,86-92.
    [225]邹和平,张珂,李刚.鄂尔多斯地块早白垩世构造-热事件:杭锦旗玄武岩的Ar-Ar年代学证据[J].大地构造与成矿学,2008,32(3):360-364.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700