用户名: 密码: 验证码:
破碎—分选废弃电路板中非金属粉的资源化利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废弃电路板(WPCBs)是电子垃圾的重要组成部分,WPCBs中的金属品位相当于普通矿物中金属品位的几十倍至上百倍,具有重要的回收价值。目前主要采用破碎-分选等物理法回收WPCBs中的金属,而回收过程中产生的大量非金属粉主要进行焚烧、填埋处理或露天堆放,增加了环境负荷及造成环境污染。为此,本文基于“废物—资源—产品”的原则,以破碎-分选WPCBs中非金属粉为研究对象,根据非金属粉的组成、颗粒大小、形状等特性,采用物理填充再利用的方法,代替木粉等其它有价材料,成功地制备了非金属粉填充改性的酚醛模塑料、木塑复合材料、再生板材和改性沥青等4种材料,分别研究了非金属粉填充材料的制备工艺和性能,探讨了非金属粉填充材料的制备反应机理、改性强化机制、微观界面结合和有害物质的固定化理论,为破碎WPCBs中非金属粉的综合利用提供理论基础和实验依据。
     非金属粉主要由电路板基板增强材料和树脂粉末组成,其形状分别为片状、长杆状和短切玻璃纤维与树脂粉末。玻布粉粒径为0.3-0.15 mm的物料为片状、粒径为0.15-0.125 mm的物料为长杆状,粒径<0.07 mm的物料以短切纤维与树脂粉末为主;纸基粉粒径为0.3-0.125 mm的物料为薄片状,粒径<0.07 mm的物料为粉末状。玻璃纤维和纸等增强材料具有良好的增强效果,为非金属粉的填充再利用提供了前提。
     1.非金属粉填充酚醛模塑料
     将破碎、分选所得的玻布粉和纸基粉分别代替部分木粉填充到酚醛模塑料中,研究不同酚醛树脂系统的固化反应动力学,探讨非金属粉的添加量和粒径对模塑料性能的影响。研究表明:40 wt %玻布粉填充耐热型酚醛模塑料时,其性能完全满足标准要求。纸基粉填充通用型酚醛模塑料时,可以提高模塑料的缺口冲击强度和热变形温度,但会降低酚醛模塑料的拉西格流动性。纸基粉加入量以20 wt %为佳,此时,模塑料的弯曲强度为70 MPa、缺口冲击强度为2.3 kJ/m2、热变形温度为168°C、介电强度为3.9 MV/m和拉西格流动性为103 mm,完全满足模塑料标准要求。
     2.非金属粉填充木塑复合材料
     将非金属粉代替部分木粉制备出具有木材外观的木塑复合材料。非金属粉的加入可以提高木塑材料的弯曲强度和拉伸强度,降低握螺钉力性能。非金属粉在木塑复合材料中的添加量可以达到40 wt %。经过加速老化试验后,40 wt %添加量木塑材料的性能为:弯曲强度21.6 MPa(老化前23.4 MPa),拉伸强度7.7 MPa(老化前9.6 MPa),冲击强度为4.35 kJ/m(2老化前3.03 kJ/m2),板面和板边的握螺钉力分别为109 N/mm(老化前121 N/mm)和104 N/mm(老化前115 N/mm)。
     3.非金属粉制备再生板材
     通过添加不饱和聚酯树脂及其它助剂,利用自制热液压机将非金属粉制备出再生板材。探讨不饱和聚酯/非金属粉树脂体系固化反应动力学,确定再生板材的模压条件,并研究非金属粉粒径及添加量对再生板材性能的影响。结果表明适宜的成型条件是:模具上/下压头温度为140/135°C,加压时间为5 min。当粒径<0.07 mm非金属粉添加量为20 wt %时,再生板材的机械性能最好,其弯曲强度为68.8 MPa、冲击强度为6.4 kJ/m2。
     4.非金属粉改性沥青
     将不同粒径非金属粉进行沥青改性,研究非金属粉对沥青常规性能和流变性能的影响。当非金属粉含量为25 wt %,粒径为0.09-0.07 mm时,改性沥青的综合性能最好,其指标为135°C粘度为1225 cP,25°C针入度为53.7 dmm,软化点为54°C,15°C延度为43.5 cm,60°C的车辙因子G*/sinδ为3995.27 Pa,极限使用温度为69.4°C,性能得到较大的提高和改善。
     通过对非金属粉填充材料的挥发物分析及毒性浸出实验得出,非金属粉填充材料的挥发物主要来自其它添加剂,挥发物组分主要有苯酚、苯乙烯等。毒性浸出实验表明非金属粉填充材料浸出液中的铜、铅等重金属离子的浓度均远低于浸出毒性限值,即填充法可以实现树脂基体对非金属粉的固定化作用,是安全环保的处置方法。
     本文成功地制备出铺板等木塑材料产品和窨井盖等市政设施产品,具有广阔的应用前景,解决了目前WPCBs中非金属粉只能进行填埋、焚烧处理或露天堆放的环境污染问题,使非金属粉实现了资源化利用。
Waste printed circuit boards (WPCBs) are an important part of electronic waste (e-waste). The recycling of WPCBs is valuable as the purity of precious metals in WPCBs is more than 10 times higher than that of rich-content minerals. Mechanical process including crushing and separating is the main method for recycling WPCBs. A large number of nonmetals are generated when recycling metals. The treating methods for the nonmetals include incineration, landfill, or open dumping, resulting in environmental load and environmental pollution. Based on the principle of“waste-resource-product”, this paper studied the reuse of the nonmetals reclaimed from crushed WPCBs by physical filling method. According to the components, particle sizes, shapes and other physical properties of the nonmetals, the nonmetals replacing wood flour or other materials were used to prepare 4 kinds of nonmetal products successfully, including phenolic molding compounds (PMC), wood plastic composites (WPC), nonmetallic plate (NMP), and nonmetals modified asphalt (NMA). The paper provided a theoretical basis and experimental data by investigating reaction mechanism, reinforcing mechanism, micro-interfacial morphology, and solidification of hazardous materials.
     The nonmetals mainly consisted of reinforcing materials and resin powder. Glass-nonmetals with particle size 0.3-0.15 mm, 0.15-0.125 mm and <0.07 mm were in the form of sheet, long rod, short-cut glass fibers and resin powder, respectively. Paper-nonmetals with particle size 0.3-0.125 mm and <0.07 mm were in the form of sheet and powder, respectively. The reinforcing characteristics of glass fibers and paper in the nonmetals provided the possibility of treating the nonmetals with filling methods.
     1. PMC filled with nonmetals
     Glass-nonmetals and paper-nonmetals reclaimed from laboratory crushing and separating were used to replace wood flour in the production of PMC. Kinetic mechanism of curing process of PMC was studied by differential scanning calorimetry (DSC). Effects of filling content and particle size of the nonmetals on the properties of PMC were also studied. The results show the PMC with 40 wt % glass-nonmetals qualified the standard.
     To ensure sufficient properties of PMC, the optimal added content of paper-nonmetals is 20 wt %, which results in a flexural strength of 70 MPa, a charpy notched impact strength of 2.3 kJ/m2, a heat deflection temperature of 168°C, a dielectric strength of 3.9 MV/m, and a rasching fluidity of 103 mm, all of which meet the national standard data.
     2. WPC filled with nonmetals
     The nonmetals were used to replace wood flour in the production of WPC. The results show that filling of the nonmetals in WPC improves the flexural strength and tensile strength, and reduces screw withdrawal strength. The filling content of nonmetals in WPC can be up to 40 wt %. To evaluate property durability against weather exposure, the effects of accelerated aging process on the properties of WPC are investigated. After solid WPC with 40 wt % nonmetals (S-40-WPC) underwent aging process, S-40-WPC had a flexural strength of 21.6 MPa (before aging 23.4 MPa), a tensile strength of 7.7 MPa (before aging 9.6 MPa), a charpy impact strength of 4.35 kJ/m2 (before aging 3.03 kJ/m2), and face/edge screw withdrawal strength of 109/104 N/mm (before aging 121/115 N/mm).
     3. NMP made from nonmetals
     A new kind of NMP was produced by adding unsaturated polyester resins and other additives into the nonmetals using a self-made hot-press former. Kinetic mechanism of resin curing was studied by DSC method, and molding parameters are determined. Effects of content and particle size of the nonmetals on the properties of NMP were also studied. The results show that the optimum molding conditions are as follows: top/bottom molding temperature are 140/135°C, molding time is 5 min. When the filling content of the nonmetals with particle size less than 0.07 mm was 20 wt %, NMP had a flexural strength of 68.8 MPa and impact strength 6.4 kJ/m2.
     4. Asphalt modified with nonmetals
     The nonmetals were reused as a new modifier to improve the performance of asphalt. The classical and rheological properties of unmodified asphalt and NMA were determined. Specifically, the effects of content and particle size on these properties were studied. When the filling content of the nonmetals with particle size from 0.09 to 0.07 mm was 25 wt %, the NMA had a viscosity of 1225 cP at 135°C, a penetration of 53.7 dmm at 15°C, a ring and ball softening point of 54°C, a ductility of 43.5 cm at 15°C, a G*/sinδof 3995.27 Pa at 60°C, and an upper limit temperature (G*/sinδ= 1 kPa) of 69.4°C, all of which showed that the high temperature performance of asphalt was improved significantly.
     Tests of volatile compounds (VOCs) released from nonmetal products show that the VOCs, such as phenol and styrene, were mainly originated from added compounds when producing nonmetal products. Leaching tests on nonmetal products show that Cu and Pb concentrations in the leachates were far below the standard limits. It indicates that filling method was safe and environmentally friendly for treating the nonmetals as the hazardous materials could be well solidified in the resin matrix.
     Nonmetal products with potential applications such as decking boards and sewage lids were successfully produced. The paper not only tackled the environmental problems caused by treating nonmetals with the methods of landfill, incineration or open dumping, but also achieved the comprehensive utilization of the nonmetals.
引文
[1] Ogunseitan, O. A.; Schoenung, M. J.; Saphores, M.; Shapito, A. A. The electronics revolution: from e-wonderland to e-wasteland. Science. 2009, 326 (5953): 670-671.
    [2] Widmer, R.; Oswald-Krapf, H.; Sinha-Khetriwal, D.; Schnellmann, M.; B?ni, H. Global perspectives on e-waste. Environ. Impact Assess. Rev. 2005, 25 (5): 436-458.
    [3] UNU. 2007 Review of Directive 2002/96 on Waste Electrical and Electronic Equipment (WEEE). Final Report to European Commission, Bonn; 2007.
    [4] Saphores, J.-D. M.; Nixon, H.; Ogunseitan, O. A.; Shapiro, A. A. How much e-waste is there in US basements and attics? Results from a national survey. J. Environ. Manage. 2009, 90 (11): 3322-3331.
    [5]高丽峰,赵丹丹.基于循环经济理念下的电子废弃物再利用.中国环保产业. 2004, (12): 20-22.
    [6] http://shtb.mofcom.gov.cn/aarticle/shangwubangzhu/201008/20100807103483.html
    [7] Kang, H. Y.; Schoenung, J. M. Economic analysis of electronic waste recycling: Modeling the cost and revenue of a materials recovery facility in California. Environ. Sci. Technol. 2008, 40 (5): 1672-1680.
    [8] Williams, E.; Kahhat, R.; Allenby, B.; Kavazanjian, E.; Kim, J.; Xu, M. Environmental, social, and economic implications of global reuse and recycling of personal computers. Environ. Sci. Technol. 2008, 42 (17): 6446-6454.
    [9]郭廷杰.日本《家电再生法》实施状况简介.再生资源研究. 2002, (3): 7-9.
    [10] Puckett, J.; Smith, T.; Exporting harm: the high-tech trashing of Asia The Basel Action Network. Seattle: Silicon Valley Toxics Coalition; 2002.
    [11] Dewinter, K. C. From here to eternity: Recycling hi-tech junk. Waste Age. 2001, 32 (3): 186-190.
    [12] Sepulveúda, A.; Schluep, M.; Renaud, F. G.; Streicher, M.; Kuehr, R.; Hagelüken, C.; Gerecke, A. C. A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: Examples from China and India. Environ. Impact Assess. Rev. 2010, 30 (1): 28-41.
    [13] Leung, A. W.; Luksemburg, W. J.; Wong, A. S.; Wong, M. H. Spatial distribution of polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at Guiyu. Environ. Sci. Technol. 2007, 41 (8): 2730-2737.
    [14] Qin, F.; Shan, X. Q.; Wei B. Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere. 2004, 57 (4): 253-263.
    [15] Sauvé, S.; Martínez, C. E.; McBride, M.; Hendershot, W. Adsorption of free lead (Pb2+) by pedogenic oxides, ferrihydrite, and leaf compost. Soil Sci. Soc. Am. J. 2000, 64 (2): 595-599.
    [16] Vann, K.; Musson, S.; Townsend, T. Factors affecting TCLP lead leachability from computer CPUs. Waste Manage. 2006, 26 (3): 293-298.
    [17] Jang, Y.; Townsend, T. Leaching of lead from computer printed wire boards and cathode ray tube bymunicipal solidwaste landfill leachates. Environ. Sci. Technol. 2003, 37 (20): 4778-4784.
    [18] Li, Y.; Richardson, J. B.; Niu, X.; Jackson, O. J.; Laster, J. D.; Walker, A. K. Dynamic leaching test of personal computer components. J. Hazard. Mater. 2009, 171 (1-3): 1058-1065.
    [19] Musson, S.; Jang, Y.; Townsend, T.; Chung, I. Characterization of lead leachability from cathode ray tubes using the toxicity characteristic leaching procedure. Environ. Sci. Technol. 2000, 34 (20): 4376-4381.
    [20] Lincoln, J. D.; Ogunseitan, O. A.; Shapiro, A. A.; Saphores, J. M. Leaching assessments of hazardous materials in cellular telephones. Environ. Sci. Technol. 2007, 41 (7): 2572-2578.
    [21] Musson, S. E.; Vann, K. N.; Jang, Y. C.; Mutha, S.; Jordan, A.; Pearson, B.; Townsend, T. G. RCRA toxicity characterization of discarded electronic devices. Environ. Sci. Technol. 2006, 40 (8): 2721-2726.
    [22] Leung, A. W.; Duzgoren-Aydin, N. S.; Cheung, K. C.; Wong, M. H. Heavy metals concerntrations of surface dust from e-waste recycling and its human health implications in southeast China. Environ. Sci. Technol. 2008, 42 (7): 2674-2680.
    [23] Sj?din, A.; Carlsson, H.; Thuresson, K.; Sj?din, S.; Bergman, A.; ?stman,C. Flame retardant indoor air at an electronics recycling plant and other work environments. Environ. Sci. Technol. 2001, 35 (3): 448-454.
    [24] Huo, X.; Peng, L.; Xu, X.; Zheng, L.; Qiu, B.; Qi, Z.; Zhang, B.; Han, D.; Piao, Z. Elevated blood lead levels of children in Guiyu, an electronic waste recycling town in China. Environ. Health Perspect. 2007, 115 (7): 1113-1117.
    [25] Richter, H.; Lorenz, W.; Bahadir, M. Examination of organic and inorganic xenobiotics in equipped printed circuits. Chemosphere. 1997, 35 (1-2): 169-179.
    [26]杨玉芬,盖国胜,徐盛明,陈清如.废印刷线路板回收利用的现状与存在的问题.环境污染与防治. 2004, 26 (3): 193-195.
    [27]陈锋.废弃印制线路板中的环氧树脂回收处置技术.污染防治技术. 2006, 19 (5): 44-46.
    [28] Theo Lehner. Integrated recycling of non-ferrous metals at Boliden Ltd.Ronnskar Smelter. IEEE International Symposium on Electronics & the environment, IEEE: New York, 1998; pp 42-47.
    [29] Bleiwas, D.; Kelly, T. Obsolete Computers,”Gold mine”, or High-Tech Trash? Resource Recovery from Recycling. United States Geological Survey.2001.7.
    [30] Mecucci, A.; Scott, K. Leaching and electrochemical recovery of copper, lead and tin from scrap printed circuit boards. J. Chem. Technol. Biotechnol. 2002, 77 (4): 449-457.
    [31] Quinet, P.; Proost, J.; Van Lierde, A. Recovery of precious metals from electronic scrap by hydrometallurgical processing routes. Miner. Metall. Process. 2005, 22 (1): 17-22.
    [32] Oishi, T.; Koyama, K.; Alam, S.; Tanaka, M.; Lee, J. C. Recovery of high purity copper cathode from printed circuit boards using ammoniacal sulfate or chloride solutions. Hydrometallurgy. 2007, 89 (1-2): 82-88.
    [33]胡天觉,曾光明,袁兴中.从家用电器废物中回收贵金属.中国资源综合利用. 2001, (7): 12-15.
    [34] Sakai, S.; Watanabe, J.; Honda, Y.; Takatsuki, H.; Aoki, I.; Futamatsu, M.; Shiozaki, K. Combustion of brominated flame retardants and behavior of its byproducts. Chemosphere. 2001, 42 (5-7): 519-531.
    [35] Bosecker, K. Microbial recycling of mineral waste products. Acta Biotechnol. 1987, 7 (6): 487-497.
    [36] Brandl, H.; Bosshard, R.; Wegmann, M. Computer-munching microbes: metal leaching from electronics crap by bacteria and fungi. Hydrometallurgy. 2001, 59 (2-3): 319-326.
    [37] Choi, M. S.; Cho, K. S.; Kim, D. S.; Kim, D. J. Microbial recovery of copper from printed circuit boards of waste computer by Acidithiobacillus fe rrooxidans. J. Environ. Sci. Health Part A. 2004, 39 (11-12): 2973-2982.
    [38] Yang, T.; Xu, Z.; Wen, J.; Yang, L. Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy. 2009, 97 (1-2): 29-32.
    [39] Cui, J.; Forssberg, E. Mechanical recycling of waste electric and electronic equipment: a review. J. Hazard. Mater. 2003, 99 (3): 243-263.
    [40] Veit H. M.; Pernardes C. D.; Bernardes A. M. Using mechanical processing in recycling printed wiring boards. JOM. 2002, 54 (6): 45-47.
    [41] Basdere, B.; Seliger, G. Disassembly factories for electrical and electronic products to recover resources in product and material cycles. Environ. Sci. Technol. 2003, 37 (23): 5354-5362.
    [42] Yokoyama, S.; Iji, M. Recycling of Printed Wiring Board Waste. Processing of IEEE/Tsukubs International Workshop on Advanced Robotics, IEEE.1993; pp 55-58.
    [43] Feldmann, K.; Scheller, H. Disassembly of electronic products. Proceedings of the IEEE International Symposium on Electronics and Environment, IEEE: New York, 1994; pp 81-86.
    [44]顾帼华,戚云峰.废旧印刷电路板的粉碎性能及资源特征.中国有色金属学报. 2004, 14 (6): 1037-1041.
    [45]赵跃民,王金强,焦红光,温雪峰,曹亦俊.废弃电路板选择性破碎基础研究.中国矿业大学学报. 2005, 34 (6): 683-687.
    [46] Li, J.; Duan, H.; Yu, K.; Wang, S. Interfacial and mechanical property analysis of waste printed circuit boards subject to thermal shock. J. Air Waste Manage. 2010, 60 (2): 229-236.
    [47] Yuan, C. Y.; Zhang, H. C.; McKenna, G.; Korzeniewski, C.; Li, J. Experimental studies on cryogenic recycling of printed circuit board. Int. J. Adv. Manuf. Technol. 2007, 34 (7-8): 657-666.
    [48] Zhang, S.; Forssberg, E.; Menad, N.; Bjorkman, B. Metals recycling from electronic scrap by air table separation-theory and application. TMS Annual Meeting. San Antonio, USA:1998: 497-515.
    [49] Zhang, S.; Forssberg, E.; Arvidson, B.; Moss, W. Aluminum recovery from electronic scrap by high-force eddy current separation . Resour. Conserv. Recycl. 1998, 23 (4): 225-241.
    [50] Veit, H. M.; Diehl, T. R.; Salami, A. P.; Rodrigues, J. S.; Bernardes, A. M.; Tenório, J. A. S. Utilization of magnetic and electrostatic separation in the recycling of printed circuit boards scrap.Waste Manage. 2005, 25 (1): 67-74.
    [51] Zhao, Y.; Wen, X.; Li, B.; Tao, D. Recovery of copper from waste printed circuit boards. Miner. Metall. Process. 2004, 21 (2): 99-102.
    [52]温雪峰,范英宏,赵跃民,曹亦俊,柴晓兰,段晨龙,王海峰.用静电选的方法从废弃电路板中回收金属富集体的研究.环境工程. 2004, 22 (2): 78-80.
    [53]白庆中,王晖,韩洁,聂永丰.世界废弃印刷电路板的机械处理技术现状.环境污染治理技术与设备. 2001, 2 (1): 84-89.
    [54]柴晓兰,曹亦俊,王春彦,赵跃民.机械处理废弃印刷线路板.中国资源综合利用. 2003, (2):23-26.
    [55] Zhang, S.; Forssberg, E. Mechanical separation oriented characterization of electronic scrap. Resour. Conserv. Recycl. 1997, 21 (4): 247-269.
    [56] Bemd E. Langner. Recycling von Elektronikschrott. Metall. 1990, 48: 880-885.
    [57]李锐.选矿技术在环境保护和资源回收领域的应用.有色金属. 1997, 49 (3): 100-109.
    [58] Elchiorrc, M.; Jakob, R. Neuartiges Verfahren zur Aufbereitung von Elektronikschrott-Ein Beitrag zurwritschaftlichen Rohstoffgewinnung. Galvanotechnik. 1996, 87 (12): 4136-4140.
    [59] Yokoyama, S.; Iji, M. Recycling of Thermosetting Plastic Waste from Electronic Component Production Processes. IEEE International Symposium on Electronics & the Environment; IEEE: New York, 1995; pp 132-137.
    [60] Yokoyama, S.; Iji, M. Recycling system for printed wiring boards with mounted parts. Proceeding of 1999 Environmentally Conscious Design and Inverse Manufacturing; Tokyo, 1999; pp 814-817.
    [61] Yokoyama, S.; Iji, M. Recycling of printed wiring boards with mounted electronic parts. Proceedings of the IEEE international Symposium on Electronics and the Environment; IEEE: New York, 1997; pp 109-114.
    [62] Shima, M.; Kawakita, S.; Mori, S. Recycling of copper, lead and zinc. J. Min. Mater. Process. Inst. Jpn. 1991, 107 (2): 85-94.
    [63] Veit, H. M.; Bernardes, A. M.; Ferreira, J. Z.; Tenório, J. A. S.; Malfatti, C. d. F. Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy. J. Hazard. Mater. 2006, 137 (3): 1704-1709.
    [64] Mattila H.; Virtanen T.; Vartiainen, T.; Ruuskanen J. Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans in flue gas from co-combustion of mixed plastics with coal and bark. Chemosphere. 1992, 25 (11): 1599-1609.
    [65] Williams, P. T. Valorization of printed circuit boards from waste electrical and electronic equipment by pyrolysis. Waste Biomass Valor. 2010, 1: 107-120.
    [66] Hall, W. J.; Willianms, P. T. Separation and recovery of materials from scrap printed circuit boards. Resour. Conserv. Recycl. 2007, 51 (3): 691-709.
    [67] De Marco, L.; Caballero, B. M.; Laresgoiti, M. F.; Torres, A.; Fernandez, G.; Arnaiz, S. Pyrolysis of electrical and electronic wastes. J. Anal. Appl. Pyrolysis. 2008, 82 (2): 179-183.
    [68] Guan, J.; Li, Y. S.; Lu, M. X. Product characterization of waste printed circuit board by pyrolysis. J. Anal. Appl. Pyrolysis. 2008, 83 (2): 185-189.
    [69] Yi-Chi Chien, H.Paul Wang, Kuen-Song Lin, Y-J. Huang, Y.W Yang. Fate of bromine in pyrolysis of printed circuit board wastes. Chemosphere. 2000, 40 (4): 383-387.
    [70]彭科,奚波,姚强.印刷电路板基材的热解实验研究.环境污染治理技术与设备. 2004, 5 (5): 34-37.
    [71] Guo, Q.; Yue, X.; Wang, M.; Liu, Y. Pyrolysis of scrap printed circuit board plastic particles in a fluidized bed. Powder Technol. 2010, 198 (3): 422-428.
    [72] Chen, K. S.; Chen, H. C.; Wu, C. H.; Chou, Y. M. Kinetics of thermal and oxidative decomposition of printed circuit boards. J. Environ. Eng. 1999, 125 (3): 277-283.
    [73]孙路石,陆继东,王世杰,曾丽,张娟.印刷线路板废弃物的热解及其产物分析.燃料化学学报. 2002, 30 (3): 285-288.
    [74]孙路石.废弃印刷线路板的热解机理及产物回收利用的试验研究[博士学位论文],武汉:华中科技大学, 2004.
    [75] Li, J.; Duan, H.; Yu, K.; Liu, L.; Wang, S. Characteristic of low-temperature pyrolysis of printed circuit boards subjected to various atmosphere. Resour. Conserv. Recycl. 2010, 54 (11): 810-815.
    [76] Ikuta, Y.; Iji, M.; Ayukawa, D., Shibano, S. A pyrolysis-based technology for useful materials from IC package molding resin waste. IEEE International Symposium on Electronical and the Environment, IEEE: New York, 1996; pp 124-129.
    [77] Luda M. P.; Balabanovich A. I.; Camino G. Thermal decomposition of free retardant brominated epoxy resins, J.Anal.Appl.Pyrolysis. 2002, 65 (2):25-40.
    [78] Dumler, R.; Lenoir, D.; Thoma, H.; Hutzinger, O. Thermal formation of polybrominated dibenzofurans and dioxins from decabromodiphenyl ether flame retardant: influence of antimony (III) oxide and the polymer matrix. Chemosphere. 1990, 20 (10-12): 1867-1873.
    [79] Bockhorn, H.;Hornung, A.; Hornung, U.; Jakobstr?er, P.; Kraus, M. Dehydrochlorination of plastic mixtures, J. Anal. Appl. Pyrolysis. 1999, 49 (1): 97-106.
    [80] Blazsó, M.; Czégény, Z.; Csoma, C. Pyrolysis and debromination of flame retarded polymers of electronic scrap studied by analytical pyrolysis. J.Anal.Appl. Pyrolysis. 2002, 64 (2): 249-261.
    [81]彭绍洪,陈烈强,蔡明招,张齐.用废旧电路板热解油制备酚醛树脂的方法.中国发明专利.授权专利号: ZL 200610034965.8.
    [82] Zhou, Y.; Qiu, K. A new technology for recycling materials from waste printed circuit boards. J. Hazard. Mater. 2010, 175 (1-3): 823-828.
    [83] Long, L.; Sun, S.; Zhong, S.; Dai, W.; Liu, J.; Song, W. Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards. J. Hazard. Mater. 2010, 177 (1-3): 626-632.
    [84] Dang, W.; Kubouchi, M.; Yamamoto, S.; Sembokuya, H.; Tsuda, K. An approach to chemical recycling of epoxy resin cured with amine using nitric acid. Polymer. 2002, 43 (10): 2953-2958.
    [85] Dang, W.; Kubouchi, M.; Sembokuya, H.; Tsuda, K. Chemical recycling of glass fiber reinforced epoxy resin cured with amine using nitric acid. Polymer. 2005, 46 (6): 1905-1912.
    [86] Braun, D.; Von Gentzkow, W.; Rudolf, A. P. Hydrogenolytic degradation of thermosets. Polym. Degrad. Stabil. 2001, 74 (1): 25-32.
    [87]刘志峰,胡张喜,孔祥明,李辉,张洪潮.基于超临界技术的印刷线路板资源化方法研究.环境工程学报. 2007, 1 (12): 114-119.
    [88]刘志峰,张保振,张洪潮. FR-4型废旧线路板超临界CO2流体回收工艺分析.重庆大学学报. 2009, 32 (2): 202-206.
    [89] Wang, H.; Hirahara, M.; Goto, M.; Hirose, T. Extraction of flame retardants from electronic printed circuit board by supercritical carbon dioxide. J. Supercrit. Fluids. 2004, 29 (3): 251-256.
    [90] Chien, Y.-C.; Wang, H. P.; Lin, K.-S.; Yang, Y. W. Oxidation of printed circuit board wastes in supercritical water. Water Res. 2000, 34 (17): 4279-4283.
    [91] Xiu, F.-R.; Zhang, F.-S. Recovery of copper and lead from waste printed circuit boards by supercritical water oxidation combined with electrokinetic process. J. Hazard. Mater. 2009, 165 (1-3): 1002-1007.
    [92] Mou, P.; Xiang, D.; Duan, G. Products made from nonmetallic materials reclaimed from wasteprinted circuit boards. Tsinghua Sci. Technol. 2007, 12 (3): 276-283.
    [93] Mou, P.; Xiang, D.; Pan, X.; Wa, L.; Gao, J.; Duan, G. New solutions for reusing nonmentals reclaimed from waste printed circuit boards. Proceedings of the IEEE International Symposium on Electronics and the Environment, IEEE: New York, 2005; pp 205-209.
    [94] Niu, X.; Li, Y. Treatment of waste printed wire boards in electronic waste for safe disposal. J. Hazard. Mater. 2007, 145 (3): 410-416.
    [95] Ban, B.-C.; Song, J.-Y.; Lim, J.-Y.; Wang, S.-K.; An, K.-G.; Kim, D.-S. Studies on the reuse of waste printed circuit board an additive for cement mortar. J. Environ. Sci. Health Part A. 2005, 40 (3): 645-656.
    [96]黄发荣,焦杨声.酚醛树脂及其应用.北京,化学工业出版社, 2003.
    [97] Iji, M.;Yokoyama, S. Recycling of printed wiring boards with mounted electronic components. Circuit World. 1997, 23 (3): 10-15.
    [98] Zheng, Y.; Shen, Z.; Cai, C.; Ma, S.; Xing, Y. The reuse of nonmetals recycled from waste printed circuit boards as reinforcing fillers in the polypropylene composites. J. Hazard. Mater. 2009, 163 (2-3): 600-606.
    [99] Zheng, Y.; Shen, Z.; Ma, S.; Cai, C.; Zhao, X.; Xing, Y. A novel approach to recycling of glass fibers from nonmetal materials of waste printed circuit boards. J. Hazard. Mater. 2009, 170 (2-3): 978-982.
    [100]林芝,陆书玉,罗丽娟.废弃线路板中环氧树脂再利用技术初探.环境科技. 2009, 22 (5): 1-3.
    [101] Zong, G.; Li, J.; Zhang, H. C. Printed circuit board recycling: A state-of-art on electronics and environment survery. IEEE International Symposium on Electronics and the Environment, IEEE: New York, 2002; pp 234-241.
    [102]沈锡宽.印制电路技术.北京,科学技术出版社, 1987.
    [103] Gupta, S. M.; McLean, C. R. Disassembly of products. Comput. Ind. Eng. 1996, 31 (1-2): 225-228.
    [104] Gungor, A; Gupta, S. M. Issues in environmentally conscious manufacturing and product recovery: A survey. Comput. Ind. Eng. 1999, 36 (4): 811-853.
    [105] Wiendahl, H. -P.; Seliger, G.; Perlewitz, H.; Bürkner, S. General approach to disassembly planning and control. Prod. Plan. Cont. 1999, 10 (8): 718-726.
    [106] Moore, K. E.; Gungor, A.; Gupta, S. M. A Petri Net Approach to Disassembly Process Planning. Comput. Ind. Eng. 1998, 35 (1-4): 165-168.
    [107] Feldmann, K.; Trautner, S.; Meedt, O. Innovative diasembly strategies based on flexible partial destructive tools. Annu. Rev. Cont. 1999, 23: 159-164.
    [108] Koyanaka, S.; Endoh, S.; Ohya, H. Effect of impact velocity control on selective grinding of waste printed circuit boards. Adv. Powder Technol. 2006, 17 (1): 113-126.
    [109] Morar, R.; Suarasan, I.; Budu, S.; Ghizdavu, I.; Porca, M.; Dascalescu, L. Corona discharge effects on some parasitical insects of cultured plants. J. Electrost. 1997, 40-41: 669-673.
    [110] Dascalescu, L.; Tilmatine, A.; Aman, F.; Mihailescu, M.;Optimization of electrostatic separation Processes using response surface modeling. IEEE Transaction on Industry Applications. 2004, 40 (1): 53-59.
    [111] Aman, F.; Morar, R.; Kohnlechner, R.; Samuila, A.; Dascalescu, L. High-voltage electrode position: a key factor of electrostatic separation efficiency. IEEE Transactions on Industry Applications. 2004, 40 (3): 905-910.
    [112] Iuga, A.; Neamtu, V.; Suarasan, I.; Morar, R.; Dascalescu, L. Optimal high-voltage energization of corona-electrostatic separators. IEEE Transactions on Industry Applications. 1998, 34 (2): 286-291.
    [113] Li, J.; Xu, Z.; Zhou, Y. Application of corona discharge and electrostatic force to separate metals and nonmetals from crushed particles of waste printed circuit boards. J. Electrost. 2007, 65 (4): 233-238.
    [114] Li, J.; Lu, H.; Xu, Z.; Zhou, Y. A model for computing the trajectories of the conducting particles from waste printed circuit boards in corona electrostatic separators. J. Hazard. Mater. 2008, 151 (1): 52-57.
    [115] Li, J.; Lu, H.; Liu, S.; Xu, Z. Optimizing the operating parameters of corona electrostatic separation for recycling waste scraped printed circuit boards by computer simulation of electric field. J. Hazard. Mater. 2008, 153 (1-2): 269-275.
    [116] Gardziella, A.; Pilato, L. A.; Knop. A. Phenolic resins, 2 nd ed., Springer-Verlag, Berlin, 1999.
    [117] Kharade, A. Y.; Kale, D. D. Effect of lignin on phenolic novolak resins and moulding powder. Eur. Polym. J. 1998, 34 (2): 201-205.
    [118] Hattali, S.; Benaboura, A.; Dumar?ay, S.; Gérardin, P. Evaluation of alfa grass soda lignin as a filler for novolak molding powder. J. Appl. Polym. Sci. 2005, 97 (3): 1065-1068.
    [119] Paiva, J. M. F.; Frollini, E. Sugarcane bagasse reinforced phenolic and lignophenolic composites. J. Appl. Polym. Sci. 2001, 83 (4): 880-888.
    [120]闻荻江.复合材料原理.武汉工业大学出版社,武汉, 1998.
    [121]肖加余,曾竟成,张长安,梁重云,王春齐,张纯禹,张小静,陈湘生,娄斌武.苎麻落麻纤维增强聚合物复合材料研究.工程塑料应用. 2001, 29 (2): 12-15.
    [122] De Medeiros, E. S.; Agnelli, J. A. M.; Joseph, K.; De Carvalho, L. H.; Mattoso, L. H. C. Curing behavior of a novolac-type phenolic resin analyzed by differential scanning calorimetry. J. Appl. Polym. Sci. 2003, 90 (6): 1678-1682.
    [123] Zhang, X.; Looney, M. G.; Solomon, D. H.; Whittaker, A.K. The chemistry of novolac resins: 3. 13C and 15N n.m.r studies of curing with hexamethylenetetramine. Polymer. 1997, 38 (23): 5835-5848.
    [124] Zhang, X.; Potter, A. C.; Salomon, D. H. The chemistry of novolac resins-V. Reactions of benzoxazine intermediates. Polymer. 1998, 39 (2): 399-404.
    [125]周大鹏. DSC法研究不同邻对位比值酚醛树脂的固化行为.高分子材料科学与工程. 2008, 24 (10): 131-133.
    [126] Tyberg, C. S. Void-free flame retardant phenolic networks, PhD Thesis, Virginia Polytechnic Institute and State Unviersity, Blacksbury, VA, 2000.
    [127] Tejado, A.; Kortaberria, G.; Labidi, J.; Echeverria, J. M.; Mondragon, I. Isoconversional kinetic analysis of novolac-type lignophenolic resins cure. Thermochim. Acta. 2008, 471 (1-2): 80-85.
    [128] Ebewete, R. O.; River, B. H.; Koustky, J. A. Relationship between phenolic adhesive chemistry and adhesive joint performance: Effect of filler type on fraction energy. J. Appl. Polym. Sci. 1986,31 (7): 2275-2302.
    [129]朱康,赵稼翔,丁光安,姚海文.红外光谱研究酚醛树脂固化过程中的结构变化.工程塑料应用. 1988, 4: 28-31.
    [130]曹莲亿.红外光谱研究酚醛树脂.合成树脂及塑料. 1990, 1: 48-51.
    [131] Ma, H.; Wei, G.; Liu, Y.; Zhang, X.; Gao, J.; Huang, F.; Tan, B.; Song, Z.; Qiao, J. Effect of elastomeric nanoparticles on properties of phenolic resin. Polymer. 2005, 46 (23): 10568-10573.
    [132] Alonso, M. V.; Oliet, M.; Perez, J. M.; Rodriguez, F.; Echeverria, J. Determination of curing kinetic parameters of lignin-phenol-formaldehyde resol resins by several dynamic different scanning calorimetry methods. Thermochim. Acta. 2004, 419 (1-2): 161-167.
    [133] Kissinger, H. E. Reaction kinetics in different thermal analysis. Anal.Chem. 1957, 29 (11): 1702-1706.
    [134] Ozawa, T. A new method of analyzing thermogravimetric data. Bull.Chem. Soc. Jpn. 1965, 38 (11): 1881-1886.
    [135] Joseph, S.; Sreekala, M. S.; Oommen, Z.; Koshy, P.; Thomas, S. A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Compos. Sci. Technol. 2002, 62 (14): 1857-1868.
    [136] Chen, Y.; Chen, Z.; Xiao, S.; Liu, H. A novel thermal degradation mechanism of phenol-formaldehyde type resins, Thermochim. Acta. 2008, 476 (1-2), 39-43.
    [137] Zaini, M. J.; Fuad, M. Y. A.; Ismail, Z.; Mansor, M. S.; Mustafah, J. The effect of filler content and size on the mechanical properties of polypropylene/oil palm wood flour composites. Polym. Int. 1996, 40 (1): 51-55.
    [138] Smith, P. M.; Wolcott, M. P. Opportunities for wood/natural fiber-plastic composites in residential and industrial applications. Forest. Prod. J. 2006, 56 (3): 4-11.
    [139] Freedonia Group, Inc. Composite and plastic lumber; Freedonia Group Inc.: Cleveland, OH, 2004.
    [140]王清文,王伟宏.木塑复合材料与制品.化学工业出版社,北京, 2007.
    [141] Clemons, C. Wood-plastic composites in the United States: The interfacing of two industries. Forest. Prod. J. 2002, 52 (6): 10-18.
    [142] Cui, Y.; Lee, S.; Noruziaan, B.; Cheung, M.; Tao, J. Fabrication and interfacial modification of wood/recycled plastic composites materials. Compos. Pt. A-Appl. Sci, Manuf. 2008, 39 (4): 655-661.
    [143] Morton, J.; Quarmley, J.; Rossi, L. Current and emerging applications for natural and woodfiber-plastic composites. In: Proc. 7th Inter. Conf. on Woodfiber-Plastic Composites. Forest Prod. Soc., Madison, Wl. 2004: 3-6.
    [144] Yadama, V.; Lowell, E. C.; Peterson, N.; Nicholls, D. Wood-thermoplastic composites manufactured using beetle-killed spruce from ALaska. Polym. Eng. Sci. 2009, 49 (1): 129-136.
    [145] Bourne, P. J.; Bajwa, S. G.; Bajwa, D. S. Evaluation of cotton gin waste as a lignocellulosic substitute in woodfiber plastic composites. Forest. Prod. J. 2006, 57 (1-2): 127-131.
    [146] American Society for Testing Materials. Standard methods of evaluating the properties of wood-base fiber and particle panel materials. ASTM Designation D1037. Philadelphia, PA, 1999.
    [147] Hjertberg, T.; Palmlof, M.; Sultan, B. Chemical reactions in crosslinking of copolymers ofethylene and vinyltrimethoxy silane. J. Appl. Polym. Sci. 1991, 42 (5): 1185-1192
    [148] Bengtsson, M.; Oksman, K.; Stark, N. M. Profile extrusion and mechanical properties of crosslinked wood-thermoplastic composites. Polym. Compos. 2006, 27 (2): 184-194.
    [149] Adhikary, K. B.; Pang, S.; Staiger, M. P. Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos. Pt. B-Eng. 2008, 39 (5): 807-815.
    [150] Clemons, C. M.; Ibach, R. E. Effects of processing method and moisture history on laboratory fungal resistance of wood-HDPE composites. Forest. Prod. J. 2004, 54 (4): 50-57.
    [151] Back, E.; Sandstr?m, E. Critical aspects on accelerated methods for predicting weathering resistance of wood based panels. Holz Als Roh-und Werkst. 1982, 40 (2): 61-75.
    [152] McNatt, J. D.; Link, C. L. Analysis of ASTM D 1037 accelerated-aging test. Forest. Prod. J. 1989, 39 (10): 51-57.
    [153] Stark, N. M.; Matuana, L. M. Surface chemistry and mechanical property changes of wood-flour/high-density-polyethylene composites after accelerated weathering. J. Appl. Polym. Sci. 2004, 94 (6): 2263-2273.
    [154] Zhang, J. Y.; Zeng, Q. Y.; Yu, T. X.; Kim, J. K. Residual properties of reformed bamboo/aluminium laminates after hygrothermal aging. Compos. Sci. Technol. 2001, 61 (8): 1041-1048.
    [155] Nyg?rd, P.; Tanem, B. S.; Karlsen, T.; Brachet, P.; Leinsvang, B. Extrusion-based wood fibre-PP composites: Wood powder and palletized wood fibres– a comparative study. Compos. Sci. Technol. 2008, 68 (15-16): 3418-3424.
    [156] Balasuriya, P. W.; Ye, L.; Mai, Y. W. Mechanical properties of wood flake-polyethylene composites. Part I: effects of processing methods and matrix melt flow behaviour. Compos. Pt. A-Appl. Sci. Manuf. 2001, 32 (5): 619-629.
    [157] Falk, R. H.; Vos, D. J.; Cramer, S. M.; English, B. W. Performance of fasteners in wood flour-thermoplastic composite panels. Forest. Prod. J. 2001, 51 (1): 55-61.
    [158] Stark, N. M.; Matuana, L. M.; Clemons, C. M. Effect of processing method on surface and weathering characteristics of wood-flour/HDPE composites. J. Appl. Polym. Sci. 2004, 93 (3) 1021-1030.
    [159] Fabiji, J. S.; McDonald, A. G.; Wolcott, M. P.; Griffiths, P. R. Wood plastic composites weathering: Visual appearance and chemical changes. Polym. Degrad. Stabil. 2008, 93 (8): 1405-1414.
    [160]桂祖桐.聚乙烯树脂及其应用.化学工业出版社,北京, 2002.
    [161] Stark, N. M.; Matuana, L. M. Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy. Polym. Degrad. Stabil. 2004, 86 (1): 1-9.
    [162] Mengelo?lu, F.; Karaku?, K. Some properties of eucalyptus wood flour filled recycled high density polyethylene polymer-composites. Turk. J. Agric. For. 2008, 32 (6): 537-546.
    [163]沈开猷.不饱和聚酯树脂及其应用.化学工业出版社,北京, 2005.
    [164]肖红波,王钧,杨小利,蔡浩鹏.树脂的粘度及表面张力对浸润速率影响研究.武汉理工大学学报. 2006, 28 (7): 15-17.
    [165] Li, L.; Cao, X.; Lee, L. J. Effect of dual-initiator on low temperature curing of unsaturated polyester resin. Polymer. 2004, 45 (19): 6601-6612.
    [166] Rebeiz, K. S. Precast use of polymer concrete using unsaturated polyester resin based on recycled PET waste. Constr. Build. Mater. 1996, 10 (3): 215-220.
    [167] Penczek, P.; Czub, P.; Pielichowski, J. Unsaturated polyester resins: chemistry and technology. Adv. Polym. Sci. 2005, 184: 1-95.
    [168] Yang, Y. S.; Lee, L. J. Microstructure formation in the cure of unsaturated polyester resins. Polymer. 1988, 29 (10): 1793-1800.
    [169] Huang, Y. J.; Leu, J. S. Curing of unsaturated polyester resins. Effects of temperature and initiator: 1. Low temperature reactions. Polymer. 1993, 34 (2): 295-304.
    [170] Massardier-Nageotte, V.; Cara, F.; Maazouz, A.; Seytre, G. Prediction of the curing behavior for unsaturated polyester–styrene systems used for monitoring sheet moulding compounds (SMC) process. Compos. Sci. Technol. 2004, 64 (12): 1855-1862.
    [171] Yang, H.; Lee, L. J. Comparison of unsaturated polyester and vinylester resins in low temperature polymerization. J. Appl. Polym. Sci. 2001, 79 (7): 1230-1242.
    [172] Chiu, H. T.; Jeng, R. E.; Chung, J. S. Thermal cure behavior of unsaturated polyester/phenol blends. J. Appl. Polym. Sci. 2004, 91 (2): 1041-1058.
    [173] Kalenda, P. Ferrocene and some of its derivatives used as accelerators of curing reactions in unsaturated polyester resins. Eur. Polym. J. 1995, 31(11): 1099-1102.
    [174] Ng, Hendra.; Manas-zloczower, I. C. A. Kinetic studies of a composite thermoset cure reaction - application in pultrusion simulations. Polym. Eng. Sci. 1989, 29 (5): 302-307.
    [175] McGee, S. H. Curing characteristics of particulate-filled thermosets. Polym. Eng. Sci. 1982, 22 (8): 484-491.
    [176] ?en, S.; Nugay, N. Tuning of final performances of unsaturated polyester composites with inorganic microsphere/platelet hybrid reinforcers. Eur. Polym. J. 2001, 37 (10): 2047-2053.
    [177] Khanna, U.; Chanda, M. Kinetics of anhydride curing of isophthalic diglycidyl ester using differential scanning calorimetry. J. Appl. Polym. Sci. 1993, 49 (2): 319-329.
    [178]朱立新,黄凤来,祝亚非,严慧明,顾均扬,许家瑞.高交联度不饱和聚酯增韧改性的固化特性及动力学分析.复合材料学报. 2003, 20 (3): 22-26.
    [179] Crane, L. W.; Dynes, P. J.; Kaelble, D. H. Analysis of curing kinetics in polymer composities. J. Polym. Sci: Polymer Letters Edition. 1973, 11 (8): 533-540.
    [180] Laskoski, M.; Dominguez, D. D.; Keller T. M. Synthesis and properties of a liquid oligomeric cyanate ester resin. Polymer. 2006, 47 (11): 3727-3733.
    [181]肖长发.纤维复合材料——纤维、基体、力学性能.中国石化出版社,北京, 1995.
    [182] Zhang, Z.; Zhu, S. Microvoids in unsaturated polyester resins containing poly(vinyl acetate) and composites with calcium carbonate and glass fibers. Polymer. 2000, 41 (10): 3861-3870.
    [183] Kim, K. T.; Jeong, J. H.; Im, Y. T. Effect of molding parameters on compression molded sheet molding compounds parts. J. Mater. Process. Technol. 1997, 67 (1-3): 105-111.
    [184] Sengoz, B.; Isikyakar, G. Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen. Constr. Build. Mater. 2008, 22 (9): 1897-1905.
    [185] Isacsson, U.; Lu, X. Characterization of bitumens modified with SEBS, EVA and EBA polymers. J. Mater. Sci. 1999, 34 (15): 3737-3745.
    [186] Airey, G. D. Rheological evaluation of ethylene vinyl acetate polymer modified bitumens. Constr.Build. Mater. 2002, 16 (8): 473-487.
    [187] Navarro, F. J.; Partal, P.; Martínez-Boza, F.; Valencia, C.; Gallegos, C. Rheological characteristics of ground tire rubber-modified bitumens. Chem. Eng. J. 2002, 89 (1-3): 53-61.
    [188] Chebil, S.; Chaala, A.; Roy, C. Use of softwood bark charcoal as a modifier for road bitumen. Fuel. 2000, 79 (6): 671-683.
    [189]中国交通行业标准,公路工程沥青及沥青混合料试验规程, JTJ 052-2000.
    [190]中国交通行业标准,公路沥青路面施工技术规范, JTG F40-2004.
    [191]肖鹏. SBS物理和化学改性沥青及混合料性能评价对比研究[博士学位论文],南京:河海大学, 2005.
    [192] Polacco, G.; Stastna, J.; Biondi, D.; Antonelli, F.; Vlachovicova, Z.; Zanzotto, L. Rheology of asphalts modified with glycidylmethacrylate functionalized polymers. J. Colloid Interface Sci. 2004, 280 (2): 366-373.
    [193] Airey, G. D. Use of black digrams to identify inconsistencies in rheological data. Road Mater. Pavement Des. 2002, 3 (4): 403-424.
    [194] Airey, G. D.; Mohammed, M. H.; Fichter, C. Rheological characteristics of synthetic road binders. Fuel. 2008, 87 (10-11): 1763-1775.
    [195] Widyatmoko, I.; Elliott, R. Characteristics of elastomeric and plastomeric binders in contact with natural asphalts. Constr. Build. Mater. 2008, 22 (3): 239-249.
    [196]中国环境保护行业标准,固体废物-浸出毒性浸出方法-醋酸缓冲溶液法, HJ/T300-2007.
    [197]中国环境保护行业标准,固体废物-浸出毒性浸出方法-硫酸硝酸法, HJ/T299-2007.
    [198] Buchholz, K. D.; Pawliszyn, J. Optimization of solid-phase microextraction conditions for determination of phenols. Anal. Chem. 1994, 66 (1): 160-167.
    [199] Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for Phenol; Department of Health and Human Services, Public Health Service: Atlanta, GA, 2008.
    [200] Destaillats, H.; Lunden, M. M.; Singer, B. C.; Coleman, B. K.; Hodgson, A. T.; Weschler, C. J.; Nazaroff,W. W. Indoor secondary pollutants from household product emissions in the presence of ozone: A bench-scale chamber study. Environ.Sci. Technol. 2006, 40 (14): 4421-4428.
    [201] N?rgaard, A. W.; Jensen, K. A.; Janfelt, C.; Lauritsen, F. R.; Clausen, P. A.; Wolkoff, P. Release of VOCs and particles during use of nanofilm spray products. Environ. Sci. Technol. 2009, 43 (20): 7824-7830.
    [202] Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for Styrene; Department of Health and Human Services, Public Health Service: Atlanta, GA, 2007.
    [203] Qu, W.; Bi, X.; Sheng, G.; Lu, S.; Fu, J.; Yuan, J.; Li, L. Exposure to polybrominated diphenyl ethers among workers at an electronic waste dismantling region in Guangdong, China. Environ. Int. 2007, 33 (8): 1029-1034.
    [204]马静.废弃电子电器拆解地环境中持久性有毒卤代烃的分布特征及对人体暴露的评估[博士学位论文],上海:上海交通大学, 2009.
    [205]吴彩东,韩健,刘明彬.新型竹木复合板的研制.木材加工机械. 2007, (2): 22-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700