用户名: 密码: 验证码:
马尾松生长与材性的遗传变异、基因作用方式及环境影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马尾松分布广,生长快,耐干旱瘠薄,是我国南方山地主要的针叶商品用材树种之一,广泛用于制浆造纸、建筑、松香等,支撑着我国众多的造纸、木材加工、林产化工等产业发展。本文利用种源试验林、无性系育种群体、测交遗传交配设计试验林、初植密度与种源互作试验林和磷肥与种源互作试验林等系统研究马尾松生长、形质和木材密度不同层次的差异和变异模式,揭示了生长、干形和木材基本密度的一般配合力和特殊配合力效应及所受的遗传控制方式,探索了初植密度和施用磷肥对马尾松种源的影响以及与种源间的互作效应,以期为马尾松生长和材性遗传改良及实施高产优质育林措施提供重要科学理论依据。主要研究结果如下:
     (1)24年生马尾松种源生长、形质和木材基本密度皆存在显著的种源差异,种源胸径、树高和材积生长及树干通直度呈典型的纬向倾群变异模式,这种变异主要是由其产地水热资源条件差异引起的。较之于北部种源,来自南部的种源生产力水平高且树干通直。种源木材基本密度与产地年均温、1月均温、无霜期和≥10℃积温呈显著的负相关。选择生产力高的速生种源可同时改良树干通直度,但会明显降低其木材基本密度。根据种源聚类结果,可将马尾松划分为南部、中部和北部3个种源区,分别筛选出的19个和6个纸浆材和锯材优良种源主要来自马尾松的南部种源区,部分来自中部种源区。
     (2)各种源除近髓部1~5轮年轮段的木材基本密度外,其它年轮段的年轮宽度和木材基本密度皆存在显著的差异。相对于年轮宽度,不同年轮段木材基本密度的种源变异相对稳定。来自不同种源区的种源年轮宽度的径向变异规律相似,皆表现出先增后减的变化趋势,在6~10轮达到最大值;年轮木材基本密度径向变化规律表现为随年龄增长先增加后逐渐稳定的“S”型变化趋势,并据此筛选出广西横县、恭城、忻城,广东乳源和福建南靖5个木材基本密度径向均匀性高的纸浆材优良种源。早期选择时可在7年生时先淘汰生长较差的种源,在12年生再开展种源生长和木材基本密度的联合选择。
     (3)23年生马尾松优树无性系生长、形质和木材基本密度皆存在显著的产地间和产地内变异,其中产地内无性系间的变异为产地间变异的1.87~2.38倍。与生长性状比较,木材基本密度在产地间所占的变异分量相对较大。除湖南产地优树无性系年轮宽度从髓心向树皮呈单峰变化外,其它8个产地优树无性系的年轮宽度皆随年龄的增加而逐渐变窄;木材基本密度从髓心至树皮逐渐增大,到达一定年龄后渐趋稳定。除江西、广东和四川产地优树无性系木材基本密度的早期选择年龄晚于径向生长外,马尾松不同产地优树无性系的木材密度和径向生长皆可在5年生时开始早期选择。通过聚类可将180个优树无性系归为3大类和4个亚类。
     (4)14年生马尾松测交系交配设计测定林中,胸径、树高、木材基本密度和干物质积累量皆存在显著的GCA和SCA效应,其全同胞家系遗传力在0.746~0.908间,受较强的遗传控制,其中胸径、木材基本密度和干物质积累量受加性基因效应控制为主,显性基因效应次之,树高受基因的显性效应控制略高于加性效应,而树干通直度完全由加性基因效应影响。各父本、母本一般配合力效应值因性状而异。依据单株干物质积累量大于总体平均值的20%及树干通直度得分不小于4的选择标准,筛选出7个优良杂交组合,其单株干物质积累量的现实增益和遗传增益分别为22.68%~67.34%和20.25%~60.13%。
     (5)12年生马尾松种源胸径和枝下高对初植密度反应最为敏感,树高次之,树干通直度和木材基本密度反应最小。广西岑溪、广东信宜、江西崇义和福建武平属于胸径对初植密度敏感的种源,皆表现在2.5 m×2.0 m初植密度下生长量最大,广东高州种源胸径生长对初植密度的敏感性则较小;5个参试种源枝下高皆随着初植密度增加而升高;而树干通直度和木材基本密度的初植密度效应基本不显著。由于参试种源皆为速生丰产的优良种源,初植密度对胸径、枝下高、树干通直度和木材基本密度的种源分化影响不显著,仅树高生长在1.5 m×2.0 m和2.5 m×2.0 m两种初植密度下种源差异明显。统计分析发现,马尾松生长、形质和木材基本密度的种源和初植密度互作效应较小,初植密度不影响种源生长和材质材性的相对表现,综合考虑胸径生长和材质及单位面积生产力等,分别不同培育目标为各种源配置了最适的初植密度。
     (6)12马尾松不同种源对磷肥的反应差异较大,福建武平属于生长对磷肥不敏感的耐低磷型优良种源,广东高州种源生长的磷肥效果好、持续期长,属磷肥敏感型优良种源,广东信宜、广西岑溪和江西崇义种源对磷肥的生长反应因性状和林龄而有较大的波动。相对于生长性状,马尾松种源树干通直度和木材基本密度受磷肥的影响较小。低磷条件下,福建武平种源较其它种源表现出明显的生长优势,其生长量最大,江西崇义种源的生长表现相对较差;当施用磷肥后,两广种源及江西崇义种源的生长显现不同的肥效,与福建武平种源的生长差异缩小,广西岑溪和广东高州种源的生长量则超过了福建武平种源。木材基本密度和树干通直度在3种磷肥处理下的种源间差异较小,施用磷肥则会明显地提高木材基本密度在种源间和种源内个体间的均匀性。马尾松树高和木材基本密度存在一定的种源×磷肥互作,应依据种源对磷肥反应的特性差异科学施用磷肥。
Masson pine (P. massoniana) with better quality of fast growth, wide distribution and strong resistance, is a native tree species in China and has been one of main conifers for afforestation in Southern China and used widely in papermaking, building and rosin. In this thesis, growth and wood quality of masson pine was studied to reveal genetic variation in different variation level, mode of genetic control and response to initial density and phosphorus for growth, stem-form qualities and wood basic density used provenance trail, clonal breeding population, full-sib progeny test of in a testcross mating design, initial stand density by provenance interaction trail and phosphorus by provenance interaction trail, individually. the aim was providing important theories for genetic improvement of growth and wood quality. The results show as follow:
     (1) There existed significant differences between twenty-four-year-old provenances for growth rate and wood quality. A classical clinal variation pattern responding to the latitude of seed source was found for DBH, height, individual volume and stem straightness, and water and heat resources of seed sources were the main climatic factors which led to the variation pattern. The productivity of southern provenances was higher than that of northern provenances. Strong negative correlation existed between wood basic density and annual mean temperature, temperature in January, frostless season and accumulated temperature over 10℃of the seed source. Genetic correlation suggested that stem straightness could be concurrently improved with the selection of fast-growing provenances, whereas the wood basic density was decreased. The range of Masson Pine in China can be divided into Southern, Middle and Northern provenance zone by cluster analysis. Nineteen and six superior provenances were selected for pulpwood and building timber respectively, most of which were from Southern provenance zone and some from Middle provenance zone.
     (2) There existed significant differences between provenances for ring width and wood density of every segment except the ring width of 1~5 rings. The variation of wood density was relatively stable with cambial age compared to ring width among provenance and the variation of ring width was easy to be influenced by environment. Pattern for the radial variation of ring width was similar for provenances in difference zones, which increased and then decreased from pith to bark and reached maximum in 6~10 rings. Pattern for the radial variation of wood density was s- type increasing from the pith outward then following by a leveling off period toward the bark. Five superior provenances including of Hengxian GX, Gongcheng GX, Xincheng GX and Ruyuan GD, were selected for pulpwood according to wood density uniformity. The early-late correlation showed, slower growth provenance could be eliminated in 7-year-old, then growth and wood basic density could be combined selection for wood density in 12-year-old.
     (3) Significant differences existed among seed sources and clones within seed source, and the variation among twenty-three-year-old seed source were 1.87-2.38 time higher than that among clones within seed source. Variance component of seed source for wood density were larger compared growth. Ring width of all seed source was decreasing from the pith to bark excepting Anhui seed source of which was unimodal. Except for Sichuan and Guangdong seed source, pattern for the radial variation of wood density was increasing from the pith outward then following by a leveling off period toward the barks. Early-late correlation showed that radial growth and wood density could be selected in five-year old except the selection for wood density of Jiangxi, Guangdong and Sichuan seed sources was later than radial growth. The 180 clones could be divided into three categories and four subclasses by cluster analysis.
     (4) Effect was significant differences of general combining ability (GCA) and special combining ability (SCA) for tested trait using the 14-year-old full-sib progeny test. Full-sib family heritability of tested traits under strong genetic control, ranged from 0.746 to 0.908. Additive effects played a more major role than dominance effects for DBH, volume, stem straightness, wood basic density and dry matter accumulation. Height appeared to be almost equally subject to both dominance and additive effects, while stem straightness was controlled completely by additive effect. GCA of parents and SCA varied with either trait or cross combination. Seven cross combinations were selected and could obtain genetic gain of 20.25%~60.13%.
     (5) Effect of initial stand density was significant on different provenances of 12-year old and traits. DBH and height under branch were most sensitive to initial stand density, effect of initial stand density on height was next and has little effect to stem straightness and wood basic density. DBH of these provenances was sensitive including Cenxi Guangxi, Xinyi Guangdong, Chongyi Jiangxi and Wuping Fujian and grew best under the initial stand density of 2.5 m×2.0 m. Height under living branch of all provenances was significant between different initial stand density and increasing initial stand density resulted in an increase in height under living branch. There also exists significant difference between provenances for height under the initial stand density of 1.5 m×2.0 m and 2.5 m×2.0 m. The study also found provenance by initial stand density interaction on growth, stem-form quality and wood basic density was little and initial stand density did not effect their relative growth performance. Based on comprehensive consideration of growth and wood quality, optimal initial stand density was configured for all provenances according different cultivation objectives.
     (6) Effect of phosphorus was significant on different provenances12-year old and traits. Wuping FJ was excellent provenance with tolerance of low phosphorus. Gaozhou GD was sensitive to phosphorus and the effect of phosphorus was long duration. Relative to growth, the influence on stem straightness and wood basic density was slight. Wuping FJ was more superior to the other provenances when phosphorus was lack. Provenances from Guangdong, Guangxi and Chongyi JX showed fertilizer efficiency after phosphorus was supplied, in which Cenxi GX and Gaozhou GD even exceed Wuping FJ. The difference of wood basic density and stem straightness was slight between provenances under three phosphorus level. Individual heterogeneity of wood basic density between or within provenances was decreased by phosphorous supply. The experiment also showed that provenance by phosphorus interaction was significant for height and wood basic density,and phosphorous should be supplied according to the effect of provenance to phosphorous.
引文
Albaugh TJ, Allen HL and Fox TR. Individual tree crown and stand development in Pinus taeda under different fertilization and irrigation regimes. Forest Ecology and Management,2006, 234(1-3):10~23.
    Balocchi CE, Bridgwater FE, Zobel BJ, et al. Age trends in genetic parameters for tree height in a nonselected population of loblolly pine. Forest science,1993, 39(2):231~251.
    Bamber PK, Burley J. The wood properties of radiate pine. Slough, England:Commonwealth Agricultural Bureaux,1983,1~84.
    Becker G, Seeling U. Holzqualitat der Fichte. Allg Forstz, 1998, 53:434~435.
    Blumenrother M,Bachmann M,Muller-Starck G. Genetic characters and diameter growth of provenances of Scots Pine (Pinus sylvestris L.). Silvae Genetica, 2001, 50(5/6):212~222.
    Boyle TJB. A diallel cross in black spruce. Genome, 1987, 29(1):180~186.
    Carson SD. Control-pollinated seed orchards of best general combiners - a new strategy for radiata pine improvement. Agronomy Society of New Zealand, 1986, 5:144~148.
    Clark AI, Daniels RF, Jordan L. Juvenile/mature wood transition in loblolly pine as defined by annual ring specific gravity, proportion of latewood and microfibril angle. Wood and fiber science, 2006, 38(2):292~299.
    Cown DJ. Wood density of Pinus caribaea var. hondurensis grown in Fiji. New Zealand Journal of Forestry Science, 1981, 11(3):244~253.
    Cromer RN, Barr NJ, Williams ER, et al.. Response to fertilizer in a Pinus radiata plantation 1. Above -ground biomass and wood density. New Zealand Journal Forest Science, 1985, 15(1):59~70.
    Dean CA, Cotterill PP, Burdon RD. Early selection of radiata pine: I. Trends over time in additive and dominance genetic variances and covariances of growth traits. Silvae Genetica, 2006, 55(4-5):182~191.
    Eldridge KG et al.Genetic Improvement of Eucalyptus globules and E.nitens-a reviewof the world scene in blue gum breeding and relevance to China.Paper for International Academic Eucalyptus Symposium Zhanjiang,China, November 1990, 20~30.
    Fries A, Ericsson T. Estimating genetic parameters for wood density of Scots pine (Pinus sylvestris L.). Silvae Genetica. 2006, 55(2):84~92.
    Gapare WJ, Wu HX, Abarquez A. Genetic control of the time of transition from juvenile to mature wood in Pinus radiata D. Don. Annals of forest science, 2006, 63(8):871~878.
    Grigal DF,Sucoff EI. Specific gravity variation among thirty jack pine plots. 1966. 49:497~499.
    Grote R, Pretzsch H . A model for individual tree development based on physiological processes. Plant Biol., 2002, 4:167~180
    Hannrup B,Jansson G,Danell O. Genotype by environment interaction in Pinus sylvestris L. in southern Sweden. Silvae Genetica, 2008, 57(6):305~311.
    Hein S, Weiskittel AR. Effect of wide spacing on tree growth, branch and sapwood properties of young Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] in south-western Germany. Eur J Forest Res, 2008, 127:481~493.
    Hein S,Aaron R,Weiskittel,et al. Effect of wide spacing on tree growth, branch and sapwood properties of young Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] in south-western Germany. Eur J Forest Res, 2008, 127(6):481~493.
    Hodge GR, Purnell RC. Genetic parameter estimates for wood density, transition age and radial growth in slash pine. Canadian Journal of Forest Research, 1993, 23:1881~1891.
    Isik K, Kleinschmit J, Svolba J. Survival, growth trends and genetic gains in 17-year old Picea abies clones at seven test sites. Silvae Genetica,1995, 44(2-3) :116~128.
    Jayne, BA. Effect of site and spacing on the specific quantity of wood of plantation grown red pine. TAPPI, 1958, 41:l62-166.
    Jones PD, Schimleck LR, Peter GF, et al. Nondestructive estimation of Pinus taeda L. wood properties for samples from a wide range of sites in Georgia. Canadian Journal of Forest Research, 2005, 35:85~92.
    Jonsson A,Ericsson T,Eriksson G,et a1..Interfamily variation in nitrogen productivity of Pinus sylvestris seedlings. Scandinavian Journal of Forest Research, 1997, 12(1):1~10.
    Kang KS, Harju AM, Lindgren D, et al..Variation in effective number of clones in seed orchards. New forests, 2001, 21(1):17~33.
    Karrpalt R P, Gerhold H D, Palpant E H. Inter-racial Hybridization in Scotch Pine: Geographic Flowering Patterns and Crossability. Silvae Genetica, 1975, 24(4):107~110.
    Kern K G . Comparative measurement of precipitation in pure Norway spruce stands and in trial plots in silver fir / Norway spruce / Beech selections forests(in German). Schriftenreihe der Forstl Abt der Universitat Freiburg, Germany, 1962, 1:255~265.
    Kim IS,Kwon HY,Ryu KO,et al. Provenance by site interection of Pinus densiflora in Korea. Silvae Genetica, 2008, 57(3):131~139.
    King JN, Carson MJ, Johnson G R. Analysis of disconnected diallel mating designs II:Results from a third generation progeny test of the new Zealand radiata pine improvement programme.Silv Genetica.1997, 47(2-3):80~87.
    Kuuluvainen T. The effect of two growth forms of Norway spruce on stand development and radiation interception: a model analysis. Trees, 1991, 5:171~179.
    Lee SJ, Woolliams J, Samuel CJA, et al.. A study of population variation and inheritance in Sitka Spruce IV: Correlated re-sponse in the progeny population based on selection in the parental population. Silvae Genetica, 2007, 56(4):36~44.
    Lindgren, D. and Matheson, AC. An algorithm for increasing the genetic quality of seed from seed orchards by using the better clones in higher proportions. Silvae Genetica, 1986, 35(5-6):173~177.
    Loo JA, Tauer CG., Mcnew RW. Genetic variation in the time of transition from juvenile to mature wood in loblolly pine (Pinus taeda L.). Silvae Genetica, 1985, 34(1):14~19.
    Louzada JLPC, Fonseca FMA . The heritability of wood density components in Pinus pinaster Ait. and the implications for tree breeding. Annals of forest science, 2002, 59(8):867~873.
    Louzada JLPC. Genetic correlations between wood density components in Pinus pinaster Ait. Annals of forest science, 2003, 60(3):285~294
    Makinen H, Hein S. Effect of wide spacing on increment and branch properties of young Norway spruce. Eur J Forest Res, 2006, 125:239~248.
    Markussen T, Fladung M, Achere V, et al. Identification of QTLs controlling growth, chemical and physical wood property traits in Pinus pinaster (Ait.). Silvae Genetica, 2003, 52(1):8~15.
    McKeand SE,Grissom JE,Rubilar R,et a1..Responsiveness of diverse families of loblolly pine to fertilization:eight-year results from SETRES-2// Proc 27th South Forest Tree Improvement Conference. Stillwater, 2003, 30~33.
    McKeand,S.E.;Li,B.;Grissom,J.E.et al.Genetic parameter estimates for growth traits from diallel tests of Loblolly Pine throughout the southeastern United States. Silvae Genetica.2008,57(3):101~105.
    Megraw RA. Wood quality factors in loblolly pine. Georgia:TAPPI Press Atlanta, 1985, 68(7):1~88.
    Mullin TJ,Park YS. Estimating genetic gains from alternative breeding strategies for clonal forestry.Can J For Res,1992, 22(1):14~23.
    Nelson PF,Hall MJ,Hansen MW,et al.. The effect of silvicultural practices on kraft pulping properties of radiate pine. Appita, 1980, 33(5):368~378.
    Wilcox MD.Genetic variation and inheritance of resistance to othistroma needle blight in Pinus radiata. New Zealand Journal of Forestry Science, 1982, 12(1):14~35.
    Nicholls JWP. The effect of environmental factors on wood characteristics. II - The effect of thinning and fertilizer treatment on the wood of Pinus pinaster. Silvae Genetica, 1971, 20(3):53~100.
    Nicholls JW, Morris JD, Pederick L A. Heritability estimates of density characteristics in juvenile Pinus radiata wood. Silvae Genetica, 1980, 29(2):54~61.
    Nilsson U, Orlander G. Response of newly planted Norway spruce seedlings to fertilization, irrigation and herbicide treatments. Annals of forest science, 2003, 60(7):637~643.
    Nyakuengama JG, Downes GM., Ng J. Changes caused by mid-rotation fertilizer application to the fiber anatomy of Pinus radiata. IAWA Journal , 2003, 24(4):397~409.
    Panshin AJ, Zeeuw CH. Textbook of wood technology. McGraw-Hill, New York, 1964, 643pp
    Park YS, Gerhold HD. Population hybridization in Scotch pine (Pinus sylvestris L.): II. Combining ability comparisons. Silvae Genetica, 1986, 35(5-6):195~201.
    Rozenberg P, Cahalan C. Spruce and wood quality : genetic aspects (a review), Silvae Genetica. 1997, 46 (5):270~279.
    Samuel CJA. The estimation of genetic parameters for growth and stem-form over 15 years in a diallel cross of Sitka spruce. Silvae Genetica, 1991, 40(2):67~72.
    Sanio K. Ueber die Gr?sse der Holzzellen bei der gemeinen Kiefer (Pinus silvestris). Jahrb. Wiss. Bot., 1872, 8:401~420.
    Shelbourne CAJ. Genetic gains from diferent kinds of breeding population and seed or plant production population.South African Forestry Journal, 1991, 160:49~60.
    Shutyaev AM, Giertych M. Genetic subdivision of the range of Scots pine (Pinus sylvestris L.) based on a transcontinental provenance experiment. Silvae Genetica, 2000, 49(3):137~151.
    Sluder ER. Results at age 15 years from a half-diallel cross among 10 loblolly pines selected for resistance to fusiform rust (Cronartium quercuum f. sp.Fusiforme). Silvae Genetica, 1993, 42(4-5):223~230.
    Sluder ER.Two stage selection in slash pine produces good gains in fusiform rust resistance.Southern Journal of Applied Forestry, 1996, 20(3):143~147.
    Smith HD. Economically optimum spacing and site preparation for slash pine plantations. School of Forest Research Techinical Report NCSU., 1977, 59(1):2104.
    Sprague GF,Tatum LA. General vs specific combining ability in single crosses of corn.J Am Soc Agrom,1942, 34(4):923~932.
    Squillace AE. Tree improvement accomplishment in the south // Southen forest tree improvement committee.Proeedings of 20th southern forest tree improvement conference.Charleston, South Carolina. 1989, 9~20.
    Sykes R, Li BL, Hodge G, et al. Prediction of loblolly pine wood properties using transmittance near-infrared spectroscopy. Canadian Journal of Forest Research, 2005, 35:2423~2431
    Sykes R, Li BL, Isik F, et al. Genetic variation and genotype by environment interactions of juvenile wood chemical properties in Pinus taeda L. Annals of forest science, 2006, 63(8):1286~4560
    Szymanski MB, Tauer CG. Loblolly pine provenance variation in age of transition from juvenile to mature wood specific gravity. Forest Science, 1991, 37(1):160~174.
    Tauer CG, Loo-Dinkins JA. Seed source variation in specific gravity of loblolly pine grown in a common environment in Arkansas. Forest Science, 1990, 36 (4):1133~114.
    Teissicr DCJ. Breeding strategiesw ith pop lars in Europe. Fo rest Ecol.M anage,1984,(8):33~39.
    Wright JA, Osorio LF, Dvorak WS. Realised and predicted genetic gain in the Pinus patula breeding program of Smurfit cartor de Colombia. South African Forestry Journal, 1996, (175):19~27.
    Xie CY,JohnstoneWD,Ying CC. 1995. Spacing and p rovenance effects on the performance of shore p ine ( Pinus contorta var. contorta) : 20-year test results. Can J For Res, 25 (4):567~576.
    Zamudio F, Ozenberg PR, Baettig R, et al. Genetic variation of wood density components in a radiata pine progeny test located in the south of Chile. Annals of forest science, 2005, 62(2):105~114.
    Zhang DQ, Zhang ZY, Yang K. QTL analysis of growth and wood chemical content traits in an interspecific backcross family of white poplar (Populus tomentosa x P. bolleana) x P tomentosa. Canadian Journal of Forest Research, 2006, 36(8):2015~2023.
    Zobel BJ, van Buijtenen JP. 1989. Wood variation:its causes and control. Berlin. Springer-Verlag. 363p
    陈代喜,黄开勇,莫钊志,等.杉木改良代种子园遗传组成及效益评价.广西林业科学,1999,28(2):66~70.
    陈立新.落叶松人工林施肥对土壤酶和微生物的影响.应用生态学报,2004,15(6): 1000~1004.
    谌红辉,丁贵杰.马尾松造林密度效应研究.林业科学,2004.,40(1):92~98.
    谌红辉,温恒辉.马尾松人工幼林施肥肥效与增益持续性研究.林业科学研究,2000,13(6):652~658.
    谌红辉,温恒辉.马尾松人工中龄林施肥肥效与增益持续性研究.林业科学研究,2001, 14(5):533~539.
    段喜华,袁桂华.长白落叶松木材材性株内变异.东北林业大学学报,1997,25(2):33~36.
    何贵平,刘化桐.施肥对杉木无性系幼林生长的影响.林业科学研究,2000,13(5):535~538.
    洪菊生,陈延新.全国杉木种源试验专刊.林业科学研究,1994,7(专刊):1~15.
    洪顺山,胡炳堂.湿地松幼林施肥五年生长反应.林业科学研究,1997,10(6):624~628.
    胡炳堂洪顺山.温地松幼林施肥研究.林业科学研究,1995,8(4):380~387.
    胡炳堂,王学良.马尾松幼林施肥持续8年的生长效应.林业科学研究,2000,13(3):286~289.
    胡德活,阮梓材,吴清等.杉木生长性状配合力分析[J].广东林业科技,1998,14(2):7~13
    胡先菊.华山松种源幼林性状变异的研究.林业科学,1990,26(4):301~307.
    黄荣凤,鲍甫成,张冬梅.杨树材性成熟龄模型的建立及树体内幼龄材的分布.林业科学,2005,41(03):103~109.
    黄少伟,钟伟华,陈炳铨.火炬松半同胞子代配合选择的遗传增益估算.林业科学,2006,42(4):33~37.
    金国庆,秦国峰,刘伟宏,等.马尾松测交系杂交子代生长性状遗传分析.林业科学,2008,44(1):70~76.
    孔繁玲.植物数量遗传学.北京:中国农业出版社,2006,271~285.
    李淡清,刘永平,曾德贤,等.蓝桉6×6全双列交配生长性状的遗传效应分析.遗传学报,2002,29(9):835~840.
    李淡清,刘永平,郑行生,等.直干桉生长性状的遗传效应分析.林业科学,2003,39(2):52~57.
    李光荣,周志春,陈炳星等.马尾松浆纸性能在家系间的遗传差异.中国造纸,1999,(5):7~13.
    李锦清,董耀卿,何秉云,等.浙江长乐杉木种子园营建技术和改良效果的研究.林业科学研究,1991,4(1):50~56.
    李开隆,姜静,姜莹等.白桦5×5完全双列杂交种苗性状的遗传效应分析[J]北京林业大学学报, 2006, 28(4):83~87.
    李力,施季森,陈孝丑等.杉木两水平双列杂交亲本配合力分析.南京林业大学学报,2000,24(5):9~13.
    李天芳,姜静,王雷,等.配方施肥对白桦不同家系苗期生长的影响.林业科学,2009,45(2):60~64.
    李晓储,王伟.苏南杉木优质高产优树的子代选择.南京林业大学学报,1998,22(3):11~15.
    李周岐,王章荣.鹅掌楸属种间杂种苗期生长性状的亲本配合力分析[J].西北林学院学报,2001,16(3):7~10.
    李周岐,王章荣.用RAPD标记进行鹅掌楸杂种识别和亲本选配[J].林业科学,2002,38(5):169~174.
    林书蓉,李淑仪.短轮伐期桉树人工科学施肥的研究.林业科学研究,1999,12(3):275~282.
    刘桂丰,杨书文.樟子松种源试验的研究—遗传稳定性测定及最佳种源选择.东北林业大学学报,1991,19(2):19~23.
    刘青华,金国庆,张蕊,等. 24年生马尾松生长、形质和木材基本密度种源变异与种源区划.林业科学,2009,45(10) :55~61.
    卢立华,蔡道雄,何日明等.马尾松幼林施肥效应综合分析.林业科学,2004,40(4):99~105.
    罗建举,曹琳.施肥处理对尾叶桉木材化学成分含量的影响.林业科学,1998,34(5):96~102.
    罗治建,陈卫文,鲁剑巍,等.江汉平原杨树人工林的施肥方式.东北林业大学报,2005,33(4):98~99.
    骆秀琴,管宁.32个杉木无性系木材密度和力学性质差异.林业科学研究, 1994,7(3):259~262.
    骆秀琴,管宁,文小明,等.木材材性株内径向变异模式初探Ⅵ:19个杉木种源木材密度径向变异模式的研究.林业科学,1999,35(6):86~92.
    马涪,谷宜园,奚国强,等.广西桉树林地土壤养分状况与施肥研究.土壤肥料,2005,2:53~54.
    潘彪,徐永吉,李贻铨,等.施肥处理对尾叶桉无性系纸浆材生长和材性的影响.南京林业大学学报,2004.,28(5):11~14.
    潘建中,潘攀,牟长城,等.长白落叶松人工林的适宜经营密度.东北林业大学学报,2007,35(9):4~6.
    潘志刚.湿地松、火炬松种源试验研究, 1992,北京:北京科学技术出版社.
    祁万宜,孙晓梅,张守攻,等.北亚热带高山区日本落叶松纸浆用材林初植密度的研究.华中农业大学学报,2007,26(4):552~556.
    齐明.杉木育种中GCA与SCA的相对重要性.林业科学研究, 1996, 9(5):498~503.
    秦国峰,周志春,金国庆,等.马尾松速生丰产林不同培育目标的适宜造林密度.林业科学研究,1999,12(6):620~627.
    秦国峰,周志春,李光荣,等.马尾松造纸材最优产地的确定.林业科学研究,1995,8(3):266~271.
    秦国峰.马尾松地理种源.杭州:浙江大学出版社,2003.
    全国马尾松地理种源试验协作组.马尾松种源变异及种源区划分的研究.亚热带林业科技,1987,15(2):81~89.
    沈熙环.林木育种学.北京:中国林业出版社, 1990.
    施行博.侧柏种源区划分的研究. 1993,1:1~5.
    苏顺德,郑仁华,欧阳磊,等.杉木杂交育种研究进展.福建林业科技.2007,34(2):180~183
    孙时轩.造林学.北京:中国林业出版社,1992.
    孙晓梅,张守攻,祁万宜,等.北亚热带高山区日本落叶松幼龄林施肥技术的研究.林业科学研究,2007,20(1):68~73.
    王慧梅,夏德安,王文杰.红松种源材质性状研究.植物研究,2004,24(4):495~498.
    王明怀,陈建新,谢金链,等.秃杉优树自由授粉子代测定研究.华南农业大学学报,2009,30(1):60~63.
    王庆仁,李继云,李振声.高效利用土壤磷素的植物营养学研究.生态学报,1999,5(3):417~421.
    王赵民,陈益泰.杉木主要生长性状配合力分析及杂种优势的利用.林业科学研究,1988,1(6):614~623.
    温佐吾,谢双喜,周运超,等.造林密度对马尾松林分生长、木材造纸特性及经济效益的影响.林业科学,2000,36(专刊1):36~43.
    文小明,骆秀琴,管宁,等.木材材性株内径向变异模式初探II.七个加勒比松种源木材密度径向变异模式的研究.林业科学,1996,32(5):461~419.
    吴隆高,兰玉.11年生杉木全同胞子代林遗传效应研究.浙江林学院学报,1993a,10(4):407~413.
    吴隆高,张建章,游顺昌,等.十年生杉木初级种子园遗传效益分析.浙江林业科技,1993b,13(3):22~25.
    夏玉芳,谌红辉.造林密度对马尾松木材主要性质影响的研究.林业科学,2002,38(2):113~118.
    谢国阳.施肥对闽北三耕土杉木幼林光合特性的影响.福建林学院学报,2002,22(1):90~92.
    谢钰容,周志春,廖国华,等.低磷胁迫下马尾松种源酸性磷酸酶活性差异.林业科学,2005,41(3):58~62.
    徐化成.林木种子区划.北京:中国林业出版社,1990.
    徐化成.油松地理变异和种源区划.北京:中国林业出版社,1992.
    徐立安,陈天华,王章荣,等.马尾松种源子代材性变异与制浆造纸材优良种源选择.南京林业大学学报,1997,21(2):1~6.
    徐有明,林汉,李贻铨,等.施肥对湿地松幼林生长和木材物理力学性质的影响.林业科学,2002,38(4):125~133.
    徐有明,万伏红.马尾松纸浆材材性变异和采伐林龄的确定.浙江林学院学报,1997,14(1):8~15.
    续九如.林木数量遗传学.北京:高等教育出版社,2006.
    薛丹,陈金林,于彬,等.杨树苗木配方施肥试验. 2009,33(5):37~40.
    杨书文.落叶松的遗传改良.哈尔滨:东北林业大学出版社,1994.
    杨曾奖,王伟民.紫色红壤施肥对尾叶桉生长的影响.土壤与环境,1999,8(2):110~112.
    杨章旗,梁杏清.湿地松人工幼林施肥效应研究.福建林学院学报,1998,18(1):53~57.
    叶培忠,陈岳武,刘大林等.配合力分析在杉木数量遗传学中的应用.南京林产工业学院学报,1981,(3):1~21.
    叶志宏,施季森,翁玉榛,等.杉木十一个亲本双列交配遗传分析.林业科学研究,1991,4(4):380~385.
    于立忠,丁国泉,史建伟,等.施肥对日本落叶松人工林细根直径、根长和比根长的影响.应用生态学报,2007,18(5):957~962.
    余常兵,陈防,万开元.杨树人工林营养及施肥研究进展.西北林学院学报,2004,19(3):67~71.
    俞新妥.马尾松种源试验.林业科学,1978,14(1):4~13.
    俞元春,徐柏忠.施磷肥对杉木体内微量元素状况的影响.南京林业大学学报,1999,23(4):47~50.
    张爱民.植物育种亲本选配的理论和方法.北京:中国农业出版社, 1994.
    张建国,盛炜彤,熊有强,等.施肥对盆栽杉木苗土壤养分含量的影响.林业科学,2006,42(4):44~50.
    张一,储德裕,金国庆,等.马尾松亲本遗传距离与子代生长性状相关性分析.林业科学研究,(待发).
    赵好,陈金林,于彬,等.杨树速生丰产配方施肥试验.东北林业大学学报,2009,11:26~28.
    赵颖,周志春,吴吉富,等.马尾松优良种源对磷肥的生长反应和肥效持续性.林业科学,2007,43(10):64~70.
    赵颖,杨水平,周志春等.马尾松优良种源对初植密度的早期生长反应.林业科学研究,2008,21(1):7~12.
    支济伟,陈益泰,骆秀琴,等.杉木主要材质性状配合力研究.林业科学研究,1994,7(5):531~536.
    周利勋,刘广平,王金波.落叶松人工林的施肥效应.东北林业大学学报,2004,32(2):16~18.
    周志春,傅玉狮,吴天林.马尾松生长和材性的地理遗传变异及最优种源区的划定.林业科学研究,1993,6(5):556~564.
    周志春,金国庆,秦国峰.马尾松幼龄材密度、管胞长度的地理遗传变异及性状相关.林业科学研究,1990,3(4):393~397.
    周志春,秦国峰.马尾松天然林木材化学组分和浆纸性能的地理模式.林业科学研究,1995,8(1):1~6.
    周志春,吴吉富,兰永兆,等..马尾松优良种源树高生长对不同磷投入水平的反应.林业科学研究,2000,13(6):667~672.
    周志春,谢钰容,金国庆,等.马尾松种源磷效率研究.林业科学,2005,41(4):25~30.
    邹斌,胡德活,阮梓材,等.杉木第二代种子园效果分析.华南农业大学学报,2003,24(4):13~16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700