用户名: 密码: 验证码:
铁磁材料疲劳过程中的磁效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疲劳破坏是工程中常见的材料失效方式,材料的疲劳损伤评估研究具有重要意义。金属磁记忆技术在铁磁材料的疲劳损伤评估上极具潜力,但由于缺乏足够的理论支撑,定量评估困难,影响该技术的应用。因此,研究疲劳过程中的磁记忆产生机制研究是推进该技术应用的关键任务。
     磁记忆现象是材料在地磁场、应力和材料微观结构等共同作用下产生的磁性能改变在材料表面的体现,力-磁效应、位错磁化效应和漏磁效应是与疲劳过程中与磁记忆现象相关的主要的三种磁效应。本文针对这三种效应,设计一系列疲劳试验,以理论与试验相结合的方式研究疲劳过程中磁记忆现象的产生机制和变化规律。
     考虑恒定磁场和循环应力的共同作用,建立了适合描述疲劳过程中材料磁化特性的力-磁效应模型。首先,分析了循环应力下的磁化特性,构造了磁化稳定状态M_0;然后,借鉴J-A理论的思想,构造了适合描述疲劳过程中材料磁化特性的J-A-F模型。结果表明,在地磁场和循环应力的作用下,材料磁化逐渐到达稳定状态M_0,与试验结果符合;M_0在一个载荷循环内沿一个环线变化,并且曲线形状随应力范围、外加磁场强度、钉扎参数k1的变化呈规律性变化;J-A-F模型比原模型更能描述拉、压应力产生的不同磁化特征,能更合理地解释实验中观察到的磁化强度随应力变化的速率改变符号的现象;J-A-F模型可以通过钉扎参数k1的变化来描述疲劳过程中的磁化改变。
     考虑疲劳损伤过程中位错对畴壁运动的影响,建立了M_0与位错之间的关系,用M_0描述位错对磁化的影响。首先,对不同疲劳阶段的塑性变形、位错、磁记忆信号变化进行同步实验研究,并分析三者的关系。然后,考虑局部平衡状态M_0受位错密度、位错结构和塑性应变的影响来表征位错磁化效应。结果表明,高应力疲劳过程分为快速塑性变形、平稳塑性变形和快速断裂3个阶段;在第一阶段位错密度和结构同时变化,使得磁记忆信号快速变化,在第二阶段只有位错结构的变化,磁记忆信号缓慢变化。位错密度及位错平均位移影响应力范围、钉扎参数k1;随损伤发展而变大,使得磁记忆信号增加。因为位错变化在宏观上表现为塑性变形,位错对磁化的作用可用塑性应变表示。
     因为磁记忆现象是材料损伤造成的磁性能改变的外在反映,建立了损伤区域的漏磁模型,描述磁记忆信号变化。首先,从磁荷观点分析磁记忆信号的产生和组成;然后,考虑疲劳过程中材料损伤集中在一个区域、裂纹在这个区域萌生并发展,建立漏磁模型;接着,通过磁荷密度表达式把M_0和漏磁场联系起来。结果表明,磁记忆信号的变化由损伤区的漏磁场变化引起;损伤区漏磁场切向分量分布呈小山峰形状、法向分量分布呈斜坡状,切向信号数值及法向信号分布梯度随损伤发展而变大,裂纹产生使得裂纹位置的磁场波动。损伤区的磁荷密度与M_0变化趋势相同,所以M_0能用于表征裂纹出现前的磁记忆信号变化;裂纹的磁荷密度比损伤区的大很多,使得裂纹产生的漏磁信息能在总漏磁场上反映出来,所以疲劳后期磁记忆信号突变。对比疲劳过程中的塑性应变、硬度与磁记忆信号的变化特点,得出磁记忆信号比塑性应变、硬度对材料损伤敏感,磁记忆信号更适合用于疲劳损伤检测。
     结合三种磁效应,建立了材料表面磁记忆信号与应力、塑性应变和裂纹影响因子之间的关系,以及卸载状态下的磁信号Hp与塑性应变p及裂纹影响因子g的关系。结果表明,表面磁记忆信号受应力、损伤情况、材料特性、加载情况、环境磁场等影响,并随塑性应变及裂纹尺寸变化;Hp与及g之间的量化关系式能描述磁信号在疲劳过程中的变化,并能解释疲劳后期磁信号变化趋势不同的现象。
Fatigue failure is a common failure pattern of material in engineering practice,and fatigue damage evaluation of material has important significance. The metalmagnetic memory (MMM) technique has great potential in the fatigue damageevaluation of ferromagnetic material. However, the quantitative evaluation isdifficult for lack of enough theoretical bases, which makes the application of thistechnique hampered. Therefore, mechanism study of this method in the process offatigue is the key task for propelling this method in application.
     The MMM phenomenon is the embodiment of material magnetization, on thesurface of material, and the magnetization is combined action of geomagnetic field,stress and material’s microstructure. Magnetomechanical effect, dislocationmagnetization effect and magnetic leakage effect are mainly three effects connectedwith MMM phenomena. In this dissertation, a series of fatigue experiments aredesigned to research the three magnetic effects, and the MMM phenomenon in theprocess of fatigue is researched using theoretical and experimental method.
     A magnetomechanical model that is suitable for MMM phenomenon isestablished considering the combined action of constant field and cyclic stress. First,the magnetization characteristic caused by cyclic stress is analyzed, and themagnetization stable state M_0is constructed; and then, the J-A-F model suitable forMMM phenomena is obtained based on the J-A theory. The results show that, themagnetization of material reaches stable state M_0gradually under geomagnetic fieldand cyclic stress, which is accord with experimental results; M_0changes regularlywith stress, external field and pinning parameter k1; the J-A-F model can describemagnetization features in tension-release processes better and explain the signchange of dB/d that has been observed in experiments more reasonably. And theJ-A-F model can describe the magnetization change in the process of fatigue by thevariation of pinning parameter k1.
     The relationship between M_0and dislocations is established to describe themagnetization caused by dislocations, considering dislocations’ influence to domainwall motion in the process of fatigue. First, the change characters and correlationsof plastic deformation, dislocations of material and the MMM signal in the processof fatigue are analyzed synchronously in experiments. And then, the dislocationmagnetization effect is formulated using M_0, considering the influence ofdislocation density, dislocation structure and plastic strain. The results show that,rapid plastic deformation, stable plastic deformation and fast fracture composethree stages of high stress fatigue; at the first stage, dislocation density and dislocation structure both change, which makes the MMM signal change quickly; atthe second stage, only dislocation structure changes, which makes the MMM signalchange slowly. Dislocation density ρ and the average displacement of dislocation
     affect stress range and pinning parameter k1. increases as fatigue damagedevelops, which makes the MMM signal increase. Because that dislocation changemanifests as plastic deformation at the macro level, dislocations’ influence tomagnetization can be expressed using plastic strain.
     A magnetic flux leakage model is constructed to describe the variation ofMMM signal, since the MMM phenomenon is the external reflection ofmagnetization caused by material damage. First, the generation and compose ofMMM signal is analyzed from the view of magnetic charge; after that, the magneticflux leakage model is constructed to formulate the leakage field considering thatmaterial damage happens in a certain area and cracks generate and develop in thisarea; and then, connect the leakage field with M_0via the expression of magneticcharge density. The results show that, the MMM signal variation is caused byleakage magnetic field from damage area; the tangential component distribution ofthe leakage magnetic field has peak value, and the normal component distributionof the leakage magnetic field is slope shape; the leakage magnetic field increases asfatigue damage develops, and its distribution fluctuates at the position of crack. Themagnetic charge density of damage area has the same variation trend with M_0, soM_0can be used to represent MMM signal variation before cracks emerge. Themagnetic charge density of crack is much bigger than that of damage area, so theleakage message reflects in the surface leakage field, and makes the MMM signalabnormal at the late stage of fatigue. Contrast the variation laws of plastic strain,hardness and magnetic signal, the conclusion is obtained that MMM signal is moresensitive to fatigue damage than plastic strain and hardness, and the MMM signal ismore suitable for fatigue damage detection.
     Combine the three magnetic effects, the relation between MMM signal, stress,plastic strain and crack impact factor is obtained; the relation between MMM signalHp, plastic strainpand crack impact factorgfor a certain point in unloadcondition is obtained. The results show that, the MMM signal is influenced bystress, damage status, material, load condition and environment field etc., andchanges with plastic strain and cracks size; the formula between Hp,pandgcandescribe the Hpvariation in the process of fatigue, and explain why the MMMsignal has different variation trends at late fatigue stage.
引文
[1](美)S.Suresh著.王中光等译.材料的疲劳[M].北京:国防工业出版,1999:1-7,28-30,197-206.
    [2]游凤荷,戴蓉.金属介质中磁场测量及误差分析[J].计量技术,2000,(8):13-15.
    [3] Dubov A.A. Study of Metal Properties Using Metal Magnetic Memory Method[A].7th European Conference on Non-destructive Testing[C]. Copenhagen.1998,(10):920~927.
    [4]仲维畅.铁磁材料试棒在拉断后的自发磁化[J].无损检测,2003,25(3):16-9-170.
    [5] Dubov A.A. Diagnostics of boiler tubes using the metal magnetic memory [M].Moscow: Energoatomizdat,1995
    [6]俄罗斯动力诊断公司Energodiagnostika Co. Ltd.[2012-04-16].]http://www.ndtinfo.net/hichina/wcf/Energodiagnostika.html
    [7] A.A. Dubov. Development of a metal magnetic memory method. Chemical andPetroleum Engineering,2012,47(11-12):837-839.
    [8] HUAN G Songling, L I Luming, SHI Keren, WANG Xiaofeng. Magnetic fieldproperties caused by stress concentration [J]. Journal of Central SouthUniversity of Technology,2004,11(1):23-26.
    [9] En Yang, Luming Li. Magnetization changes induced by low cycle fatigue bothin the geomagnetic field and the magnetic-free environment [J]. NondestructiveEvaluation and Health Monitoring of Aerospace Materials, Composites, andCivil Infrastructure IV,2005, SPIE5767:373-380.
    [10] Yang En, Li Luming, Chen Xing. Magnetic field aberration induced by cyclestress [J]. Journal of Magnetism and Magnetic Materials,2007,312(1):72-77.
    [11]邸新杰,李午申,严春妍,白世武,刘方明,薛振奎.基于金属磁记忆的宏观焊接裂纹识别方法[J].中国机械工程,2007,18(12):1475-1478.
    [12]梁志芳,王迎娜,李午申,白世武,薛振奎.焊接裂纹金属磁记忆信号特征研究的进展[J].机械科学与技术,2007,26(1):81-83.
    [13]邸新杰,李午申,白世武,刘方明.焊接裂纹金属磁记忆信号的神经网络识别[J].焊接学报,2008,29(3):13-16.
    [14] YAN Chun-yan, LI Wu-shen, DI Xin-jie, XUE Zhen-kui, BAI Shi-wu, LIUFang-ming. Variation regularity of metal magnetic memory signals withinspecting time-interval and location [J]. Journal of Central South University ofTechnology,2007,14(3):319-323.
    [15]董世运,徐滨士,董丽虹,王丹.金属磁记忆检测技术用于再制造毛坯寿命预测的试验研究[J].中国表面工程,2006,19(5):71-75.
    [16]尹大伟,徐滨士,董世运,董丽虹.中碳钢疲劳试验的磁记忆检测[J].中国机械工程,2007,43(3):60-65.
    [17]王翔,陈铭,徐滨士.48MnV钢拉压疲劳过程中的磁记忆信号变化[J].中国机械工程,2007,18(15):1862-1864.
    [18] Dong Lihong, Xu Binshi, Dong Shiyun, Chen Qunzhi, Wang Dan. Variation ofstress-induced magnetic signals during tensile testing of ferromagnetic steels [J].NDT&E International,2008,41(3):84–189.
    [19] Lihong Dong, Xu Binshi, Dong Shiyun, Chen Qunzhi, Wang Dan. Monitoringfatigue crack propagation of ferromagnetic materials with spontaneousabnormal magnetic signals [J]. International Journal of Fatigue,2008,30(9):1599–1605.
    [20] Lihong Dong, Binshi Xu, Shiyun Dong, Li Song, Qunzhi Chen, Dan Wang.Stress dependence of the spontaneous stray feld signals of ferromagnetic steel[J]. NDT&E International,2009,42(4):323–327.
    [21]任吉林,陈晨,刘昌奎,陈曦,舒铭航,陈星.磁记忆检测力-磁效应微观机理的试验研究[J].航空材料学报,2008,28(5):41-44.
    [22]任尚坤,杨雅玲,任吉林,宋凯.含小孔铁磁平板单向拉伸的漏磁场和应力分布[J].钢铁研究学报,2008,20(8):55-58.
    [23]陈曦,任吉林,王伟兰,陈晨.地磁场中应力对磁畴组织的影响[J].失效分析与预防,2007,2(1):6-9.
    [24]任尚坤,任吉林,邬冠华,宋凯,杨雅玲.35号冷轧钢在不同阶段应力作用下的磁效应特征[J].无损检测,2008,30(4):244-247,254.
    [25] Dexin Xie, Weimin Zhang, Baodong Bai, Linsuo Zeng, Lisheng Wang. FiniteElement Analysis of Permanent Magnet ssembly With High Field StrengthUsing Preisach Theory [J]. IEEE Transactions on Magnetics,2007,43(4):1393-1396.
    [26] Zhaoxia WANG, Weimin ZHANG, Hongguang LIU. Modeling and analysis ofmagnetic dipoles in weak magnetic field [J]. Frontiers of MechanicalEngineering in China,2008,3(2):222-225.
    [27]张卫民,林俊杰,王朝霞,刘红光.螺纹连接承载过程的力-磁关系研究[J].中国机械工程,2009,20(1):34-37.
    [28]刘红光,张卫民,毛新颜.基于磁记忆检测技术的焊接缺陷多参数识别系统[J].制造业自动化,2009,31(2):7-10.
    [29]张卫民,刘红光,袁俊杰,孙海涛.低碳钢扭转过程弱磁信号变化及金属磁记忆效应[J].北京理工大学学报.2005,25(11):1003-1007.
    [30] Xingliang Jian, Xingchao Jian, Guoyong Deng. Experiment on relationshipbetween the magnetic gradient of low-carbon steel and its stress [J]. Journal ofMagnetism and Magnetic Materials,2009,321(21):3600-3606.
    [31]蹇兴亮,周克印.基于磁场梯度测量的磁记忆试验[J].机械工程学报,2010,46(4):15-21.
    [32]蹇兴亮,周克印.构件形状对金属磁记忆检测的影响[J].理化检验-物理分册,2007,43(5):242-244.
    [33]周克印,张静,姚恩涛,胡明敏,张明.构件隐性损伤的磁记忆检测方法研究[J].南京航空航天大学学报,2004,36(6):713-717.
    [34]戴光,马铁伦,郑慕林,杨志军.裂纹漏磁检测的试验研究[J].压力容器,2007,24(10):9-12.
    [35]王文江,戴光.油管疲劳累积损伤的磁记忆检测.无损检测[J].2005,27(8):393-395,401.
    [36] Li Jianwei, Xu Minqiang, Leng Jiancheng, Xu Mingxiu. The characteristics ofthe magnetic memory signals under different states for Q235defect samples [J].Advanced Materials Research,2010,97-101:500-503.
    [37]冷建成,徐敏强,李建伟,樊久铭.磁记忆信号与应力之间的关系[J].哈尔滨工业大学学报,2010,42(2):232-235.
    [38] Li Jianwei, Xu Minqiang, Xu Mingxiu, Leng Jiancheng. Investigation of thevariation in magnetic field induced by cyclic tensile-compressive stress [J].Insight,2011,53(9):487-489,493.
    [39]邢海燕,樊久铭,王日新,徐敏强,张嘉钟.早期损伤临界应力状态磁记忆检测技术[J].哈尔滨工业大学学报,2009,41(5):26-30.
    [40]刘畅.金属磁记忆检测系统设计及测量环境影响因素研究[D].哈尔滨:哈尔滨工业大学,2008:36-39.
    [41]邢海燕.基于磁记忆技术的疲劳损伤评估及寿命预测[D].哈尔滨:哈尔滨工业大学,2007:121-124.
    [42] Li Jianwei, Xu Minqiang. Influence of uniaxial plastic deformation on surfacemagnetic field in steel [J]. Meccanica,2012,47(1):135-139.
    [43] Li Jianwei, Xu Minqiang. Modified Jiles-Atherton-Sablik model forasymmetry in magnetomechanical effect under tensile and compressive stress[J]. Journal of Applied Physics,2011,110(6):063918
    [44] L e n g J i a n c h e n g, X u M i n q i a n g, L i J i a n w e i a n d Z h a n g J i a z h o n g.Characterization of the elastic-plastic region based on magnetic memory effect[J]. Chinese Journal of Mechanical Engineering.2010,23(4):1-5.
    [45]刘昌奎,陈星,张兵,任吉林,董世运,陶春虎.构件低周疲劳损伤的金属磁记忆检测试验研究[J].航空材料学报,2010,30(1):72-77.
    [46]刘昌奎,陶春虎,陈星,董世运.基于金属磁记忆技术的18CrNi4A钢缺口试件疲劳损伤模型[J].航空学报,2009,30(9):1641-1647.
    [47]刘昌奎,陶春虎,陈星,张兵,董世运.金属磁记忆检测技术定量评估构件疲劳损伤研究[J].材料工程,2009,(8):33-37.
    [48] Dubov A.A. Problems in Estimating the Remaining Life of Aging Equipment[J]. Thermal Engineering,2003,50(11):935-938.
    [49]黎连修.磁致伸缩和磁记忆问题研究[J].无损检测,2004,26(3):109-112.
    [50]仲维畅.金属磁记忆法诊断的理论基础——铁磁性材料的弹-塑性应变磁化[J].无损检测,2001,23(10):424-426.
    [51]刘美全,徐章遂,米东,李建增.地磁场在缺陷微磁检测中的作用分析[J].计算机测量与控制,2009,17(12):2371-2373.
    [52] HuangSongling, Li Luming, Shi Keren, Wang Xiaofeng. Magnetic fieldproperties caused by stress concentration [J]. Journal of Central SouthUniversity of Technology,2004,11(1):23-26.
    [53]李路明,黄松岭.磁记忆现象和地磁场的关系[J].无损检测,2003,(8):387-389.
    [54]周俊华,雷银照.正磁致伸缩铁磁材料磁记忆现象的理论探讨[J].郑州大学学报(工学版),2003,24(3):101-105.
    [55]宋凯,任吉林,任尚坤,唐继红.基于磁畴聚合模型的磁记忆效应机理研究[J].无损检测,2007,29(6):312-314,361.
    [56]王丹,董世运,徐滨士,陈群志,董丽虹.静载拉伸45钢材料的金属磁记忆信号分析[J].材料工程,2008,(8):77-80.
    [57]任吉林,林俊明.金属磁记忆检测技术.中国电力出版社,2000.8~24.
    [58]张登宇.压力容器用钢单轴拉伸过程中显微结构与磁畴研究[D].北京:北京工业大学,2011:59-60.
    [59] Bozorth R M, Williams H J. Effect of small stresses on magnetic properties[J]. Reviews of Modern Physics,1945,17(1):72.
    [60] Brown W F. Irreversible magnetic effects of stress. Physical Review [J].1949,75(1):147-154.
    [61] Liboutry L. The magnetization of iron in a weak magnetic field: Effects oftime, stress, and of transverse magnetic fields [J]. Annalen der Physik,1951,12(1):47.
    [62] Craik D J, Wood M J. Magnetization changes induced by stress in a constantapplied field [J]. Journal of Physics D: Applied Physica,1971,(3):1009-1016.
    [63] Birss R R, Faunce C A, Isaac E D. Magnetomechanical effects in iron andiron-carbon alloys [J]. Journal of Physics D: Applied Physica,1971,4(1):1040-1048.
    [64] C. S. Schneider, E. A. Semcken. Vibration induced magnetization [J]. Journalof Applied Physics,1980,52(3pt2):2425-2427.
    [65] C. S. Schneider, J. M. Richardson. Biaxial magnetoelasticity in steels [J].Journal of Applied Physics,1982,53(11pt2):8136-8138.
    [66] Finbow D C. The shape of magnetization curves produced by stress inconstant small magnetic fields in iron and some steels [J]. Physica Status SolidiA-Applications and Materials Science,1970,38(30):743-754.
    [67] Jiles D C, Atherton D L. Theory of the magnetization process in ferromagnetsand its application to the magnetomechanical effect [J]. Journal of Physics D:Applied Physica,1984,17(6):1267-1281.
    [68] Jiles D C, Atherton D L. Theory of ferromagnetic hysteresis [J]. Journal ofMagnetism and Magnetic Materials,1986,61(1-2):48-60.
    [69] Jiles D C. Theory of the magnetomechanical effect [J]. Journal of Physics D-Applied Physics,1995,28(8):1537-1546.
    [70] Pitman K C. The influence of stress on ferromagnetic hysteresis [J]. IEEETransactions on Magnetics,1990,26(5):1978-1980.
    [71] Maylin M G, Squire P T. Departures from the law of approach to the principalanhysteretic in a ferromagnet [J]. Journal of Applied Physics,1993,73(6):2948-2955.
    [72] Squire P T. Magnetomechanical measurements and their application to softmagnetic materials [J]. Journal of Magnetism and Magnetic Materials.1996,160(1):11-16.
    [73] Ramesh A, Jiles D C, Roderick J M. Model of anisotropic anhystereticmagnetization [J]. IEEE Transactions on Magnetics,1996,32(5):4234-4236.
    [74] Chen Y, Jiles D C. The magnetomechanical effect under torsional stress in acobalt ferrite composite [J]. IEEE Transactions on Magnetics,2001,37(4II):3069-3072
    [75] Raghunathan A., Melikhov Y., Snyder J.E., Jiles D.C. Modeling of two-phasemagnetic materials based on JilesAtherton theory of hysteresis [J]. Journal ofMagnetism and Magnetic Materials,324(1):20-22.
    [76] Sablik M. J., Wilhelmus J. G., Smith K., Gregory A., Clayton M., Palmer D.,Bandyopadhyay A., Fernando J. G., Marcos F. C.. Modeling of PlasticDeformation Effects in Ferromagnetic Thin Films [J]. IEEE Transactions onMagnetics,2010,46(2):491-494.
    [77] LI Hui-qi, LI Qing-feng, XU Xiao-bang, LU Tie-bing, ZHANG Jun-jie, LILin. A modified method for Jiles-Atherton hysteresis model and its applicationin numerical simulation of devices involving magnetic materials [J]. IEEETransactions on Magnetics,2011,47(5):1094-1097.
    [78] A. Raghunathan, Y. Melikhov, J. E. Snyder, and D. C. Jiles. Generalized formof anhysteretic magnetization function for Jiles–Atherton theory of hysteresis[J]. Applied Physics Letters,2009,95(17):172510.
    [79] Marcelo J. Dapino, Ralph C. Smith, Frederick T. Calkins and Alison B. Flatau.A Coupled Magnetomechanical Model for Magnetostrictive Transducers and itsApplication to Villari-effect Sensors [J]. Journal of Intelligent Material Systemsand Structures,2002,13(11):737-747.
    [80]陈钘.基于磁记忆效应的应力集中检测方法研究[D].北京:清华大学,2007:116-118.
    [81] Jiancheng Leng, Minqiang Xu, Mingxiu Xu, Jiazhong Zhang. Magnetic feldvariation induced by cyclic bending stress [J]. NDT&E International,2009,42(5):410-414.
    [82] Panda, A.K., Das, S.K., Mitra, A., Jiles, D.C. and Lo, C.C.H. Evaluation ofdeformation behavior of HSLA-100steel using magnetic hysteresis technique[J]. IEEE Transactions on Magnetics,2006,42(10):3264-3266.
    [83] S.M. Thompson, B.K. Tanner. Magnetic properties of specially preparedpearlitic steels of varying carbon content as a function of plastic deformation [J].Journal of Magnetism and Magnetic Materials.1994,132(1-3):71-88.
    [84] J.M. Makar, B.K. Tanner. The in situ measurement of the efect of plasticdeformation on the magnetic properties of steel Part I-Hysteresis loops andmagnetostriction [J]. Journal of Magnetism and Magnetic Materials,1998,184(2):193-208.
    [85] J.M. Makar, B.K. Tanner. The in situ measurement of the effect of plasticdeformation on the magnetic properties of steel Part II-Permeability curves [J].Journal of Magnetism and Magnetic Materials,1998,187(3):353-365.
    [86] J.M. Makar, B.K. Tanner. The effect of plastic deformation and residual stresson the permeability and magnetostriction of steels [J]. Journal of Magnetismand Magnetic Materials,2000,222(3):291-304.
    [87] C. C. H. Lo, F. Tang, S. B. Biner, and D. C. Jiles. Effects of fatigue-inducedchanges in microstructure and stress on domain structure and magneticproperties of Fe–C alloys [J]. Journal of Applied Physics,2000,8(9):1.
    [88] Y Melikhov, C. C. H. Lo, O Perevertov, J Kadlecová, D C Jiles, I Tomás.Magnetic response to cyclic fatigue of low carbon Fe-based samples [J]. Journalof Physics D: Applied Physics,2002,35(5):413–422.
    [89] C. C. H. Lo, E. Kinser, and D. C. Jiles. Modeling the interrelating effects ofplastic deformation and stress on magnetic properties of materials [J]. Journalof Applied Physics,2003,93(10):6626-6628
    [90] A. K. Panda, S. K. Das, A. Mitra, D. C. Jiles and C. Lo. Evaluation ofdeformation behaviours of HSLA-100steel using magnetic measurementtechniques [J]. IEEE Transactions on Magnetics,2006,42(10):3264-3266
    [91] M. J. Sablika. Modeling the effect of grain size and dislocation density onhysteretic magnetic properties in steels [J]. Journal of Applied Physics,2001,89(10);5610-5613.
    [92] M. J. Sablika, D. Stegemann and A. Krys. Modeling grain size anddislocation density effects on harmonics of the magnetic induction [J]. Journalof Applied Physics,2001,89(11);7254-7256.
    [93] M. J. Sablik and F. J. G. Landgraf. Modeling Microstructural Effects onHysteresis Loops with the Same Maximum Flux Density [J]. IEEE Transactionson Magnetics,2003,39(5):2528-2530.
    [94] Martin J. Sablik, Taeko Yonamine, and Fernando J.G. Landgraf. ModelingPlastic Deformation Effects in Steel on Hysteresis Loops with the SameMaximum Flux Density [J]. IEEE Transactions on Magnetics,2004,40(5):3219-3226.
    [95] M. J. Sablik, S. Rios, F. J. G. Landgraf, T. Yonamine and M. F. de Campos.Modeling of sharp change in magnetic hysteresis behavior of electrical steel atsmall plastic deformation [J]. Journal of Applied Physics,2005,97(10),10E518.
    [96] John W. Wilson, Gui Yun Tian, Simon Barrans. Residual magnetic feldsensing for stress measurement [J]. Sensors and Actuators A,2007,135(2):381-387.
    [97] Carl S. Schneider. Anisotropic cooperative theory of coaxialferromagnetoelasticity [J]. Physica B-Condensed Matter,2004,343(1-4):65-74.
    [98] Carl S. Schneider. Effect of stress on the shape of ferromagnetic hysteresisloops [J]. Journal of Applied Physics,2005,97(10):10E503-10E503-3.
    [99] Carl S. Schneider, Stephen D. Winchell. Hysteresis in conductingferromagnets [J]. Physica B-Condensed Matter,2006,372(1-2):269–272.
    [100] Ralph C. Smith, Marcelo J. Dapino, Thomas R. Braun1, and Anthony P.Mortensen. A Homogenized Energy Framework for Ferromagnetic Hysteresis[J]. IEEE Transactions on Magnetics,2006,42(7):1947-1969.
    [101] Ralph C. Smith and Marcelo J. Dapino. A Homogenized Energy Model for theDirect Magnetomechanical Effect. IEEE Transactions on Magnetics,2006,42(8):1944-1957.
    [102] Brian L. Ball, Ralph C. Smith, Sang-Joo Kim and Stefan Seelecke. A Stress-dependent Hysteresis Model for Ferroelectric Materials [J]. Journal ofIntelligent Material Systems and Structures,2007,18(1):69-88.
    [103]董丽虹,徐滨士,董世运,王丹.金属磁记忆技术用于再制造毛坯寿命评估初探[J].中国表面工程,2010,23(2):106-111.
    [104]王坤.铁磁性材料拉伸疲劳的磁记忆信号研究[D].哈尔滨:哈尔滨工业大学,2009:43-49.
    [105]路胜卓.磁记忆用于材料热处理质量评估的方法研究[D].哈尔滨:哈尔滨工业大学,2007:35-54.
    [106] A. A. Dubov. Diagnostics of Steam Turbine Disks Using the Metal MagneticMemory Method [J]. Thermal Engineering.2010,57(1):16–21
    [107] Chen Xing, Li Luming, Hu Bin, Cui Xiaojie, Deng Yuanhui, Yan En.Magnetic evaluation of fatigue damage in train axles without artificialexcitation [J]. Insight: Non-Destructive Testing and Condition Monitoring.2006,48(6):342-345.
    [108] Leng Jiancheng, Xu Minqiang, Zhao Shuai, Zhang Jiazhong. Fatigue damageevaluation on ferromagnetic materials using magnetic memory method [C].2009International Conference on Measuring Technology and MechatronicsAutomation, ICMTMA2009,2:784-786. Zhangjiajie, Hunan, China
    [109]王翔,陈铭,徐滨士.48MnV钢拉压疲劳过程中的磁记忆信号变化[J].中国机械工程学报,2007,18(15):1862-1864.
    [110] A.A. Dubov. Estimating the service life of thermal power equipment inaccordance with the new national standard [J]. Thermal Engineering (Englishtranslation of Teploenergetika),2011,58(11):957-961.
    [111]王威.钢结构磁力耦合应力检测基本理论及应用技术研究[D].西安:西安建筑科技大学,2005:59-81.
    [112]常福清,刘东旭,刘峰.磁记忆检测中的力-磁关系及其实验观察[J].实验力学,2009,24(4):367-373
    [113]常福清,刘东旭,刘峰.平面状态下的力磁关系及实验分析[J].燕山大学学报,2009,33(4):352-356.
    [114]任尚坤,周莉,付任珍.铁磁试件应力磁化过程中的磁化反转效应[J].钢铁研究学报,2010,22(12):48-52.
    [115] Ashok Mirsa. A theoretical model for the electromagnetic radiation emissionduring plastic deformation and crack propagation in metallic materials [J].International Journal of Fracture,2007,145(2):99-121.
    [116]陈曦,任吉林,王为兰,宋凯.金属磁记忆微观机理试验研究[J].南昌航空大学学报,2006,20(3):45-49.
    [117]徐敏强,李建伟,冷建成,徐明秀.金属磁记忆检测技术机理模型[J].哈尔滨工业大学学报.2010,42(1):348-351.
    [118]袁俊杰,张卫民,刘红光,王朝霞.动载荷作用下铁磁性试件的磁记忆效应[J].北京理工大学学报,2006,26(9):785-788.
    [119]袁俊杰,张卫民.裂纹对铁磁性试件磁记忆信号的影响[J].制造业自动化,2007,29:187-190.
    [120]任尚坤,李新蕾,任吉林,肖清云.金属磁记忆检测技术的物理机理[J].南昌航空大学学报,2008,22(2):11-17.
    [121] Z.D. Wang, B. Deng, and K. Yao. Physical model of plastic deformation onmagnetization in ferromagnetic material [J]. Journal of Applied Physics,2011,109(8):083928-1-083928-6.
    [122] Haiyan Xing, Rixin Wang, Minqiang Xu and Jiazhong Zhang. Correlationbetween Crack Growth Rate and Magnetic Memory Signal of X45Steel [J].Key Engineering Materials,2007,353-358:2293-2296.
    [123]李新蕾,任吉林,任尚坤,陈曦,付任珍.铁磁构件残余寿命评估方法[J].航空学报,2010,31(10):2109-2114.
    [124]刘昌奎,陶春虎,陈星,张兵,白明远,李莹,侯学勤,胡春燕.基于金属磁记忆检测技术的低周疲劳损伤定量表征方法.中国,200810167981.3[P].2012-01-26.
    [125]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2006:4-5.
    [126] M. Roskosz, P. Gawrilenko. Analysis of changes in residual magnetic feld inloaded notched samples [J]. NDT&E International,2008,41(7):570-576.
    [127]胡正飞,严彪,何国求.材料物理概论[M].北京:化学工业出版社,2009:236-241
    [128]姜寿亭,李卫.凝聚态磁性物理学[M].北京:科学出版社,2003:285-316.
    [129]冯端.金属物理学(第四卷):超导电性和磁性.北京:科学出版社,1998:95-113,545-560.
    [130] Tae-Kyu Lee. Fatigue damage Evolution with Non-destructive Magneticproperties measurement method using Scanning SQUID Microscopy [D].Berkeley: University of California, Berkeley.2005:1-4,49-75.
    [131] G. Dobmann and M. Lang, On-line Monitoring of Fatigue in the LCF andHCF Range by Using Micro-magnetic NDT at Plain Carbon and AusteniticStainless Steel,8th ECNDT Proceedings–TOC European Conference onNondestructive Testing [C]. Barcelona,2002:17–21.
    [132]徐章遂,徐英,王建斌,谢颖.裂纹漏磁定量检测原理与应用[J].北京:国防工业出版社,2005:21-36.
    [133]苑德福,马兴隆.磁性物理学.成都:电子科技大学出版社,1994:286-300,389-438.
    [134] S A Guralnick, S Bao and T Erber. Piezomagnetism and fatigue: II [J]. Journalof Physics D: Applied. Physics,2008,41(11):115006-1-115006-11.
    [135] S. Bao, W.L. Jin, M.F. Huang and Y. Bai. Piezomagnetic hysteresis as a non-destructive measure of the metal fatigue process [J]. NDT&E International,2010,43(8):706-712.
    [136]杨顺华,丁棣华.晶体位错理论基础(第一卷)[M].北京:科学出版社,1998:1-20.
    [137]王昆林.材料工程基础[M].北京:清华大学出版社,2003:98.
    [138]吴犀甲.金属材料疲劳寿命的演变过程[M].合肥:中国科学技术大学出版社,2009:3-5,40-56,66-68.
    [139]钟群鹏,赵子华.断口学[M].北京:高等教育出版社,2005:224-226.
    [140] B. Astie, J. Degauque, J. L. Porteseil and R. Vergne. Infuence of thedislocation structures on the magnetic and magnetomechanical properties ofhigh-purity iron [J]. IEEE Transactions on Magnetics,1981,17(6):2929–2931.
    [141] M.J.Sablik, F.J.G.Landgraf, R.Magnabosco, M.Fukuhara, M.F.de Campos.Fitting the Flow Curve of a Plastically Deformed Silicon Steel for thePrediction of Magnetic Properties [J]. Journal of Magnetism and MagneticMaterial,2006,304(2):155-158.
    [142] Li Jianwei, Xu Minqiang, Leng Jiancheng, Xu Mingxiu. Modeling plasticdeformation effect on magnetization in ferromagnetic materials [J]. Journal ofapplied physics,2012,111(6):063909-063909-4.
    [143] Shi Changliang, Dong Shiyun, Xu Binshi, He Peng. Stress ConcentrationDegree Affects Spontaneous Magnetic Signals of Ferromagnetic Steel underDynamic Tension Load [J]. NDT&E International,2010,43(1):8-12.
    [144]苏兰海,马祥华,陈工,陈香军,王长松.铁磁材料零件疲劳损伤磁记忆检测方法和实验[J].测试技术学报,2009,23(2):145-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700