用户名: 密码: 验证码:
YMnO_3及其复合结构的磁电特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着新多铁性材料的不断发现和飞速发展,基于多铁性新材料的探索、耦合机制研究和应用型器件设计等工作成为研究中的热点。然而多铁性材料的研究是一个颇具难度的课题,主要表现在,室温下单相多铁材料匮乏,磁电耦合系数很小等问题。因此探寻室温下具有大的磁化强度、极化强度以及磁电耦合效应的多铁性材料一直是研究工作的重点。六角RMnO_3材料在单相多铁性材料中占据着非常重要的地位,其特有的新奇物性,预示着该材料在物性研究和应用上的潜力。本论文以六角YMnO_3作为研究对象,围绕YMnO_3复合结构及单晶材料中的新奇物性展开,结果如下:
     利用超高真空磁控溅射系统在(110)取向的YMnO_3单晶衬底上生长Co_(40)Fe_(40)B_(20)薄膜,得到多铁复合结构,通过变化外加磁场方向的测量观察到:非晶CoFeB薄膜的磁化率和矫顽场具有各向异性。进一步的实验和分析表明:导致磁性薄膜具有各向异性磁化率的原因是YMnO_3面内铁电极化产生的应力作用。而矫顽场的各向异性可以用“二相”磁化翻转机制解释,这种机制的产生需要磁性薄膜在非单畴的状态下具备并不太强的各向异性作用力,而六角YMnO_3材料的三聚电畴提供了合适的条件。在多铁复合结构中研究铁电对磁化翻转机制的影响是本研究的特色。因为磁性薄膜的各向异性由铁电引发,并且在室温条件下就具备,因而该研究为进一步实现室温下电场对磁性的控制铺平了道路。
     此外,研究了(001)取向的YMnO_3单晶的导电性。结果表明,铁电性会对界面肖特基势垒产生调制作用。进一步的研究发现:电场对材料的导电性具有调制作用。这一现象可以用电极注入和抽取载流子引发局部载流子浓度变化的机制来解释。这对于阻态存储器应用具有一定的参考价值。
Recently, with the continuous discovery and fast development of the newmultiferroic material, the work of searching, coupling mechanism researching andapplication devices designing et al based on multiferroic material became the hot topicin the researching work. However, there are still a lot of difficulties and challengingtasks for instance single-phase multiferroic materials are rare at room temperature andthe converse magnetoelectric effects are typically too small to be useful. Therefore,searching multiferroic materials with large magnetization internsity, ferroelectric (FE)polarization intensity and magnetoelectric coupling is still the key issue. HexagonalRMnO_3materials play an important role in the single-phase multiferroic materials, sincethe noval property shows the potential of researching and appilcation. In this thesis, wefocused on the hexagonal YMnO_3material. The novel effects were researched based onYMnO_3composite structure and single phase bulk. The main work is as follows:
     Multiferroic composite structure was fabricated by depositing amorphousferromagnetic (FM) CoFeB films on top of (110) orientaed YMnO_3single crystalsubstrate with magnetron sputtering system. The angular dependent magnetic propertymeasurement demonstrated that large magnetic susceptibility and coercive fieldanisotropy existed in the CoFeB film. Furhter experimental investigation verified thatthe magnetic susceptibility anisotropy originates from the strain effect induced by thein-plane FE polarization of YMnO_3. The coercive field anisotropy is explained by the“two phase” magnetization reversal mechanism, which is appropriate in the FM/YMnO_3composite structure since the non-single domain state and mediate anisotropy forceinduced by trimerization domain structure meets the two phase mechanism requirementwell. The investigation of coupling between magnetic reversal mechanism and FE is anew story in multiferroic composite structure. Since the magnetic anisotropy wascontrolled by FE polatization at room temperature, this work paves the way for thefurther achievement of controlling magnetization by electric-field.
     In another aspect, the conductivity of the (001) orientated YMnO_3singlecrystal was investigated. The modulation of interfactional Schottky barrier byFE polarization was observed and the conductivity of the sample can be tunedby electric-field. Through systematic experimental investigation, it was demonstrated that this effect may oringinate from the changing of local carriersdensity induced by injection or extraction of the electrode. These results aresignificant for the achievement of resistance storage device.
引文
[1] Bibes Manuel Nanoferronics is a winning combination. NATURE MATERIALS,2012,6:354~357
    [2] Van Aken Bas B, Rivera Jean-Pierre, Schmid Hans, et al. Observation of ferrotoroidicdomains, NATURE,2007,449:702~705
    [3] Schmid H. Multi-ferroic magnetoelectrics. FERROELECTRICS,1994,162:317~338
    [4] Spaldin Nicola A, Cheong Sang-Wook, Ramash Ramamoorthy, Multiferroics: Past presentand future. PHYSICS TODAY,2010,63:38~43
    [5] Tokura Y. Multiferroics--toward strong coupling between magnetization and polarization ina solid. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS,2007,310:1145~1150
    [6] Dzyaloshinskii I E, On the magneto-electrical effects in antiferromagnets. Zh. Eksp. Teor.Fiz.1959,37:881~882
    [7] Astrov D N, The magnetoelectric effect in antiferromagnetics. Zh. Eksp. Teor. Fiz.1960,38:984~985
    [8] Folen V J, Rado G T, Stalder E W, Anisotropy of the magnetoelectric effect in Cr2O3.PHYSICAL REVIEW LETTER,1961,6:607~608
    [9] Schmid H, Introduction to the proceedings of the2nd international conference onmagnetoelectric interaction phenomena in crystals, MEIPIC-2. FERROELECTRICS,1994,161:1~28
    [10] Bichurin M, Short introduction to the proceedings of the3rd International Conference onMagnetoelectric Interaction Phenomena in Crystals, MEIPIC-3. FERROELECTRICS,1997,204: XVII–-XX
    [11] Ascher E, Rieder H, Schmid H, et al. Some Properties Of FerromagnetoelectricNickel-Iodine Boracite Ni3B7O13I. JOURNAL OF APPLIED PHYSICS,1966,37:1404
    [12] Scott J F. Mechanisms of Dielectric Anomalies in BaMnF4. PHYSICAL REVIEW B,1977,16:2329~2331
    [13] Wang J, Neaton J B, Zheng H et al. Epitaxial BiFeO3Multiferroic Thin FilmHeterostructures. SCIENCE,2003,299:1719~1722
    [14] Kimura T, Goto T, Shintani H et al. Magnetic control of ferroelectric polarization.NATURE,2003,426:55~58
    [15] Fiebig M, Lottermoser T, Frohlich D, et al. Observation of coupled magnetic and electricdomains. NATURE,2002,419:818~820
    [16] Park S, Choi Y J, Zhang C L et al. Ferroelectricity in an S=1/2Chain Cuprate. PHYSICALREVIEW LETTER,2007,98:057601
    [17] Ramesh R, Spaldin N A. Multiferroics: progress and prospects in thin films. NATUREMATERIALS,2007,6:21~29
    [18] Hill N A, Why are there so few magnetic ferroelectrics? JOURNAL OF PHYSICALCHEMISTRY B,2000,104:6694~6709
    [19] Khomskii D I, Multiferroics: Different ways to combine magnetism and ferroelectricity.JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS,2006,306:1~8
    [20] Cohen R E, Origin of ferroelectricity in perovskite oxides. NATURE,1992,358:136~138
    [21] Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials.NATURE,2006,442:759~765
    [22]王克锋,刘俊明,王雨,单相多铁性材料——极化和磁性序参量的耦合与调控.科学通报,2008,53:1098~1135
    [23]迟振华,靳常青,单相磁电多铁性体研究进展.物理学进展,2007,2:225~238
    [24] Levitin R Z, The magnetoelectric properties of GdFe3(BO3)4. JETP LETTERS,2004,79:531
    [25] Ivanov S A, Rundlof H, Investigation of the structure of the relaxor ferroelectricPb(Fe1/2Nb1/2)O3by neutron powder diffraction. JOURNAL OF PHYSICS CONDENSEDMATTER,2000,12:2393~2400
    [26] Brunskill I H, Depmeier W, High temperature solution growth of Pb(Fe1/2Nb1/2)O3andPb(Mn1/2Nb1/2)O3. JOURNAL OF CRYSTAL GROWTH,1981,56:541~546
    [27] Yan L, Li J F, Viehland D. Deposition conditions and electrical properties of relaxorferroelectric Pb(Fe1/2Nb1/2)O3thin films prepared by pulsed laser deposition. JOURNALOF APPLIED PHYSICS,2007,101:104107
    [28] Yang Y, Liu J M, Huang H B, et al. Magnetoelectric coupling in ferroelectromagnetPb(Fe1/2Nb1/2)O3single crystals. PHYSICAL REVIEW B,2004,70:132101
    [29] Wongmaneerung R, Tan X, McCallum R W, et al. Synthesis and multiferroic properties ofBi0.8A0.2FeO3(A=Ca,Sr,Pb) ceramics. APPLIED PHYSICS LETTER,2007,90:242901
    [30] Smolenskii G A, Chupis I E, Ferroelectromagnetis. USPEKHI FIZICHESKIKH NAUK,1982,137:415~448
    [31] Seshadri R, Hill N A, Visualizing the role of Bi6s “Lone Pairs” in the off-center distortionin ferromagnetic BiMnO3. CHEMISTRY OF MATERIALS,2001,13:2892~2899
    [32] Kimura T, Kawamoto S, Yamada I, et al. Magnetocapacitance effect in multiferroicBiMnO3. PHYSICAL REVIEW B,2003,67:180401
    [33] Zhao T, Scholl A, Zavaliche F, et al. Electrical control of antiferromagnetic domains inmultiferroic BiFeO3films at room temperature. NATURE MATERIALS,2006,5:823~829
    [34] Choi T, Lee S, Choi Y J et al. Switchable Ferroelectric Diode and Photovoltaic Effect inBiFeO3. SCIENCE,2009,324:63~66
    [35] Baek S H, Jang H W, Folkman C M, et al. Ferroelastic switching for nanoscale non-volatilemagnetoelectric devices. NATURE MATERIALS,2010,9:309~314
    [36] Ederer C, Spaldin N A. Weak ferromagnetism and magnetoelectric coupling in bismuthferrite. PHYSICAL REVIEW B,2005,71:060401
    [37] CHU Y H, MARTIN L W, HOLCOMB M B et al. Electric-field control of localferromagnetism using a magnetoelectric multiferroic. NATURE MATERIALS2008,7:478~482
    [38] Seidel J, Martin L W, He Q et al. Conduction at domain walls in oxide multiferroics.NATURE MATERIALS,2009,8:229~234
    [39] VAN AKEN B B, PALSTRA T T M, FILIPPETTI A et al. The origin of ferroelectricity inmagnetoelectric YMnO3. NATURE,2004,3:164~170
    [40] Fiebig M, Lottermoser T, Fr hlich D et al. Observation of coupled magnetic and electricdomains. NATURE,2002,419:818~820
    [41] Tokura Y, Multiferroics as Quantum Electromagnets. SCIENCE,2006,312:1481~1482
    [42] Katasura H, Nagaosa N, Balatsky A. Spin current and magnetoelectric effect innoncollinear magnets. PHYSICAL REVIEW LETTER,2005,95:057205
    [43] Sergienko I A, Dagotto E. Role of the Dzyaloshinskii-Moriya interaction in multiferroicperovskites, PHYSICAL REVIEW B,2006,73:094434
    [44] Kimura T, Goto T, Shintani H Magnetic control of ferroelectric polarization. NATURE2003,426:55~58
    [45] Chun S H, Chai Y S, Jeon B G et al. Electric Field Control of Nonvolatile Four-StateMagnetization at Room Temperature. PHYSICS REVIEW LETTER2012,108:177201
    [46] Brink J, Khomskii D I, Multiferroicity due to charge ordering. JOURNAL OF PHYSICSCONDENSED MATTER,2008,20:434217
    [47] EDERER C, SPALDIN N A, A new route to magnetic ferroelectrics. NATUREMATERIAL,2008,3:849~851
    [48] Brown Jr W F, Hornreich R M, Shtrikman S. Upper bound on the magnetoelectricsusceptibility. PHYSICAL REVIEW,1968,168:574
    [49] Nan C W, Bichurin M I, Dong S X, et al. Multiferroic magnetoelectric composites:Historical perspective, status, and future directions. JOURNAL OF APPLIED PHYSICS,2008,103:031101
    [50] Ma J, Hu J M, Li Z, et al. Recent Progress in Multiferroic Magnetoelectric Composites:from Bulk to Thin Films. ADVANCED MATERIALS,2011,23:1062~1087
    [51] Martin L, Crane S P, Chu Y H, et al. Multiferroics and magnetoelectrics: thin films andnanostructures. JOURNAL OF PHYSICS CONDENSED MATTER,2008,20:434220
    [52] Wan J G, Wang X W, Wu Y J, et al. Magnetoelectric CoFe2O4-Pb(Zr,Ti)O3composite thinfilms derived by a sol-gel process. APPLIED PHYSICS LETTERS,2005,86:122501
    [53] Islam Rashed Adnan, Priya Shashank, Effect of piezoelectric grain size on magnetoelectriccoefficient of Pb(Zr0.52Ti0.48)O3–Ni0.8Zn0.2Fe2O4particulate composites. JOURNAL OFMATERIAL SCIENCE,2008,43:3560~3568
    [54] Zheng H, Wang J, Lofland S E, et al. Multiferroic BaTiO3-CoFe2O4nanostructures.SCIENCE,2004,303:661~663
    [55] Zavaliche F, Zheng H, Mohaddes-Ardabili L, et al. Electric field-induced magnetizationswitching in epitaxial columnar nanostructures. NANO LETTERS,2005,5:1793~1796
    [56] Singh M P, Prellier W, Simon C, et al. Magnetocapacitance effect in perovskite-superlatticebased multiferroics. APPLIED PHYSICS LETTERS,2005,87:022505
    [57] Zhang Y, Deng C Y, M J et al. Enhancement in magnetoelectric response inCoFe2O4-BaTiO3heterostructure. APPLIED PHYSICS LETTER,2008,92:062911
    [58] Eerenstein W, Wiora M, Prieto J L, et al. Giant sharp and persistent conversemagnetoelectric effects in multiferroic epitaxial heterostructures. NATURE MATERIALS,2007,6:348~351
    [59] Vaz C A F, Electric field control of magnetism in multiferroic heterostructures. JOURNALOF PHYSICS CONDENSED MATTER2012,24:333201
    [60] Nan C W. Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases.PHYSICAL REVIEW B,1994,50:6082~6088
    [61] Zhang S, Zhao Y G, Li P S et al. Electric-Field Control of Nonvolatile Magnetization inCo40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3Structure at Room Temperature. PHYSICALREVIEW LETTER,2012,108:137203
    [62] Laukhin V, Skumryev V, Marti X, et al. Electric-field control of exchange bias inmultiferroic epitaxial heterostructures. PHYSICAL REVIEW LETTERS,2006,97:227201
    [63] Vaz C A F, Hoffman J, Segal Y et al. Origin of the Magnetoelectric Coupling Effect inPb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3Multiferroic Heterostructures. PHYSICAL REVIEWLETTER,2010,104:127202
    [64] Chiba D, Sawicki M, Nishitani Y, et al. Magnetization vector manipulation by electricfields. NATURE,2008,455:515~518
    [65] Thiele C, Dorr K, Bilani O, et al. Influence of strain on the magnetization andmagnetoelectric effect in La0.7A0.3MnO3/PMN-PT(001)(A=Sr,Ca). PHYSICAL REVIEWB,2007,75:054408
    [66] STOLICHNOV I, RIESTER S W E, TRODAHL H J et al. Non-volatile ferroelectriccontrol of ferromagnetism in (Ga,Mn)As. NATURE,2008,7:464~467
    [67] Zheng R K, Habermeier H U, Chan H L W et al. Effect of ferroelectric-poling-inducedstrain on the phase separation and magnetotransport properties of La0.7Ca0.15Sr0.15MnO3thinfilms grown on ferroelectric single-crystal substrates. PHYSICAL REVIEW B,2009,80:104433
    [68] Chen Q P, Yang J J, Zhao Y G et al. Electric-field control of phase separation and memoryeffect in Pr0.6Ca0.4MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3heterostructures. APPLIED PHYSICSLETTER,2011,98:172507
    [69] Brivio S, Petti D, Bertacco R, et al. Electric field control of magnetic anisotropies andmagnetic coercivity in Fe/BaTiO3(001) heterostructures. APPLIED PHYSICS LETTERS,2011,98:092505
    [70] Venkataiah G, Shirahata Y, Itoh M et al. Manipulation of magnetic coercivity of Fe film inFe/BaTiO3heterostructure by electric field. APPLIED PHYSICS LETTERS,2011,99:102506
    [71] Lahtinen T H E, Tuomi J O, Dijken S, Pattern Transfer and Electric-Field-InducedMagnetic Domain Formation in Multiferroic Heterostructures. ADVANCED MATERIAL,2011,23:3187~3191
    [72] Franke K J A, Lahtinen T H E, Dijken S, Field tuning of ferromagnetic domain walls onelastically coupled ferroelectric domain boundaries. PHYSICAL REVIEW B,2012,85:094423
    [73] Chopdekar R V, Malik V K, Rodriguez A F et al. Spatially resolved strain-imprintedmagnetic states in an artificial multiferroic. PHYSICS REVIEW B,2012,86:014408
    [74] YAKEL H L, KOEHLER W C, BERTAVT E F et al. On the Crystal Structure of theManganese (III) Trioxides of the Heavy Lanthanides and Yttrium. Acta Crystallographica,1963,16:957~962
    [75] Kim J, Cho K C, Hong Y M et al. Y-O hybridization in the ferroelectric transition ofYMnO3. APPLIED PHYSICS LETTER,2009,95:132901
    [76] Cho D Y, kim J Y, Park B G et al. Ferroelectricity Driven by Y d0-ness withRehybridization in YMnO3. PHYSICAL REVIEW LETTER,2007,98:217601
    [77] Choi T, Horibe Y, Yi H T, et al. Insulating interlocked ferroelectric and structural antiphasedomain walls in multiferroic YMnO3. NATURE MATERIALS,2010,9:253~258
    [78] Chae S C, Horibe Y, Jeong D Y et al. Self-organization, condensation, and annihilation oftopological vortices and antivortices in a multiferroic. PROCEEDINGS OF THENATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA,2010,107:21366~21370
    [79] Chae S C, Lee N, Horibe Y et al. Direct Observation of the Proliferation of FerroelectricLoop Domains and Vortex-Antivortex Pairs. PHYSICAL REVIEW LETTER,2012,108:167603
    [80] Gatalan G, Seidel J, Ramash R et al. Domain wall nanoelectronics. REVIEWS OFMODERN PHYSICS,2012,84:119~156
    [81] Wu W, Horibe Y, Lee N et al. Conduction of Topologically Protected ChargedFerroelectric Domain Walls. PHYSICAL REVIEW LETTER,2012,108:077203
    [82] Meier D, Seidel J, Cano A et al. Anisotropic conductance at improper ferroelectric domainwalls. NATURE MATERIAL,2012,11:284~288
    [83] Geng Y, Lee N, Choi Y J et al. Collective Magnetism at Multiferroic Vortex Domain Walls.NANO LETTERS,2012,12:6055~6059
    [84] Lottermoser T, Lonkai T, Amann U et al. Magnetic phase control by an electric field.NATURE,2004,430:541~544
    [85] Hur N, Jeong I K, Hundley M F et al. Giant magnetoelectric effect in multiferroic HoMnO3with a high ferroelectric transition temperature. PHYSICAL REVIEW B,2009,79:134120
    [86] Skumryev V, Laukhin V, Fina I et al. Magnetization Reversal by Electric-Field Decouplingof Magnetic and Ferroelectric Domain Walls in Multiferroic-Based Heterostructures.PHYSICAL REVIEW LETTER,2011,106:057206
    [87] Marti X, Sanchez F, Hrabovsky D et al. Exchange biasing and electric polarization withYMnO3. APPLIED PHYSICS LETTERS,2006,89:032510
    [88] Coey J M D. Magnetism and Magnetic Materials UK: Cambridge University,2010
    [89]钟文定.铁磁学(中册)北京:科学出版社,1987
    [90]北京大学物理系《铁磁学》编写组.铁磁学北京:科学出版社,1976
    [91] Cargill III G S, Mizoguchi T, Dipolar mechanisms for magnetic anisotropy in amorphousferrimagnetic alloys. JOURNAL OF APPLIED PHYSICS,1978,49:1753~1755
    [92]姜寿亭,李卫.凝聚态磁性物理北京:科学出版社,2002
    [93] Stoner E C, Wohlfarth E P, A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys.PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A,1948,240:599;IEEE TRANSACTIONS ON MAGNETICS,1991,27:3475~3518
    [94] Sun L, Hao Y, Chien C L et al. Tuning the properties of magnetic nanowires. IBMJOURNAL OF RESEARCH AND DEVELOPMENT,2005,49:79~102
    [95] Kondorsky E, Journal of Physics-USSR,1940,2:161
    [96] Schumacher F, On the modification of the Kondorsky function. JOURNAL OF APPLIEDPHYSICS,1991,70:3184~3187
    [97]王华馥,吴自勤.固体物理实验方法北京:高等教育出版社,1997
    [98]徐万劲.磁控溅射技术进展及应用(上).现代仪器,2005,5:1~5
    [99]徐万劲.磁控溅射技术进展及应用(下).现代仪器,2005,6:9~14
    [100] Birkholz M, Fewster P F, Genzel C. Thin Film Analysis by X-Ray Scattering. Co. KGaA:WILEY-VCH Verlag GmbH,2006.
    [101] Fewster P F. Reciprocal space mapping. CRITICAL REVIEWS IN SOLID STATE ANDMATERIALS SCIENCES,1997,22:69~110
    [102] Gao G, Jin S W, Wu W B. Lattice-mismatch-strain induced inhomogeneities in epitaxialLa0.7Ca0.3MnO3films. APPLIED PHYSICS LETTERS,2007,90:012509
    [103]郭可信,叶恒强.高分辨电子显微学在固体科学中的应用北京:科学出版社,1985
    [104]朱静,叶恒强,王仁卉等.高空间分辨分析电子显微学北京:科学出版社,1985
    [105] JIA C L, MI S B, URBAN K et al. Atomic-scale study of electric dipoles near charged anduncharged domain walls in ferroelectric films. NATURE MATERIAL,2008,7:57~61
    [106] Jia C L, urban K, Alexe M, et al. Direct Observation of Continuous Electric DipoleRotation in Flux-Closure Domains in Ferroelectric Pb(Zr,Ti)O3. SCIENCE,2011,331:1420~1423
    [107]陈林,李敬东,唐跃进等.超导量子干涉仪发展和应用现状.低温物理学报,2005,(S1):657~661
    [108]周静,王选章,谢文广.磁光效应及其应用.现代物理知识,2005,5:45~47
    [109]章春香,殷海荣,刘立营.磁光材料的典型效应及其应用.磁性材料与器件,2008,39:8~16
    [110]韩立,陈皓明,王秀凤.扫描探针显微术在GaAs等半导体研究中的应用.功能材料,1999,2:32~35
    [111]蔡继业,曾洁铭,王煜等.扫描探针显微术的应用(综述).暨南大学学报(自然科学与医学版),2001,3:91~95
    [112] Farokhipoor S, Noheda B, Conduction through71DomainWalls in BiFeO3Thin Films.PHYSICAL REVIEW LETTER,2011,107:127601
    [113]钟海.磁性纳米结构的定量磁力显微研究:[博士学位论文].清华大学,2009
    [114] Zavaliche F, Yang S Y, Zhao T, et al. Multiferroic BiFeO3films: domain structure andpolarization dynamics. PHASE TRANSITIONS,2006,79:991~1017
    [115] CHU Y H, Cruz M P, Yang C H et al. Domain Control in Multiferroic BiFeO3throughSubstrate Vicinality. ADVANCED MATERIALS,2007,19:2662~2666
    [116] St hr J, Siegmann H C, Magnetism From Fundamentals to Nanoscale Dynamics. Berlin:Springer,2006.
    [117] You L, Lu C L, Yang P et al. Uniaxial Magnetic Anisotropy in La0.7Sr0.3MnO3Thin FilmsInduced by Multiferroic BiFeO3with Striped Ferroelectric Domains. ADVANCEDMATERIALS,2010,22:4964~4968
    [118] Jen S U, Yao Y D, Chen Y T, et al. Magnetic and electrical properties of amorphous CoFeBfilms. JOURNAL OF APPLIED PHYSICS,2006,99:053701
    [119] Kubota T, Daibou T, Oogane M, et al. Tunneling spin polarization and magnetic propertiesof Co-Fe-B alloys and their dependence on boron content. JAPANESE JOURNAL OFAPPLIED PHYSICS,2007,46: L250~L252
    [120] Ikeda S, Hayakawa J, Ashizawa Y, et al. Tunnel magnetoresistance of604%at300K bysuppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at hightemperature. APPLIED PHYSICS LETTERS,2008,93082508
    [121] Boschker H, Mathews M, Houwman E P et al. Strong uniaxial in-plane magnetic anisotropyof (001) and (011) oriented La0.67Sr0.33MnO3thin films on NdGaO3substrates. PHYSICALREVIEW B,2009,79:214425
    [122] Nishikawa H, Houwman E, Boschker H et al. Rotation of the magnetic easy axis inLa0.67Sr0.33MnO3thin film on NdGaO3(112). APPLIED PHYSICS LETTERS,2009,94:042502
    [123] Greullet F, Ebel L, Münzhuber F et al. Induced magnetic anisotropy in lifted (Ga, Mn)Asthin films. APPLIED PHYSICS LETTERS,2011,98:231903
    [124] Blois M S, Preparation of Thin Magnetic Films and Their Properties. JOURNAL OFAPPLIED PHYSICS,1955,26:975
    [125] Mathews M, Postma F M, Lodder J C et al. Step-induced uniaxial magnetic anisotropy ofLa0.67Sr0.33MnO3thin films. APPLIED PHYSICS LETTERS,2005,87:242507
    [126] Berger A, Linke U, Oepen H P, Symmetry-Induced Uniaxial Anisotropy in UltrathinEpitaxial Cobalt Films Grown on Cu (1113). PHYSICAL REVIEW LETTER,1992,68:839~842
    [127] Zhou J-S, Goodenough J B, Gallardo-Amores J M et al. Hexagonal versus perovskite phaseof manganite RMnO3(R=Y, Ho, Er, Tm, Yb, Lu). PHYSICAL REVIEW B,2006,74:014422
    [128] Freeland J W, Coulthard I, Antel Jr W J et al. Interface bonding for Fe thin films on GaAssurfaces of differing morphology. PHYSICAL REVIEW B,2001,63:193301
    [129] Heron J T, Trassin M, Ashraf K et al. Electric-Field-Induced Magnetization Reversal in aFerromagnet-Multiferroic Heterostructure. PHYSICAL REVIEW LETTERS,2011,107:217202
    [130] Wang D, Nordman C, Qian Z et al. Magnetostriction effect of amorphous CoFeB thin filmsand application in spin-dependent tunnel junctions. JOURNAL OF APPLIED PHYSICS,2005,97:10C906
    [131] Cullity B D, Graham C D, INTRODUCTION TO MAGNETIC MATERIALS. New Jersey:IEEE,2009.
    [132] Néel L, Pauthenet R, Rimet G et al. On the Laws of Magnetization of Ferromagnetic SingleCrystals and Polycrystals. Application to Uniaxial Compounds. JOURNAL OF APPLIEDPHYSICS,1960,31: S27~S29
    [133] Mathews M, Houwman E P, Boschker H et al. Magnetization reversal mechanism inLa0.67Sr0.33MnO3thin films on NdGaO3substrates. JOURNAL OF APPLIED PHYSICS,2010,107:013904
    [134] Reich S, Shtrikman S, Treves D, Angular Variation of Coercivity in Orthoferrite SingleCrystals. JOURNAL OF APPLIED PHYSICS,1965,36:140~141
    [135] Ratnam D V, Buessem W R, Angular Variation of Coercive Force in Barium Ferrite.JOURNAL OF APPLIED PHYSICS,1972,43:1291~1293
    [136] Wang Z-H, Cristiani G, Habermeier H-U, Uniaxial magnetic anisotropy and magneticswitching in La0.67Sr0.33MnO3thin films grown on vicinal SrTiO3(100). APPLIEDPHYSICS LETTERS,2003,82:3731~3733
    [137] Béa H, Bibes M, Ott F et al. Mechanisms of Exchange Bias with Multiferroic BiFeO3Epitaxial Thin Films. PHYSICAL REVIEW LETTERS,2008,100:017204
    [138] Tsymbal E Y, Kohlstedt H. Tunneling across a ferroelectric. SCIENCE,2006,313:181~183
    [139] Bibes M, Barthelemy A. Multiferroics: Towards a magnetoelectric memory. NATUREMATERIALS,2008,7:425~426
    [140] Pertsev N A, Kohlstedt H. Magnetic tunnel junction on a ferroelectric substrate. APPLIEDPHYSICS LETTERS,2009,95:163503
    [141] Hu J M, Li Z, Wang J, et al. Electric-field control of strain-mediated magnetoelectricrandom access memory. JOURNAL OF APPLIED PHYSICS,2010,107:093912
    [142] Wu W, Guest J R, Horibe Y et al, Polarization-Modulated Rectification at FerroelectricSurfaces. PHYSICAL REVIEW LETTERS,2010,104:217601
    [143] Grundmann M. The Physics of Semiconductors. Berlin: Springer,2006.
    [144]叶良修.半导体物理学上册北京:高等教育出版社,2007
    [145] Fujimura N, Ishida T, Yoshimura T et al. Epitaxially grown YMnO3film: New candidatefor nonvolatile memory devices. APPLIED PHYSICS LETTERS,1996,69:1011~1013
    [146] Qu T L, Zhao Y G, Xie D et al, Resistance switching and white-light photovoltaic effects inBiFeO3/Nb-SrTiO3heterojunctions. APPLIED PHYSICS LETTERS,2011,98:173507

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700