用户名: 密码: 验证码:
尕斯库勒盐湖卤水与沉积物中铀的分布及富集机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐湖蕴藏着丰富的矿产资源而被广泛关注。铀在盐湖中的分布及其来源的研究一直是很多研究者感兴趣的问题。尕斯库勒盐湖位于青海省柴达木盆地西北部,已有研究发现该盐湖卤水中铀含量不但远远超过海水中铀的浓度,而且也高于柴达木盆地盐湖的平均值。因此,对该盐湖卤水和沉积物中铀的分布、来源、富集因素进行研究具有特殊意义。
     本论文在充分收集资料和现场调查之后,采集了该盐湖周缘和内部的水样、沉积物以及干盐滩盐滩卤水和沉积物样品,主要分析了铀含量、水化学组分、铀同位素等,并开展了室内实验。在详细研究该盐湖区域地质、水文地质、沉积特征、水文地球化学环境特征、孢粉组合特征、280ka以来古气候变化的基础上,结合盐湖铀源、沉积物和卤水中铀的分布,从构造背景、铀源条件、地下水动力条件、沉积旋回、古气候条件、水体演化6个方面分析了铀在盐湖中分布的影响因素,最后总结了该盐湖铀富集模式。取得了如下研究成果:
     1.淡水中,浅部水体(河水、沼泽水、潜水)铀含量平均值约为深部水体(承压水、井水、油田水)的10倍。盐滩卤水平均铀含量为78.08μg/L,与柴达木盆地盐湖湖表卤水平均铀含量相当,且分布不均匀。横向上,盐滩卤水中铀的分布受淡水补给影响严重,即离补给源越近铀含量越低,反之亦然;纵向上,铀含量相对高的卤水主要分布在蒸发岩沉积期,而碎屑沉积期相对较低,且同一个晶间卤水层内铀含量垂直分异明显,随深度增加而递减。卤水铀含量变化范围为13.90~933.00μg/L,平均值为274.17μg/L,为海水平均铀含量的83.08倍,为柴达木盆地盐湖湖表卤水平均铀含量的2.83倍。湖表卤水-晶间卤水-盐田卤水,铀含量逐渐升高,而到了老卤水铀含量有一定程度降低。
     2.钻孔沉积物铀含量分布范围为0.19~15.80μg/g,平均含量为3.37μg/g。各钻孔沉积物之间的铀含量差别较大。横向上,与卤水中铀含量分布规律类似,钻孔沉积物铀含量受淡水补给影响大,即距离补给源越远,则铀含量越高,反之亦然;纵向上,铀含量相对高值主要分布在碎屑沉积期,而蒸发岩沉积期的铀含量相对较低,且同一个晶间卤水层或者碎屑物沉积层内铀含量垂直分异明显,存在着随深度增加而递增的规律。纯盐类(石盐、泻利盐、石膏)中平均铀含量为1.02μg/g,约为沉积物中铀含量的1/3。该盐湖沉积物中2/3的铀被粘土质点吸附,1/3的铀夹杂在盐类矿物中。盐湖所有固体的平均铀含量为3.33μg/g。干盐滩中毛细蒸发和淋滤作用等的化学沉积分异作用对卤水和沉积物中铀的富集具有十分重要的意义。
     3. ZK06孔沉积物共统计陆生植物花粉7863粒,平均每个样品315粒,孢粉较丰富,共发现并鉴定了32个科属的植物。参照植物生态习性所反映的气候特性,结合岩性特征将其自下而上划分为6个孢粉组合带。根据孢粉组合特征,该盐湖自280ka以来植被演化趋势为:疏林草原→灌丛草原→荒漠草原,气候:凉略湿→凉略干→冷干。铀含量与孢粉总浓度、灌木、蒿属呈明显的正相关,与草本植物浓度呈正相关。凉湿气候带内平均铀含量为冷干气候带的3倍,因此气候越干旱和寒冷,沉积物中的铀含量越低,而气候凉湿对沉积物富集铀有利。
     4.通过淋滤实验表明盐湖周缘第四纪沉积物中的U最容易被淋出,上新世含盐岩系中的U次之,蚀源区岩石难淋出。由悬浮平衡实验可知,在盐湖内U从悬浮颗粒物进入悬浮液的迁移能力一般。而且U在卤水和沉积物间的迁移系数KU变化趋势与悬浮液中U含量变化趋势一致。通过淋滤实验和悬浮平衡实验确定了该盐湖铀的来源主要为上新世含盐岩系的风化淋滤作用、周边岩石风化剥蚀作用和深部水补给。利用铀系法计算得知,三种补给来源分别占该盐湖铀补给总量的80.4%、18.7%、0.9%。
     5.该盐湖铀富集的机理可概括为多因素复合成因模式,具体富集过程为:外围山系基岩、含盐岩系、第四纪沉积物经过降水和地表水淋滤之后进入盐湖,与深部水混合之后在盐湖表面蒸发、浓缩而进一步富集,在富集过程中,受到地下水动力、沉积旋回、古气候、水体演化等因素的控制。其中,铀源条件和水体演化是主要控制因素,区域构造背景、古气候条件和地下水动力条件次之,而沉积旋回对铀富集影响较小。
Salt lakes have been extensively studied owing for its abundant mineralresources. Thus,many researchers pay high attention to the questions about thedistribution of U in the salt lake and its source. It has been found that the uranium inGasikule Salt Lake which located at the northwest of Qaidam Basin is not only higherthan the concentration of the average seawater but also exceed that of the averagebrines in the Qaidam Basin. Therefore,it is particularly significant to study thedistribution,sources,and enrichment factors of uranium in the Gasikule Salt Lake.
     When I started my this study,I collected all kinds of information about thewaters,brines and sediments of periphery area and eastern playa’s boreholes in theGasikule Salt Lake. Then,I measured the uranium concentration,hdyrochemicalcomposition,trace elements,chronology,uranium isotope. Based on the regionalgeology,hydrogeology,sedimentary characteristics,hydrogeochemistry,sedimentarygeochemistry, pollen assemblage characteristics, palaeoclimate since280ka, Ianalysed the factors which influenced the uranium distribution in the salt lake fromtectonic setting,sources,hydrodynamic conditions,sedimentary cycle,palaeoclimateto water evolution. I showed the uranium enrichment mode in the end. From all ofabove,the main results can be summaried as follows.
     1. In fresh water,uranium concentration in shallow water (stream water,swampwater,phreatic water) is higher than in deep water (artesian water,well water,oilfield water) for10times. The average uranium concentration of drillcores brines is78.08μg/L,which is the same as the superficial brines in Qaidam Basin. Horizontally,the distribution of uranium in drillcores brines was seriously affected by the freshwater supply,ie the uranium concentrations generally increase with farmer from thefresh water. Vertically,uranium concentrations in evaporite deposition’s brine higherthan debris deposition. Moreover,uranium contentations vertical differentiationsignificantly in a crystal brine layer and decreasing with increasing depth. Theconcentrations of uranium in brines range between13.90~933.00μg/L, averaging of274.17μg/L,which is not only the83.08times of the seawater,but also the2.83timesof the superficial brines in Qaidam Basin. Uranium concentrations increase from superficial brines,intercrystalline brines to salt-bond brines,while decrease in thebittern brines.
     2. The concentrations of uranium sedimentation range between0.19~15.80μg/g,averaging of3.37μg/g. There was large different uranium concentration indrillcores sedimentations. Horizontally,the distribution of uranium in drillcoressedimentations was seriously affected by the fresh water supply,ie the uraniumconcentrations generally increase with farmer from the fresh water. Vertically,uranium concentrations in debris deposition were higher than evaporite period.Moreover,uranium contentations vertical differentiation significantly in a crystalbrine layer or debris layer and increasing with deeper sedimentation. The averageuranium concentration in pure salts (halite,epsomite,gypsum) was1.02μg/g,whichwas approximately one third of sedimentations. Therefore,two thirds of uranium insedimentation was absorbed by clay while one third uranium was mingled with salineminerals. Chemical sedimentary differentiation in play such as capillary evaporationand leaching was very significant to uranium enrichment in brines andsedimentations.
     3. Through laboratory analysis,about7863terrestrial plant pollens were found inZK06drillcore sedimentations and an average of315per sample. According to plantecological habits,we divided into six pollen assemblage zones combined with itslithology from102.69m. Referring to pollen assemblage characteristics,Gasikule SaltLake’s paleo-vegetation changed from veld to desert steppe,and the paleo-climatechanged from cool and mid wet to cold and dry from280ka. Uranium concentration insediments was significantly correlated with total Sporo-pollen concentration,Shrubsand Artemisia,and also with herb concentration. The uranium concentration incool-mid climatical zones is very high,averagely three times as high as that in cold-dry zones. This climate evolution was benefit for uranium transform fromprovenance to salt lake and pre-enrichment.
     4. Based on the data of equilibration experiments and leaching experiments,uranium in the Salt Lake peripheral Quaternary sediments most easily to be leachedout,salt bearing rock in Pliocene was secondly,and provenance rocks were mostdifficult. Ability of uranium migrated from suspended particles to suspended liquid is normal. Moreover,the trend of migration coefficient (KU) between brines andsedimentations was consistent with uranium concentrations in suspended liquid.Through the leaching experiment and equilibration experiments,we could concludethat uranium in this salt lake come from Pliocene salt bearing rocks,provenance rocksand depth water. According to U-series nuclides calculation,uranium recharge ratiofrom Pliocene salt bearing rocks,provenance rocks and depth water account for about18.7%,80.4%and0.9%respectively.
     5. Uranium enrichment mechanism in Gasikule Salt Lake could be summarizedas a compound origin model which would be specific showed as follow. Uraniumfrom peripherial base rock,salt bearing rock and Quaternary sediments was leachatedby rain and superficial water and then enter salt lake. Uranium was foremore enrichedin salt lake after mingled with deep water. During the enrichment process,uraniumconcentrations were affected by the hydrodynamic conditions,deposition cycle,palaeoclimate and water evolution. In all influential factors,sources and waterevolution were dominance principles, tectonic setting, palaeoclimate andhydrodynamic conditions were secondary affecting factors,but deposition cycle wasminimum factor.
引文
[1] Andersen M B, Stirling C H, Porcelli D,et al.The tracing of riverine U in Arctic seawaterwith very precise234U/238U measurements.Earth and Planetary Science Letters,2007,259:171~185
    [2] Andersson P S,Wasserburg G J,Chen J H,et al.238U-234U and232Th-230Th in the Baltic Seaand in river water.Earth and Planetary Science Letters,1995,130:217~234
    [3] Andrews J N,Giles I S,Kay R L F,et al.Radioelements,radiogenic helium and agerelationships for groundwaters from the granites at Stripa, Sweden. Geochimica etCosmochimica,1982,46:1533~1543
    [4] Banner J,Wasserburg G J,Chen J H,et al.234U-238U-230Th-232Th systematics in salinegroundwaters from central Missouri.Earth and Planetary Science Letters,1990,101(2-4):296~312
    [5] Bauluz B,Mayayo M J,Fernandez-Nieto C,et al.Geochemistry of Precambrian andPaleozoic siliciclastic rocks from the Iberian Range(NE Spain):implications for source-areaweathing,sorting,provenance,and tectonic setting.Chemical Geology,2000,168:135~150
    [6] Bellanger B,Huon S,Steinmann P,et al.Oxic–anoxic conditions in the water column of atropical freshwater reservoir (Pena-Larga dam,NW Venezuela).Applied Geochemistry,2004,19:1295~1314
    [7] Benedetti M F,Dia A,Riotte J,et al.Chemical weathering of basaltic lava flows undergoingextreme climatic conditions:the water geochemistry record.Chemical Geology,2003,201:1~17
    [8] Bhat G S,Krishnaswamy S,Lal D,et al.234U/238U Ratios in the ocean.Earth and PlanetaryScience Letters,1969,5:483~491
    [9] Bollhǒfer A F,Rosman K J R,Dick A L,et al.Concentration,isotopic composition,andsources of lead in Southern Ocean air during1999/2000,measured at the Cape Grim BaselineAir Pollution Station,Tasmania.Geochimica et Cosmochimica Acta,2005,20(60):4747~4757
    [10] Bonotto D M,Andrews J N,Darbyshire D D F.A laboratory study of the transfer of234Uand238U during water–rock interactions in the Carnmenellis granite (Cornwall,England) andimplications for the interpretation of field data.Applied Radiation and Isotopes,2001,54(6):977~994
    [11] Borole D V,Krishnaswami S,Somayajljlu B L K.Uranium isotopes in rivers,estuaries andadjacent coastal sediments of western India:their weathering,transport and oceanicbudget.Geochimica Cosmochimica.1982,46:125~137
    [12] Cenki-Tok B,Chabaux F,Lemarchand D,et al.The impact of water–rock interaction andvegetation oncalcium isotope fractionation in soil-and stream waters of a small,forestedcatchment (the Strengbach case).Geochimica et Cosmochimica Acta,2009,73:2215~2228
    [13] Chabaux F,Ben Othman D,Birck J L.A new Ra-Ba chromatographic separation and itsapplication to Ra mass-spectrometric measurement in volcanic rocks.Chemical Geology,1994,114:191~197
    [14] Chabaux F,Blaes E,Stille P,et al.Regolith formation rate from U-series nuclides:Implications from the study of a spheroidal weathering profile in the Rio Icacos watershed(Puerto Rico).Geochimica et Cosmochimica Acta,2013,100:73~95
    [15] Chabaux F,Chohen A S,Nions R K O,et al.238U-234U-230Th chronometry of Fe-Mn crusts:Growth processes and recovery of thorium isotopic ratios of seawater.Geochimica etCosmochimica Acia,1995,59(3):633~638
    [16] Chabaux F,Chohen A S,Nions R K O,et al.238U-234U-230Th disequilibrium in hydrogenousoceanic Fe-Mn crusts:Palaeoceanographic record or diagenetic alteration? Geochimica etCosmochimica Acia,1997,61(17):3619~3632
    [17] Chabaux F,Granet M,Larque P,et al.Geochemical and isotopic (Sr,U) variations of lakewaters in the Ol’khonRegion, Siberia, Russia: Origin and paleoenvironmentalimplications.Comptes Rendus Geoscience,2011,343:462~470
    [18] Chabaux F,Granet M,Pelt E,et al.238U–234U–230Th disequilibria and timescale ofsedimentary transfers in rivers:clues from the Gangetic plain rivers.Journal of GeochemicalExploration,2006,88:373~375
    [19] Chabaux F,Riotte J,Clauer N,et al.Isotopic tracing of the dissolved U fluxes of Himalayanrivers: implications for present and past U budgets of the Ganges-Brahmaputrasystem.Geochimica et Cosmochimica Acta,2001,65(19):3201~3217
    [20] Chabaux F,Riotte J,Schmitt A D,et al.Variations of U and Sr isotope ratios in Alsace andLuxembourgrain waters: origin and hydrogeochemical implications. Comptes RendusGeoscience,2005,337:1447~1456
    [21] Chen J H,Lawrence Edwards R,Wasserburg G J.238U-234U and232Th in seawater.Earth andPlanetary Science Letters,1986,80(3-4):241~251
    [22] Church T M,Sarin M M,Flelsher M Q,et al.Salt marshes:An important coastal sink fordissolved uranium.Geochimica et Cosmochimica Acia,1996,60(20):3879~3887
    [23] Cowart B J,Osmond J K.Uranium isotopes in groundwater:their use in prospecting forsandstone-type uranium deposits.Journal of Geochemical Exploration,1977,8:365~379
    [24] Cowart J B,Kaufman M I,Osmond J K.Uranium-isotopic variations in groundwaters of theFloridan aquifer and Boulder Zone of south Floride.Journal of Hydrology,1978,36(1-2):161~172
    [25] Cowart J B.Uranium isotopic and226Ra Content in the Deep Groundwaters of the Tri-StateRegion,U.S.A.Developments in Water Science,1981,54:185~193
    [26] Dabous A A,Osmond J K,Dawood Y H.Uranium/Thorium isotope evidence forground-water history in the Eastern Desert of Egypt.Journal of Arid Environments,2002,50:343~357
    [27] Dabous A A,Osmond J K.Uranium isotope study of artesian and pluvial contributions to theNubian Aquifer,Western Desert,Egypt.Journal of Hydrology,2001,243:242~253
    [28] Delanghe D,Bard E, Hamelin B.New TIMS constraints on the uranium-238anduranium-234in seawaters from the main ocean basins and the Mediterranean Sea.MarineChemistry,2002,80:79~93
    [29] Dequincey O,Chabaux F,Clauer N,et al.Chemical mobilizations in laterites:Evidencefrom trace elements and238U-234U-230Th disequilibria.Geochimica et Cosmochimica Acta,2002,66(7):1197~1210
    [30] Dequincey O,Chabaux F,Clauer N,et al.Dating of weathering profiles by radioactivedisequilibria contribution of the study of authigenic mineral fractions.Geochenistry,1999,328:679~685
    [31] Durand S,Chabaux F,Rihs S,et al. U isotope ratios as tracers of groundwater inputs intosurface waters:Example of the Upper Rhine hydrosystem.Chemical Geology,2005,220:1~19
    [32] Esat T M,Yokoyama Y.Variability in the uranium isotopic composition of the oceans overglacial–interglacial timescales.Geochimica et Cosmochimica Acta,2006,70:4140~4150
    [33] Granet M,Chabaux F,Stille P,et al.Time-scales of sedimentary transfer and weatheringprocesses from U-series nuclides:clues from the Himalayan rivers.Earth and PlanetaryScience Letters,2007,261:389~406
    [34] Granet M,Chabaux F,Stille P,et al.U-series disequilibria in suspended river sediments andimplication for sediment transfer time in alluvial plains:The case of the Himalayanrivers.Geochimica et Cosmochimica Acta,2010,74:2851~2865
    [35] Grzymko T J,Marcantonio Franco,McKee B A,et al.Temporal variability of uraniumconcentrations and234U/238U activity ratios in the Mississippi river and itstributaries.Chemical Geology,2007,243:344~356
    [36] Henderson G M,Cohen A S,Onions R K.234U/238U and230Th ages for Hateruma Atoll coralsimplications for coral diagenesis and seawater234U/238U rations.Earth and Planetary ScienceLetters,1993,115:65~73
    [37] Henderson G M,Hall B L,Smith A,Robinson L F.Control on (234U/238U) in lake water:A study in the Dry Valleys of Antarctica.Chemical Geology,2006,226:298~308
    [38] Henderson G M,Slowey N C,Haddad G A.Fluid flow through carbonate platforms:constraints from234U/238U and Cl-in Bahamas pore-waters.Earth and Planetary ScienceLetters,1999,169:99~111
    [39] Herzl V M C,Millward G E,Wollast R,et al.Species of dissolved Cu and Ni and theiradsorption kinetics in turbid riverwater.Estuarine,Coastal and Shelf Science,2003,56(1):43~52
    [40] Hierro A,Martín J E,Olías M,et al.Uranium behavior during a tidal cycle in an estuarinesystem affected by acid mine drainage (AMD).Chemical Geology,2013,342:110~118
    [41] Immel R,Osmond J K.Micromanganese nodules in deep-sea sediments:Uranium-isotopicevidence for post-depositional origin.Chemical Geology,1976,18(4):263~272
    [42] Kaufman M I,Rydell H S,Osmond J K.234U/238U disequilibrium as aid to hydrologic studyof the floridan aquifer.Journal of Hydrology,1969,9:373~386
    [43] Kraemer T F.234U and238U concentration in brine from geopressured aquifers of thenorthern Gulf of Mexico basin.Earth and Planetary Science Letters,1981,56:210~216
    [44] Kronfeld J,Godfrey-Smith D I,Johannessen D,et al.Uranium series isotopes in the AvonVally,Nova Scotia.Journal of Environmental Radioactivity,2004,73:335~352
    [45] Kronfeld J,Gradsztajn E,Müller H W,et al.Excess234U:An aging effect in confinedwaters.Earth and Planetary Science Letters,1975,27(2):342~345
    [46] Kronfeld J,Vogel J C.Uranium isotopes in surface waters from southern Africa.Earth andPlanetary Science Letters,1991,105:191~195
    [47] Ku T L,Knauss K G,Mathieu G G.Uranium in the open ocean: concentration and isotopiccomposition.Deep-Sea Research,1977,24:1005~1017
    [48] Lucas Y,Schmitt A D,Chabaux F,et al.Geochemical tracing and hydrogeochemicalmodelling of water–rock interactions during salinization of alluvial groundwater (UpperRhine Valley,France).Applied Geochemistry,2010,25:1644~1663
    [49] Ma L,Chabaux F,Pelt E,et al.Regolith production rates calculated with uranium-seriesisotopes at Susquehanna/Shale Hills Critical Zone Observatory.Earth and Planetary ScienceLetters,2010,297:211~225
    [50] Mason C F V,Turney W R J R,Thomson B M,et al.Carbonate leaching of uranium fromcontaminated soils.Environ Sci Technol,1997,31(10):2707~2711
    [51] Michael H A,Mulligan A E,Harvey C F.Seasonal oscillations in water exchange betweenaquifers and the coastal ocean.Nature,2005,436:1145~1148
    [52] Miekeley N, Linsalat P,Osmond J K.Uranium and thorium isotopes in groundwaters fromthe Osamu Utsumi mine and Morro do Ferro natural analogue sites,Pogos de Caldas,Brazil.Journal of Geochemical Exploration.1992,45:345~363
    [53] Min M Z,Peng X J,Wang J P,et al.Uranium-series disequilibria as a means to study recentmigration of uranium in a sandstone-hosted uranium deposit,NW China.Applied Radiationand Isotopes,2005,63:115~125
    [54] Misra A,Pande D,Ramesh K K,et al.Calcrete-hosted surficial uranium occurrence inplaya-lake environment at Lachhri,Nagaur District,Rajasthan,India.Current Science,2011,101(1):84~88
    [55] Moore W S,Demaster D,Smoak J M,et al.Radionuclide tracers of sediment-waterinteractions on the Amazon shelf.Continental Shelf Research,1996,16(5-6):645~665
    [56] Moore W S,Shaw T J.Fluxes and behavior of radium isotopes,barium,and uranium inseven Southeastern US rivers and estuaries.Marine Chemistry,2008,108(3-4):236~254
    [57] Nesbitt H W,Young G M.Early Proterozoic climates and plate motions inferred from majorelement chemistry of lutites.Nature,1982,299:715~717
    [58] Nesbitt H W,Young G M.Petrogenesis of sediments in the absence of chemical weathering:effects of abrasion and sorting on bulk composition and mineralogy.Sedimentology,1996,43:341~358
    [59] Nesbitt H W,Young G M.Prediction of some weathering trends of plutonic and volcanicrocks based on thermodynamic and kinetic considerations.Geochimica et CosmochimicaActa,1984,48(7):1523~1534
    [60] Nesbitt H W.Mobility and fractionation of rare earth elements during weathering of agranodiorite.Nature,1979,279:206~210
    [61] Osmond J K,Cowart J B.The theory and uses of natural uranium isotopic variations inhydrology.Atomic Energy Rev,1976,144:621~679
    [62] Osmond J K,Dabous A A.Timing and intensity of groundwater movement during EgyptianSahara pluvial periods by U-series analysis of secondary U in ores andcarbonates.Quaternary Research,2004,61(1):85~94
    [63] Osmond J K,Ivanovich M.Uranium-series mobilization and surface hydrology.In:Ivanovich M,Harmon R S (Eds),Uranium-series Disequilibrium:Applications to Earth,Marine and Evironmental Sciences.Clarendon Press,Oxford,1982:259~289
    [64] Osmond J K,Kaufman M I,Cowart J B.Mixing volume calculations,sources and agingtrends of Floridan aquifer water by uranium isotopic methods.Geochim Cosmochim Acta,1974,38:1083~1100
    [65] Osmond J K.Uranium-series fractionation in mafic extrusives.Applied geochemistry,2003,18(1):127~134
    [66] Palmer M R, Edmond J M.Uranium in river water.Geochimica et Cosmochimica Acta,1993,57(20):4947~4955
    [67] Pande K,Sarin M M,Trivedi J R,et al.The Indus river system(India-Pakistan):Major-ionchemistry,uranium and strontium isotopes.Chemical Geology,1994,116:245~259
    [68] Pelt E,Chabaux F,Innocent C,et al.Uranium–thorium chronometry of weathering rinds:rock alteration rate and paleo-isotopic record of weathering fluids.Earth and PlanetaryScience Letters,2008,276(1):98~105
    [69] Pelt E,Chabaux F,Stille P,et al.Atmospheric dust contribution to the budget of U-seriesnuclides in soils from the Mount Cameroon volcano.Chemical Geology,2013,341:147~157
    [70] Pierret M C,Chabaux F,Leroy S A G,et al.A record of Late Quaternary continentalweathering in the sediment of the Caspian Sea:evidence from U-Th,Sr isotopes,traceelement and palynological data.Quaternary Science Reviews,2012,51:40~55
    [71] Ramsh K K,Pande D,Mishra A,et al.Playa sediments of the Didwana lake,Rajasthan:a new environment for surficial-type uranium mineralisation in India.Journal GeologicalSociety of India,2011,77:89~94
    [72] Riotte J,Chabaux F,Benedetti M,et al.Uranium colloidal transport and origin of the234U-238U fractionation in surface waters:new insights from Mount Cameroon.ChemicalGeology,2003,202(3):365~381
    [73]Riotte J,Chabaux F.(234U/238U) Activity ratios in freshwaters as tracers of hydrologicalprocesses:The Strengbach watershed(Vosges,France).Geochimica et Cosmochimica Acta,1999,63(9):1263~1275
    [74] Robinson L F,Henderson G M,Hall B L,et al.Climatic control of riverine and seawateruranium-isotope ratios.Science,2004,305:851~854
    [75] Sarin M M,Krishnaswami S,Somayajulu L K,et al.Chemistry of uranium,thorium,and radium isotopes in the Ganga-Brahmaputra river system:Weathering processes andfluxes to the Bay of Bengal.Gecchimica et Ccmmxhimifa Acta,1990,54:1387~1396
    [76] Sarin M M,Thomas M Church.Behaviour of Uranium During Mixing in the Delaware andChesapeake Estuaries.Estuarine,Coastal and Shelf Science,1994,39:619~631
    [77] Sawyer E W.The influence of source rock type,chemical weathering and sorting on thegeochemistry of clastic sediments from the quetico metasedimentary belt suoerior provinceCanada.Chemical Geology,1986,55:77~95
    [78] Scott M R.The chemistry of U-and Th-series nuclides in rivers.In:Ivanovich M,HarmonR S (Eds),Uranium-series Disequilibrium:Applications to Earth,Marine and EvironmentalSciences.Clarendon Press,Oxford,1982:181~201
    [79] Shulkin V M,Bogdanova N N.Mobilization of metals from riverine suspended matter inseawater.Marine Chemistry,2003,83(3-4):157~167
    [80] Stuiver M,Reimer P J.Extended14C data base and revised Calib3.014C age calibrationprogram.Radiocarbon,1993,35(1):215~230
    [81] Toole J,Baxter M S,John Thomson.The behaviour of uranium isotopes with salinity changein three U.K.estuaries.Estuarine,Coastal and Shelf Science,1987,25:283~297
    [82] Wang J,Wang Y J,Liu Z C,et al.Cenozoic environmental evolution of the Qaidam Basinand its implications for the uplift of the Tibetan Plateau and the drying of centralasia.Palaeogeography,Palaeoclimatolgy,Palaeoecology,1999,152:37~47
    [83] Yadav D N,Sarin M M.Geo-chemical behavior of uranium in the Sambhar salt lake,Rajasthan(India):Implications to “Source” of salt and uranium “Sink”.Aquat Geochem,2009,15:529~545
    [84] Yadav D N. Oxygen isotope study of evaporating brines in Sambhar Lake,Rajasthan(India).Chemical Geology,1997,138:109~118
    [85] Zukin J G,Hammond D E,The-Lung K,et al.Uranium-thorium series radionuclides inbrines and reservoir rocks from two deep geothermal boreholes in the Salton SeaGeothermal Field,southeastern Califormia.Geochimica et Cosmochimica Acta,1987,51(10):2719~2731
    [86]陈碧珊,潘安定,张元芳.柴达木盆地尕海湖沉积物粒度特征及其古气候意义.海洋地质与第四纪地质,2010,30(2):111~119
    [87]陈戴生,王瑞英,李胜祥,等.伊犁盆地层间氧化带砂岩型铀矿成矿模式.铀矿地质,1997,13(6):327~335
    [88]陈静生,张宇,于涛,等.对黄河泥沙有机质的溶解特性和降解特性的研究—再论黄河水的COD值不能真实反映其污染状况.环境科学学报,2004,24(1):1~5
    [89]陈骏,王鹤年.地球化学.北京:科学出版社,2004
    [90]陈贤春,李启荣.柴达木盆地西北部铀成矿水文地球化学条件分析.铀矿地质,2001,17(6):348~353
    [91]杜乃秋,孔昭宸.青海柴达木盆地察尔汗盐湖的孢粉组合及其在地理和植物学的意义.植物学报,1983,25(3):275~282
    [92]段毅,彭德华,张辉,等.柴达木盆地西部尕斯库勒油田E31油藏成藏条件与机制.矿物岩石,2005,23(1):150~155
    [93]段毅,王传远,郑朝阳,等.柴达木盆地西部尕斯库勒油田原油地球化学特征及成因.矿物岩石,2006,26(1):86~91
    [94]樊启顺,马海州,谭红兵,等.柴达木盆地西部卤水水化学特征与找钾研究.地球学报,2007,28(5):446~455
    [95]范喆.尕斯库勒湖泊钻孔记录的地球化学元素变化及古环境演化:[博士学位论文].甘肃:兰州大学,2010
    [96]方小敏,吴福莉,韩文霞,等.上新世-第四纪亚洲内陆干旱化过程—柴达木中部鸭湖剖面孢粉和盐类化学指标证据.第四纪研究,2008,28(5):874~882
    [97]方志雄,等.江汉盆地盐湖沉积充填模式.北京:石油工业出版社,2006
    [98]顾慰祖,等.同位素水文学.北京:科学出版社,2011
    [99]侯献华,郑绵平,杨振京,等.柴达木盆地大浪滩130ka BP以来的孢粉组合与古气候.干旱区地理,2011,34(2):243~251
    [100]胡译文.柴达木盆地尕斯库勒油田原油组成特征及油源对比:[硕士学位论文].湖北:长江大学,2012
    [101]黄嫔,席萍,乔子真.青海柴达木盆地鄂博梁2号井早侏罗世孢粉植物群及其地层意义.微体古生物学报,2003,20(3):253~265
    [102]黄麒,韩凤清.柴达木盆地盐湖演化与古气候波动.北京:科学出版社,2007
    [103]黄麒,孟昭强,刘海玲.柴达木盆地察尔汗湖区古气候波动模式的初步研究.中国科学(B辑),1990,(5):652~663
    [104]江德昕,杨慧秋.柴达木盆地第三系油源的孢粉学证据.植物学报,1998,40(1):77~82
    [105]江德昕,杨慧秋.青海达布逊湖50万年以来气候变化的孢粉学证据.沉积学报,2001,19(1):101~105
    [106]江雪艳.黄河干流、河口及莱州湾南岸铀的分布及成因研究:[博士学位论文].山东:中国海洋大学,2008
    [107]金作美,肖显志,梁式梅.(Na+,K+,Mg2+),(Cl-,SO42-)-H2O五元体系介稳相图平衡研究.化学学报,1980,38(4):313~321
    [108]康安,朱筱敏,韩德馨,等.柴达木盆地第四纪孢粉组合及古气候波动.地质通报,2003,22(1):12~15
    [109]李素梅,刘洛夫,王铁冠.尕斯库勒渐新统下部油藏原油成因地球化学.石油与天然气地质,2004,25(6):666~670
    [110]李廷伟,谭红兵,樊启顺.柴达木盆地西部地下卤水水化学特征及成因分析.盐湖研究,2006,14(4):26~32
    [111]路晶芳,宋博文,陈锐明,等.柴达木盆地大柴旦地区大红沟古近纪孢粉组合序列与地层对比.地球科学(中国地质大学学报),2010,35(5):839~848
    [112]倪师军,徐争启,张成江,等.西南地区黑色岩系铀成矿作用及成因模式探讨.地球科学进展,2012,27(10):1035~1042
    [113]宁劲松.莱州湾沿岸地下卤水的化学特征研究:[硕士学位论文].山东:中国海洋大学,2004
    [114]欧阳舒,翼六祥,罗伟.青海省中西部洪水川群孢粉组合及其时代.古生物学报,2011,50(2):187~218
    [115]潘桂棠,肖庆辉,陆松年,等.中国大地构造单元划分.中国地质,2009.36(1):1~28
    [116]权建平,李卫红,李万华,等.十红滩铀矿床控制因素研究与成矿模式的建立.西北铀矿地质,2004,30(2):48~53
    [117]荣光忠,田希宝,李云平,等.青海省茫崖镇尕斯库勒钾矿详查报告:[调查报告].青海:青海省地质调查院,2003
    [118]邵飞,陈晓明,徐恒力,等.江西省香山铀矿田成矿模式探讨.地质力学学报,2008,14(1):65~73
    [119]沈振枢.柴达木盆地第四纪含盐地层划分及沉积环境.北京:地质出版社,1993
    [120]史维浚.铀水文地球化学原理.北京:原子能出版社,1990
    [121]孙非非,张菀漪,巩俊成,等.柴达木盆地上新世晚期以来古气候演变的孢粉环境指标重建.地质论评,2010,56(5):621~628
    [122]万和文,唐领余,张虎才,等.柴达木盆地东部36~18kaB.P.期间的孢粉记录及其气候环境.第四纪研究,2008,28(1):113~121
    [123]王焕夫,叶思源.柴达木盆地尕斯库勒湖区含钾卤水形成、分布规律和综合评价研究.中国地质科学院水文地质工程地质研究所所刊,1992,(8):51~77
    [124]王剑锋.铀地球化学教程.北京:原子能出版社,1986
    [125]王力,金强,彭德华.尕斯库勒油田原油成因类型与油源分析.新疆石油地质,2008,29(1):22~25
    [126]王丽娜,许建新,闵秀云,等.尕斯库勒盐湖卤水模拟自然蒸发试验研究.盐湖研究,2011,19(3):26~30
    [127]王丽娜.尕斯库勒盐湖卤水蒸发过程中铀的富集规律研究:[硕士学位论文].青海:中国科学院青海盐湖研究所,2011
    [128]王鹏,王胜艳,郝少盼,等.模拟扰动条件下太湖沉积物的再悬浮特征.水科学进展,2010,21(3):399~404
    [129]王志明,郝伟林,王俊虎,等.含铀盐湖铀富集条件和资源评价与开发技术研究:[调查报告].北京:核工业北京地质研究院,2012
    [130]魏新俊,邵长铎,王弭力,等.柴达木盆地西部富钾盐湖物质组分、沉积特征及形成条件研究.北京:地质出版社,1993
    [131]向伟东,方锡珩,李田港,等.鄂尔多斯盆地东胜铀矿床成矿特征与成矿模式.铀矿地质,2006,22(5):257~266
    [132]徐仁,宋之琛,周和仪.柴达木盆地第三纪沉积中的孢粉组合及其在地质学上的意义.古生物学报,1958,6(4):429~440
    [133]许博超.莱州湾南岸含卤地层年代学及卤水中铀的地球化学研究:[硕士学位论文].山东:中国海洋大学,2008
    [134]杨福山.青海省柴达木盆地北缘放射性水文地质调查报告.青海:二机部西北地勘局213大队3分队.1981
    [135]姚振凯,马亮,陈为义.萨瑟库里湖水型铀矿床成矿学特征.世界核地质科学,2013,30(1):17~21
    [136]于永涛.柴达木盆地西北缘尕斯库勒湖钻孔记录的中更新世气候转型:[博士学位论文].甘肃:兰州大学,2006
    [137]袁见齐,蔡克勤.盐类矿床成因理论的新发展.地球科学,1981,14(1):197~205
    [138]袁见齐,霍承禹,蔡克勤.盐类矿床成因理论的新发展及其在矿床学上的地位.矿床地质,1982,1(1):15~23
    [139]袁见齐.察尔汗盐湖钾盐矿床的形成条件.北京:地质出版社,1995
    [140]袁亚娟,夏斌,吕宝凤.柴达木盆地断裂组合特征及油气成藏意义.断块油气田,2011,18(2):212~216
    [141]张金带,徐高中,陈安平,等.我国可地浸砂岩型铀矿成矿模式初步探讨.铀矿地质,2005,21(3):139~145
    [142]张岚,倪晋仁,孙卫玲,等.高含沙水体中黄土吸持和释放铜的机理.环境科学,2011,24(3):79~84
    [143]张彭熹.柴达木盆地盐湖.北京:科学出版社,1987
    [144]张如良,孙明山,杨燕山,等.青海省柴达木盆地北缘铀矿地质调查报告:[调查报告].青海:二机部西北地勘局二一三大队三分队,1981
    [145]张文翔.表生元素在湖相沉积中的地球化学分异及环境演化:[博士学位论文].甘肃:兰州大学,2009
    [146]张祖还,赵懿英,章邦桐,等.铀地球化学.北京:原子能出版社,1984
    [147]赵蓉,倪晋仁,孙卫玲,等.黄河中游泥沙对铜离子的吸持行为研究.环境科学学报,2003,23(4):441~446
    [148]赵欣,史基安,王金鹏,等.尕斯库勒油田不同赋存状态烃类的地球化学特征.新疆石油地质,2007,28(5):557~562
    [149]郑绵平,向军,魏新俊,等.青藏高原盐湖.北京:北京科学技术出版社,1989
    [150]郑喜玉,李秉孝,高章洪,等.新疆盐湖.北京:科学出版社,1995
    [151]郑喜玉,唐渊,徐昶,等.西藏盐湖.北京:科学出版社,1988
    [152]郑喜玉,张明刚,董继和,等.内蒙古盐湖.北京:科学出版社,1992
    [153]周孝德.渭河泥沙对重金属污染物吸附的实验研究.水利学报,1993,(7):44~49
    [154]周仲怀,徐丽君,刘兴俊.莱州湾沿岸地下浓缩海水中高浓度铀的发现及其地球化学异常.海洋与湖沼,1989,20(1):52~57
    [155]朱允铸,钟坚华,李文生.青藏高原盐湖.北京:地质出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700