用户名: 密码: 验证码:
筒型和翼型结构旋涡发放问题的数值仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构旋涡发放问题通常指的是静止结构的涡激共振现象,即对于来流中的静止结构,流体会在结构后方产生交替的旋涡发放,形成垂直来流方向的涡激升力和顺来流方向的阻力,当旋涡发放频率接近结构固有频率时,引起涡激共振,涡激力的长期作用会造成结构的疲劳损伤。在船舶工程领域,相关研究热点主要是筒型的深海立管及平台桩腿在流载荷作用下的涡激共振响应研究,以及筒型的船舶桅杆在风载荷作用下的涡激共振响应研究;实际上,结构旋涡发放问题还应该包含运动结构的涡激力推进现象,即对于来流中原本静止的结构,在被施加以垂直来流方向的往复运动时,由于结构运动的影响,旋涡发放产生的涡激升力和阻力的方向与来流方向形成一定的夹角,特定的条件下它们在来流方向上的合力会推动结构逆流前进。在船舶工程领域,采用翼型结构以获得更大的涡激力作为推力,相关的研究热点主要是仿生鱼推进器、单翼推进器以及双翼地效推进器的原理和应用。综上所述,本文选取有代表性的筒型结构和翼型结构作为具体的研究对象,通过对它们的旋涡发放过程进行数值仿真研究,尝试把结构的旋涡发放问题表述完整,将之划分为两个部分:即静止结构在来流中的旋涡发放问题和运动结构在来流中的旋涡发放问题,它们都隶属于结构旋涡发放这一大的概念之中。
     本文研究工作的具体内容和主要结论为:
     在筒型结构旋涡发放问题的研究方面,引入精细积分方法代替传统的Newmark-β方法,对船舶筒型桅杆在空气中的涡激共振响应进行了数值求解,这部分内容反应了静止结构旋涡发放现象的危害性。
     1.改进了风载荷作用下筒型结构涡激共振方程的数值求解方法,并拓展了精细积分算法的工程应用领域。遵循精细积分方法的基本思想,独自推导了外激励四次多项式拟合时的精细积分递推公式;在精细积分算法中,对比和分析了不同参考文献提供的外激励多项式拟合系数的求解方法,以及它们各自的特点和应用范围;以11万吨成品油船试航时的实测数据为基础,编写了Newmark-β法、精细积分线性算法、精细积分二次多项式算法、精细积分四次多项式算法和精细积分简谐算法的matlab程序,将上述数值方法的计算结果和实测结果对比后,绘制了精度对比曲线。基于数值方法的计算稳定性和计算精度,在船舶筒型桅杆的涡激共振响应求解中,确定精细积分简谐算法是最佳的求解方法。
     2.计算得到了船舶筒型桅杆在覆盖一定厚度冰层情况下的风致涡激共振响应,并分析了涡激共振响应与裹冰因素的具体关系。在桅杆裹冰状态下,涡激共振响应随裹冰厚度增加而增大;当裹冰的厚度相同时,裹冰的密度越小,船舶桅杆结构涡激共振响应越大;裹冰后桅杆阻尼、质量和迎风面积等因素会发生改变,具体的计算结果说明,迎风面积的增加是涡激共振响应增加的主要原因。
     在翼型结构旋涡发放问题的研究方面,引入相容拉格朗日—欧拉方法代替传统的拉格朗日动网格方法,对翼型结构在水中的旋涡发放现象进行了数值计算。由于问题的复杂性,选取了两个典型的算例,其中,双翼地效推进器的翼型结构在水中利用涡激力推动自身前进,这反应了运动结构的旋涡发放现象可以被合理利用;而螺旋桨推进器的桨叶结构也存在旋涡发放现象,当桨叶随边发放的旋涡频率与桨叶的固有频率接近时,桨叶会产生剧烈振动并发出噪音,这称为螺旋桨“唱音”问题。在本文中,由于计算能力的限制,只研究了一个桨叶的旋涡发放现象,并将桨叶根部进行了刚固处理,前方施加来流模拟桨叶转动时与水的相对运动,所以这部分研究内容实际上也体现了静止结构旋涡发放现象的危害性。
     1.系统地总结和对比了流固耦合计算中常用的数值方法,阐述了相容拉格朗日—欧拉方法在模型建立和流体运动描述方面的优势。
     2.研究双翼地效推进器的翼型结构的弹性模量、材料类型和结构变形对仿真结果的影响。针对两组弹性双翼地效推进器,其中一组选用不同的有机材料,而另一组弹性模量层次性递减,分别对其进行推进性能和结构响应数值计算。最终结果表明,随着翼型结构的弹性模量降低,双翼的推力系数和推进效率呈抛物线分布,在一定的弹性模量区间有最佳推进性能。选择合适的有机材料代替钢铁材料,能够有效地提高双翼推进器的性能;双翼局部的应力集中大小随着翼型结构的弹性模量降低而减小,变形较大的翼型结构,其最大应力值较小。
     3.对螺旋桨桨叶的翼型结构和周围流体建立了有限元模型,通过适当的简化,观察到了桨叶后方旋涡的破裂与相互作用现象;计算得到了桨叶的结构响应,比较分析了桨叶叶面不同位置的响应差别及形成原因。
Vortex shedding phenomenon is usually harmful. For example, like a cylinder in fluid, the vortices will shed alternating behind the cylinder when fluid flows. It can make the cylinder vibrate and generate the lift force in transverse direction and the drag fore in flow direction. The VIV (Vortex-induced vibration) causes fatigue damage to the structures and affects the duability, leading great difficulties to the maintenance. In ship engineering, related researches include the VIV of barrel-shaped mast under wind load and the VIV of riser under stream load. However, there is also a bright side in vortex shedding phenomenon. For instance, like a foil in horizontal flow, directions of lift and drag forces are changed along with directions of structure motion. Lift and drag forces can create propulsive force in horizontal direction under proper condition. In ship engineering, related researches are the applications of single foil oscillating propulsor and the WIG (Wing-In-Ground) thrusters. Therefore, based on numerical simulation, this paper studied vortex shedding phenomenon of barrel-shaped and foil-shaped structures, which revealed different features of static structure in flow and moving structure in flow.
     The main contents and conclusions are as follows:
     On one hand, this paper studied the VIV of a barrel-shaped mast, which displayed the drawback from vortex shedding phenomenon of static structure. And, HPD (High Precision Direct) integration scheme was selected into sloving the structural responses.
     1. This paper established the fluid-structure coupling model of VIV by wind when Reynolds number was in subcritical area. The structural responses of VIV were calculated under several numerical methods, such as Newmark-β, HPD-L (High Precision Direct integration scheme-Linear form) and HPD-S (High Precision Direct integration scheme-Sinusoidal form), etc.. According to the measured value, the accuracy curves were given to show the best method, which was more stable and accurate than others.
     2. Furthermore, assuming barrel-shaped mast covered with ice, this paper revealed ice influnces to structural responses of VIV. The increase of ice thickness or the decrease of ice density can enlarge structural responses. The results also supported that the change of structural responses was mainly decided by the front face area.
     On the other hand, this paper not only studied the vortex-induced force propulsion of the WIG thrusters'foil-shaped wing, but also investigated the VIV of a fixed propeller's foil-shaped blade. The former expressed the advantage from vortex shedding phenomenon of moving structure, and the latter represented the disadvantage from vortex shedding phenomenon of static structure. An advanced fluid-structure interaction approach CLE (Compatible Lagrangian-Eulerian) was adopted into above numerical simulations.
     1. Based on the comparison of CLE and single Lagrangian, it was confirmed that CLE was more efficient in building model and more proper in describing fluid flow.
     2. Assuming that different WIG thrusters have different elastic ratios or material types, both hydrodynamic data and structural dynamic responses were showed after the numerical simulations. The thrust force coefficient CT and the propulsive efficientηwere in parabolic distribution under elastic ratio decrease. And, the maximum structural stress reduced along with elastic ratio cutting down. Moreover, the results also agreed that proper organic foil can provide better performance and lower structural stress than steel foil.
     3. The fluid-blade interaction model was built for studing vortex shedding phenomenon and structural responses of propeller's blade. It displayed the vortex broken positions due to irregular shape of blade. And, the interaction among vortexes decreased the vortex pressure and disordered the whole flow field. Finally, it calculated and showed structural responses of blade different parts.
引文
[1]赵刘群.水动力引起的海底管道振动的数值研究:(硕士学位论文).大连:大连理工大学,2006.
    [2]埃米尔.希缪,罗伯特.H.斯坎伦.风对结构的作用-风工程导论.上海:同济大学出版社,1992.
    [3]九江长江大桥技术总结.铁道部大桥工程局.武汉:武汉测绘科技大学出版社,1996
    [4]王红梅.高耸结构涡激共振响应时程分析:(硕士学位论文).南京:浙江大学,2001.
    [5]王肇民.桅杆结构.北京:科学出版社,2001
    [6]苑吉河,蒋兴良等.输电线路导线覆冰的国内外研究现状.高电压技术,2004,30(1):6-9
    [7]孙力群.用于仿生推进的高分子聚合物(IPMC)电响应的仿真方法:(硕士学位论文).武汉:华中科技大学,2008.
    [8]王志动,秦允海,周林慧.仿生推进与操作系统方案设计与运动仿真.计算机仿真,2004,21(11):89-91.
    [9]Pengfei Liu. Propulsive performance of a twin-rectangular-foil propulsor in a counter-phase oscillation. Journal of Ship Research.2005,49(3):207-215.
    [10]Prempraneerach P, Hover FS, Triantafyllou MS. The effect of chordwise flexibility on the thrust and efficiency of a flapping foil.13th International Symposium on Unmanned Submersible Technology Durham (NC):Autonomous Undersea Institute,2003.
    [11]Chen, Y. N., Fluctuating lift forced of the Karman vortex streets on single circular cylinder and in tube bundles. Journal of Eng. For Industry, Tran. Of ASME, Ser. B, 1972, Vol.94(2):603-628
    [12]Griffin,0. M., Ramberg S.E., On vortex strength and drag in bluff body wakes. J. of Fluid Mech,1975, Vol.69:721-728
    [13]凌国灿,尹协远,圆柱高雷诺数层流非定常运动初期流动.力学学报,1981,2:109-119.
    [14]凌国灿,圆柱体非定常运动初期旋涡运动.力学学报,1983,3:211-216.
    [15]Carl, M. L., Karl H. H., Comparison of models for vortex induced vibrations of slender marine structures. Marine Structure,1997,10:413-441.
    [16]R. Hartlen and I.Currie. Lift-oscillator model of vortex-induced vibration. Journal of Engineering Mechanics Division,1970,96(EM5):577-591
    [17]G. Birkhoff and Zarantanello. Jets, Wakes and Cavities. Academic Press, New York,1957
    [18]R. Bishop and A.Hassan. The lift and drag forces on a circular cylinder oscillating in a flowing fluid. Proceedings of the Royal Society,1964,Series A,277:32-50
    [19]R. Skop and R. Griffin. A model for the vortex-excited resonant response of bluff cylinders. Journal of Cound and Vibration,1973,27(2):225-233
    [20]W. Iwan and R. blevins. A model for vortex-induced oscillations of structures. Journal of Applied Mechanics,1974,41(3):581-586
    [21]Balasubramanian, S. Skop, R. A., A new twist on old model for vortex-excited vibrations[J]. Journal of Fluids and Structures,1997,11:395-412.
    [22]Balasubramanian, S. Skop, R. A., Haan, F. L., Szewczyk, A. A., Vortex-excited vibrations of uniform pivoted cylinders in uniform and shear flow. Journal of Fluids and Structures, 2000,14:65-85
    [23]Krenk, S., Nielsen, S. R. K., Energy balanced double oscillator model for vortex-induced vibrations. ASCE Journal of Engineering Mechnaics,1999,125:263-271.
    [24]Mureithi, N. W., Kanki, H., Nakamura, T., Bifurcation and perturbation analysis of some vortex shedding models. Proceedings of the Seventh International Conference on Flow-Induced Vibrations,2000,61-68.
    [25]Plaschko, P., Global chaos in flow-induced oscillations of cylinders. Journal of Fluids and Structures.2000,14:883-893.
    [26]Q. Lu,C. To and Z.Jin. Weak and strong interactions in vortex-induced resonant vibrations of clylinderical structures. Journal of Sound and Bibration, 1996,190(5):791-820
    [27]C. Zhou, R. So and K. Lam. Vortex-induced vibrations of an elastic circular cylinder. Journal of Fluids and Structures,1999,13:165-189
    [28]Matteoluca F., Emmanuel D. L., Coupling of structure and wake oscillators in vortex-induced vibrations. Journal of Fluids and Structures,2004,1:116-133
    [29]I. Sibetheros, R. Miskad, A. V. Ventre and K. Lambrakos, Flow mapping of the reversing vortex wake of a cylinder in planar harmonic flow. Proceedings of the Fouth International Offshore and Polar Enginnering Conference,1994,406-412
    [30]A. V. Ventre. Flow visualization of a plannar oscillatory flow around a cylinder. Master's thesis, The University of Texas at Austin,1993.
    [31]I. Goswami, R. Scanlan and N.Jones. Vortex-induced vibration of circular cylinders, ii:New model. Jounrnal of Engineering Mechanics,1993,119(11):2288-2302
    [32]T. Sarpkaya. Hydrodynamic damping, flow-induced oscillations, and biharmonic response. Journal of Offshore Mechanics and Arctic Engineering,1995,117:232-238
    [33]F. Hover, S. Miller and M. Triantafyllou. Vortex-induced vibration of marine cables: Experiments using force feedback. Journal of Fluids and Structures,1997,11 (3):307-326
    [34]J.C.Lin and D. Rockwll. Horizontal oscillations of a cylinder beneath a free surface: Vortex formation and loading. Journal of Fluid Mechnaics,1999,389:1-26
    [35]C. Christensen and O. Ditlevse. Random lock-in intervals for tubular structureal elements subject to simulated wind. Journal of Engineering Mechanics, 1999,125 (12):1380-1389
    [36]K. C. S. Kwok, W. H. Melbourne. Wind-induced lock-in excitation of tall structures. ASCE,1981,107(stl):57-72.
    [37]B. J. Vickery,et al. Lift or across-wind response of tapered stacks. ASCE, 1972,98(ST1):1-20
    [38]赵文钦.圆形截面高耸结构物的横向风振.西安冶金建筑学报,1983,33(1):2-24.
    [39]Sarker P K. Approximate determination of the fundamental frequency of a cantilevered beam with point masses and restraining springs. Journal of sound and vibration, 1996,195:229-240
    [40]Ercoli L, Laura PAA. Analytical and investigation on continuous beams carrying elastically mounted masses, Journal of sound and vibration,1987,114:519-533.
    [41]应稼年.用加权残数法计算变截面凉的固有频率.振动与冲击,1997(4):39-43
    [42]李俊,金咸定Timoshenko梁组合动力系统的精确地传递矩阵法.振动与冲击,1998(4):23-25.
    [43]胡海昌,刘中生,王大均.约束位置的修改对振动模态的影响.力学学报,1996(1):23-32.
    [44]刘中生,胡海昌.特征值问题的边界形状灵敏度.力学学报,1999(1):58-67.
    [45]黄斌,常晓林,肖焕雄.振动特征值的边界约束刚度灵敏度.振动与冲击,2001(4):50-51.
    [46]丁德勇.船舶桅杆结构振动特性计算预报分析:(硕士学位论文).大连:大连理工大学,2002.
    [47]杨振财.船舶同性桅杆涡激共振响应分析:(硕士学位论文).大连:大连理工大学,2005.
    [48]郭海燕,傅强,娄敏.海洋输液立管涡激共振响应及其疲劳寿命研究.工程力学,2005,22(4):220-224.
    [49]董艳秋.波、流联合作用下海洋平台张力腿的涡激非线性振动.海洋学报,1994,16(3):121-129.
    [50]傅强.海洋输液立管动力特性及涡激振动响应理论研究:(硕士学位论文).青岛:中国海洋大学,2004.
    [51]卢启煌.高耸结构的风振响应研究:(硕士学位论文).西安:长安大学,2006.
    [52]钟万勰.结构动力方程的精细时程积分法.大连理工大学学报.1994,34(2):131-136
    [53]庄海洋,陈国兴.基于精细积分算法的结构地震反应计算方法.南京工业大学学报.2004,26(2):14-17.
    [54]文明,邓子辰.改进的精细积分法在机械振动中的应用.机械科学与技术,2002,21(1):40-41.
    [55]赵玉立,邓子辰.柔性机械臂碰撞系统的一种建模方法及精细积分数值模拟.应用力学学报,2004,21(4):80-83.
    [56]田象滔.基于精细积分的动力学与控制算法及其在车辆中的应用研究:(硕士学位论文).淄博:山东理工大学,2006.
    [57]王晟,林哲.精细时程积分在载荷识别中的应用.船舶力学,2004,8(4):55-60.
    [58]Triantafyllou M S, Yuedkp. Hydrodynamics of fishlike swimming. Annual Review of Fluid Mechanics,2000,32:33-53.
    [59]Barrett D S, Triantafyllou M S, Yuedkp, et al. Drag reduction in fish-like locomotion. J Fluid Mech,1999,392:183-212.
    [60]Wang Z J, Birch J M, Dickinson M H. Unsteady forces and flows in low Reynolds number hovering flight:two-dimensional computations vs robotic wing experiments. Journal of Experimental Biology,2004,207:449-460.
    [61]Zbikowski R. On aerodynamic modeling of an insect-like flapping wing in hover for micro air vehicles. Phil Trans R Soc Lond A,2002,360:273-290
    [62]Liu Hao, Wassenberg R, Kawachi K. The three-dimensional hydrodynamics of tadpole swimming. J Exp Biol,1997,200:2807-2819.
    [63]董秉纲,庄礼贤,程健宇.鱼类波状摆动推进的流体力学研究.力学与实践,1991,19(3):17-26.
    [64]王姝歆,陈国平.仿生扑翼飞行机器人翅型的研制与实验研究.实验力学,2006,21(3):315-321.
    [65]梁建宏,王田苗,魏洪兴,陶伟.水下仿生机器鱼的研究进展Ⅰ-鱼类推进机理.机器人,2002,24(2):107-111.
    [66]梁建宏,王田苗,魏洪兴,陶伟.水下仿生机器鱼的研究进展Ⅱ-小型实验机器鱼的研制.机器人,2002,24(3):234-238.
    [67]梁建宏,王田苗,魏洪兴,陶伟.水下仿生机器鱼的研究进展Ⅲ-水动力学实验研究.机器人,2002,24(4):304-308.
    [68]刘军考,陈维山,陈在礼.尾鳍的形状和运动参数对推进速度的影响.高技术通讯,2001,(4):86-88.
    [69]苏玉民,黄胜,庞永杰.仿鱼尾潜器推进系统的水动力分析.海洋工程,2002,20(2):54-59.
    [70]成巍.仿生水下机器人仿真与控制技术研究:(博士学位论文).哈尔滨:哈尔滨工程大学,2004.
    [71]Koochesfahani,M.M. Vortical patterns in the wake of an oscillating airfoil. AIAA Journal,1989,27:1200-1205.
    [72]Oshima Y., Natasume A. Flow field around an oscillating airfoil. Proceedings of the Second International Symposium on Flow Visualization, Bochum, West Germany,1980.
    [73]Freymuth P. Propulsive vertical signature of plunging and pitching airfoils. AIAA Journal,1988,26:881-883.
    [74]Shih C., Lourenco L., van Dommelen L., Krothapalli A. Unsteady flow past an airfoil pitching at a constant rate. AIAA Journal,1992,30:1153-1161.
    [75]Anderson J. M., Streitlien K., Barrett D. S., Triantafyllou M. S. Oscillating foils of high propulsive efficiency. Journal of Fluid Mechanics,1998,360:41-72.
    [76]Ohmi K., Coutanceau M., Loc T.P., Dulieu A. Vortex formation around an oscillating and translating airfoil at large incidences. Journal of Fluid Mechanics, 1990,211:37-60.
    [77]McCroskey W. J. Unsteady airfoils. Annual Review of Fluid Mechanics,1982,14:285-311.
    [78]Read D. A., Hover F. S., Triantafyllou M.S. Forces on oscillating foils ofr propulsion and maneuvering. Journal of Fluids and Structures,2003,17:163-183.
    [79]Hover F. S., Haugsdal, Triantafyllou M. S. Effect of angle of attack profiles in flapping foil propulsion. Journal of Fluids and Structures,2004,19:37-47.
    [80]王亮,王明,吴锤结.涡量控制对自主推进俯仰振荡翼型推进效率的影响.河海大学学报,2008,36(3):337-341.
    [81]张晓庆,王志东,张振山.二维摆动水翼仿生推进水动力性能研究.水动力学研究与进展,2006,21(5):632-639.
    [82]Jones, K. D. and Plazter, M. F An experimental and numerical investigation of flapping-wing propulsion. AIAA Paper,99-0995,13 p.
    [83]I.巴斯延.俄罗斯先进的地效翼船设计Naval Forces,1992(5):31-35
    [84]K. V. Rozhdestvensky等.俄罗斯地效翼船的发展现状和前景.FAST,1993(2):1657-1670.
    [85]V.Chubikov等.地效翼船-一种新型的海上高速舰艇.FAST,1991(4):641-648.
    [86]L.D.Volkov.俄罗斯在开发地效翼船方面所取得的研究设计成果.HPMV,1992(9):67-72.
    [87]岳锋,石亚军,李凤蔚.基于N-S方程的地面效应数值模拟研究.航空计算技术,2005,35(2):62-65.
    [88]屈秋林,刘沛清,秦绪国.地效飞行器近波浪地面大迎角飞行分离流动数值研究.空气动力学学报,2008,26(2):221-226.
    [89]程丽,张亮,吴德铭等.二维Rankine体升力受邻近壁面干扰的简化算法.哈尔滨工程大学学报,2006,27(1):42-47.
    [90]王献孚.船用翼理论.北京:国防工业出版社,1998.
    [91]Liu P. Propulsive performance of a twin-rectangular-foil propulsor in a counter-phase oscillation, Journal of Ship Research,2005,49(3):207-214.
    [92]Liu P. Oscillating foil propulsion system, US Patent,2005, no.6,877,692.
    [93]Liu P., Wang T., et al. Propulsion characteristics of wing-in-ground effect dual-foil propulsors. Applied Oncean Research,2010,3.
    [94]王涛.摆翼地效推进技术的数值模拟和性能研究.中国科学院力学研究所博士后研究报告,2006.10.
    [95]Wang T., Liu P. and Yang G. Preconditioning Numerical Method and Performance Investigation of Plunging Dual Foils (1), Proceedings of NVTA'2007, the 9th National Vibration Technology and Application, Hang Zhou, China.
    [96]崔冰艳.ALE方法的二维数值模拟计算:(硕士学位论文).呼和浩特:内蒙古工业大学,2006.
    [97]Browne P. L. Rezone. A proposal for accomplishing rezoning in two-dimensional Lagrangian hydrodynamics problems. USA:Report LA-3455-MS, LOS Alamos Sci.LAB
    [98]王福军.计算流体力学分析—CFD软件原理与应用.北京:清华大学出版社,2005.
    [99]温正,石良辰,任毅如FLUENT流体计算应用教程.北京:清华大学出版社,2009.
    [100]Noh C. E. L. A time-dependent two-space-dimension coupled Eulerian-Lgarangian code, Methods in computational Physics,1964,3:123-144.
    [101]Hirt C. W., Aesden A. A., Cook H. K. An arbitrary Lagrangian-Eulerian method for all flow speeds, Journal of Computational Physics,1974,14:227-253.
    [102]Hughes T. J. R., Liu W. K., Zimmerman T. K. Lagrangian-Eulerian finite element formulation for incompressible viseous flows. Computer Method in Applied Mechanics and Engineering,1981,29:329-349.
    [103]Huerta A., Liu W. K. Viseous flows with large free surface motion, Computer Method in Applied Mechanics and Engineering,1988,69:277-324.
    [104]Belystsehko T., Flanagan D. F., Kennedy J. M. Finite element method with user-controlled meshes for fluid-strueture interanetion, Computer Method in Applied Mechanics and Engineering,1982,33:689-723.
    [105]Donea J., Fasoli StellaP, Lagrangian and Eulerian finite elememt techniques for transient fluid-structure interaction problems, Trans. SmiRT-Paper B1/2, USA,1977:15-19.
    [106]Belytsehko T., Kennedy J. M. Computer models for subassembly simulation, Nuclear Engineering and Design,1978,49:17-38.
    [107]Belytschko T., Kennedy J. M. Quasi-Eulerian finite element formulation for fluid-structure interaction, Journal of Pressure Vessel Technology, ASME,1980,102:62-69.
    [108]Donea J., Giuliani S., Halleux J. P. An arbitrary Lagrangian-Eulerian finite element method for transit dynamic fluid-structure interaction, Computer Method in Applied Mechanics and Engineering,1982,33:689-723.
    [109]Nomura T. ALE finite elemente computations of fluid-structure interaction problems, Computer Method in Applied Mechanics and Engineering,1994,112:291-308.
    [110]Sarrate J., Huerta A., Donea J. Arbitrary Lagrangian-Eulerian formulation for fluid-rigid body interaction, Computer Method in Applied Mechanics and Engineering, 2001,190:3171-3188.
    [111]Liu WK. Finite element procedure for fluid-structure interactions and application to liquid storage tanks. Nuclear Engineering and Design,1981,65:221-238.
    [112]Liu WK, Chen JS. Adaptive ALE finite element with particular reference to electoral work rate on frictional interface. Computer Methods in Applied Mechanics and Engineering,1991,93:189-216.
    [113]Thomas Hughes J. R. Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering,1981,29(3):329-349.
    [114]Huerta A, Liu WK. Viscous flow with large free surface motion. Computer Methods in Applied Mechanics and Engineering,1988,69(3):227-324.
    [115]刘志宏,黄玉盈.任意拉格朗日—欧拉边界元法解大晃动问题.南京:振动工程学报,1993,6(1):10-19.
    [116]曾江宏,王照林.粘性流体大幅晃动的ALE有限元模拟.强度与环境,1996,3:22-31
    [117]温德超,郑兆昌,孙焕纯.用ALE和时间分裂步法分析三维粘性流体大幅晃动的非线性问题.振动与冲击,1996,15(3):49-54
    [118]郑群,刘顺隆.任意拉格朗日—欧拉(ALE)法求解三维湍流流动.水动力学研究与进展,1997,9(3):231-238
    [119]郑群,刘顺隆,吴猛.粘性三维流动计算的任意拉格朗日—欧拉法.北京:航空动力学报,1997,12(3):283-286
    [120]岳宝增,刘延柱,王照林.非线性流固祸合问题的ALE分布有限元数值方法,力学学报,2001,22(1).
    [121]王辉,岑章志,杜庆华.粘性流体中弹性板振动的有限元祸合问题,固体力学学报,1998,19(2).
    [122]吴秩,莫海鸿,杨春.U形渡槽水体大幅晃动的ALE有限元模拟,华南理工大学学报,2003,31(9).
    [123]聂武,刘玉秋,海洋工程结构动力学分析,哈尔滨:哈尔滨工程大学出版社,2002.
    [124]陈铁云,海洋工程结构力学,大连:大连理工大学出版社,1991.
    [125]王贵春.在稳定流中海洋管道的旋涡激发振动:(硕士学位论文).天津:天津大学,1987
    [126]任大棚.深水立管涡激共振的耦合模拟及抑制方法研究:(硕士学位论文).大连:大连理工大学,2006
    [127]张相庭.结构风压和风振计算.上海:同济大学出版社,1985.
    [128]刘立明.海底管线涡激共振可靠性研究:(博士学位论文).天津:天津大学,2003.
    [129]刑静忠.海底管道强度、寿命评估及其可靠性技术研究:(博士学位论文).北京:中国科学院力学研究所,2004.
    [130]R. T. Hartlen, I.G. Currie. Lift-oscillator model of vortex-induced vibration. ASCE,1970,96(EM5):577-592.
    [131]张相庭.工程结构风载荷理论和抗风计算手册.上海:同济大学出版社,1985
    [132]中华人民共和国.船上有害振动的预防。北京:人民交通出版社,1986.
    [133]杨振财,赵德有.船舶筒形桅杆振动分析中边界条件的研究.中国海洋平台,2006,21(2):17-23.
    [134]汪梦甫,周锡元.结构动力方程的更新精细积分方法.力学学报,2004,36(2):191-195.
    [135]Newmark, N.M., A method of computation for structural dynamics, J. Eng. Mech, Div. ASCE, 1959, Vol.85(3):67-94.
    [136]Golley BW. A time-stepping procedure for structural dynamics using Gauss point collocation. International Journal for Numerical Methods in Engineering, 1996,39:3985-3998
    [137]Riff R, Barch M. Time finite element discretization of Hamilton's Law of varying action. AIAA Journal,1984,22:1310-1318.
    [138]Argysis JH, Vaz LE, Willam KJ. Higher order methods for transient diffusion analysis. Computer Methods in Applied Mechanics and Engineering,1977,12:243-278.
    [139]Kujawski J, Gallagher RH. A generalized least-squares family of algorithms for transient dynamic analysis. Earth-quake Engineering and Structural Dynamics,1989,18:539-550.
    [140]Tarnow N, Simo JC. How to render second order accurate time stepping algorithms fourth order accurate while retaining the stablility and conservation properties. Computer Methods in Applied Mechanics and Engineering,1994,115:233-252.
    [141]王超,李红云,刘正兴.计算结构动力响应的分段精细时程积分方法.计算力学学报,2003,4(2):175-178.
    [142]林家浩,沈为平,F.W.威廉斯.受演变随机激励结构响应的精细逐步积分法.大连理工大学学报,1995,35(5):600-605.
    [143]腾中林.架空线路的结冰及冰厚计算.中国电力,1978,(03):53-56
    [144]刘军考,陈在礼,陈维山,王力刚.水下机器人新型仿鱼鳍推进器.机器人.2000,22(5):427-432.
    [145]T. Fukoda, A.Kawamoto, F. Arai, H. Matsuura. Steering mechanism of underwater micro mobile robot. Proceedings of the 1995 IEEE International Conference on Robotic and Automation.1995:363-368.
    [146]0.K.Rediniotis,D.C. Lagoudas,L.J. Garner, L. N. Wislson, G. Webb, G. Galls, N. W. Schaeffler. Appliecation of active materials and neural networks to aquatic Biomimetics. The 11th International Symposium on Unmanned Untethered Submersible Technology,1999:501-514.
    [147]M, Mojarrad, D.G.Wilson. Design of composite artificial muscle (CAM) fin for aquatic vehicle propulsion. The 11th International Symposium on Unmanned Untethered Submersible Technology Teenoogy.1999:494-501.
    [148]J. Paquette, K.J.Kim. Ionomeric elcetro-active polymer artificial mucle-overview. Proeeedings of the 13th International Symposium on Unmanned Untethered Submersible Technology Teenoogy.2003.
    [149]S.Stanford, R. Pelrine, R. Kornbluh, Q. Pei. Electroactive polymer artificial mucele for underwater robotics. Proeeedings of the 13th International Symposium on Unmanned Untethered Submersible Technology Teenoogy.2003.
    [150]储定慧,张铭钧,刘晓白.海龟水翼运动模型及仿生推进机构研究.哈尔滨工程大学学报.2008,29(3):286-289.
    [151]Su Y, et al. Numerical calculation of marine propeller hydrodynamic characteristics in unsteady flow by boundary element method. Trans. of CSNAME,2001,42(4).
    [152]王志东,秦允海,周林慧.仿生推进与操纵系统方案设计与运动仿真.计算机仿真,2004,21(11):89-91
    [153]东昭.生物的游泳.北京:科学出版社,1986-8.
    [154]吴子牛,空气动力学,北京:清华大学出版社,2008.
    [155]王航.地效飞行器总体设计中若干问题研究:(硕士学位论文).南京:南京航空航天大学,2008.
    [156]冯大奎,叶恒奎,杨向晖,杜莉.非平直面二维地效翼性能时域计算.华中科技大学学报.2009,37(3):119-121.
    [157]易杰.计算流体动力学在翼型设计和水处理中的应用:(硕士学位论文).兰州:兰州大学.2009.
    [159]詹昊.钢桁拱桥吊杆涡激共振仿真分析:(博士学位论文).武汉:华中科技大学,2009.
    [160]王福军.计算流体力学分析-CFD软件原理与应用.北京:清华大学出版社,2005.
    [161]温正,石良辰,任毅如FLUENT流体计算应用教程.北京:清华大学出版社,2009
    [162]黄飓.翼型俯仰-沉浮耦合振动问题的数值计算研究:(硕士学位论文).绵阳:中国空气动力研究与发展中心,2008.
    [163]Jr-Ming Miao, Wei-Hsin Sun. Numerical Analysis on Aerodynamic Force Generation of Biplane Counter-Flapping Flexible Airfoils. Journal of aircraft, 2009,46(5):1785-1794.
    [164]李裕春,时党勇,赵远ANSYS 10.0/LS-DYNA基础理论与工程实践.北京:中国水利水电出版社,2008.
    [165]孟庆国,马钧,袁文清.液体罐箱多欧拉域流固耦合碰撞过程数值模拟.工程力学,2009,26:189-192.
    [166]王勖成.有限单元法.北京:清华大学出版社,2003.
    [167]朱洪来, 白象忠.流固耦合问题的描述方法及分类简化准则.工程力学,2007,24(10):92-99.
    [168]邢景棠,周盛,崔尔杰.流固耦合力学概述.力学进展,1997,21(7):19-38.
    [170]娄涛.基于ANSYS的流固耦合问题数值模拟:(硕士学位论文).兰州:兰州大学,2008.
    [171]邱清水,伍平,唐学彬.输流管道祸合振动问题的ALE方法研究.力学季刊,2001
    [172]李飞,孙凌玉,张广越,康宁.圆柱壳结构入水过程的流固耦合仿真与试验.北京航空航天大学学报.2007,33(9):1117-1120.
    [173]陈福.结构入水问题的流固耦合:(硕士学位论文).北京:清华大学,2008
    [174]周岱,马骏,李磊.流场和流固耦合问题网格剖分与更新的新方法.工程力学,2009,26(11):10-15.
    [175]Benson D.J.,1992 Computational methods in Lagrangian and Eulerian hydrocodes, Computer Methods in Applied Mechanics and Engineering, Vol.99(2):235-394
    [176]L. Schouveiler, F.S. Hover and M.S. Triantafyllou.2005 Performance of flapping foil propulsion, Journal of Fluids and Structures, Vol.20:949-959
    [177]M.J. Lighthill,1970. Aquatic animal propulsion of high hydromechanical efficiency, J. Fluid Mech., Vol.44:265-301.
    [178]于大鹏,赵德有.螺旋桨鸣音的混沌动力特性研究.振动与冲击,2009,28(12):47-52.
    [179]李洁雅,欧礼坚,王志勇.对螺旋桨引起的谐鸣振动的探讨与实践.中国修船,2001,6:26-27.
    [180]华汉金.螺旋桨鸣音产生机理及防治方法.船舶,2002,2:20-23.
    [181]刘丹,陈凤馨.CFD在计算船舶螺旋桨敞水性能中的应用研究.现代制造工程,2010,4:18-20
    [182]赖华威,刘月琴,吴家鸣.基于CFD方法的螺旋桨性能计算与分析.船海工程.2009,38(4):131-135
    [183]胡健,黄胜,王培生.螺旋桨水动力性能的数值预报方法.江苏科技大学学报.2008,22(1):1-6
    [184]蔡荣泉,陈凤明,冯学梅.是用Fluent软件的螺旋桨敞水性能计算分析.船舶力学,2006,10(5):41-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700