用户名: 密码: 验证码:
n-3高不饱和脂肪酸对黑鲷幼鱼生长及脂肪代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了饲料中添加n-3高不饱和脂肪酸对黑鲷幼鱼生长、体组成及血浆生化指标的影响,并由此得出黑鲷幼鱼达到最佳增重时对饲料中n-3HUFA%及DHA/EPA的需要量,进而通过研究组织中主要生酯酶(FAS)及主要脂解酶(HSL)的活性及基因表达来初步探讨饲料n-3]HUFA调控黑鲷脂肪代谢的主要机理。研究内容包括:(1)饲料中添加不同水平n-3HUFA对黑鲷幼鱼生长及体组成的影响;(2)饲料中DHA/EPA比值对黑鲷幼鱼生长及体组成的影响;(3)黑鲷FAS及HSL基因克隆及序列分析;(4)饲料n-3HUFA含量及DHA/EPA比值对黑鲷幼鱼脂肪代谢相关酶活性及基因表达的影响。
     (1)选取平均体重为(8.08±0.09)g、健康、体质均匀的黑鲷幼鱼360尾,随机放养入18个水泥池中搭建的网箱中。通过用鱼油和玉米油调和脂肪酸含量,将试验饲料配制成n-3HUFA含量分别为0.79,0.83,0.85,0.88,0.92,0.94%,DHA/EPA比值固定(2.8/1)的试验饲料,随机分配给六组,每组三个重复。每天投饵时间为8:00和16:00,以眼观饱食(投饵率3-5%)为准,试验条件同上。八周饲养试验结束后,对黑鲷幼鱼生长性能、饲料效率,蛋白质效率等指标进行测定,并分析体组织常规成分组成及肝脏、肌肉和腹腔脂肪组织脂肪酸组成及血浆生化指标的变化。试验结果表明,黑鲷脂肪细胞直径呈减小趋势,n-3HUFA水平最高组显著小于试验组3。肌肉脂肪含量受n-3HUFA的显著影响,且在第四组时达到最低;黑鲷幼鱼全鱼组织常规营养成分含量在各组之间差异不显著。肝脏、肌肉及腹腔脂肪组织中∑SFA和16:0均随饲料n-3HUFA水平的增加呈下降趋势,∑n-3HUFA呈显著上升趋势。各组织中DHA/EPA比值不受饲料脂肪酸的影响。黑鲷幼鱼血浆甘油三酯和胆固醇含量随饲料中n-3HUFA的添加有下降趋势。以增重率为参考指标,在本试验条件下,黑鲷幼鱼[(8.08±0.09)g]获得最佳增重时对饲料中n-3 HUFA的需要量为0.87%DM,即8.7 g/kg饲料干物质。
     (2)选取平均体重为(11.01±0.02)g的黑鲷幼鱼420尾,在与试验一相同的条件下研究n-3HUFA含量一定,DHA/EPA比值不同(1.98,2.20,2.46,2.88,\3.15,3.57,4.04)的试验饲料对黑鲷幼鱼生长性能、饲料效率、蛋白质效率,体组织营养组成及血浆生化指标的影响。试验结果表明,与DHA/EPA最低组相比,黑鲷幼鱼腹脂率(IPF ratio)有明显减少,并在试验组3时达到最低。脂肪细胞直径随饲料DHA/EPA比值的变化趋势不明显,但在试验组5,6时显著低于其它各组。试验结束后对试验鱼体组织营养成分进行分析。结果显示,肌肉脂肪含量在饲料DHA/EPA>2.46时有显著降低,降幅约为8.59%。全鱼组织脂肪沉积量在饲料DHA/EPA>3.15时显著减少,最大降幅可达28.3%。各处理组背肌和腹腔脂肪组织n-3HUFA含量不受饲料的影响,但DHA/EPA比值随饲料水平的增加而增加。以增重率(WGR)为参考指标,二次曲线分析(y=-9.9707x2+62.696x+10.309,R2=0.9258;x,饲料DHA/EPA比值,y,WGR)表明,本试验条件下,黑鲷幼鱼(11.01±0.02 g)获得最佳增重时饲料中DHA/EPA比值为3.15。
     (3)本研究克隆了黑鲷FAS和HSL基因片段,其片段长度分别为464 bp和664 bp,分别编码150和221个氨基酸。BLAST比对分析结果表明,黑鲷FAS基因片段同斑马鱼(Danio rerio)同源性为76%。黑鲷HSL基因片段同斑马鱼同源性为69%。本试验对黑鲷FAS及HSL基因片段的克隆主要为以下试验中黑鲷幼鱼FAS及HSL基因表达的荧光定量分析作准备。
     (4)本试验主要通过分析组织中脂肪代谢主要酶的活性及基因表达水平,探讨饲料中不同n-3HUFA及DHA/EPA比值对黑鲷幼鱼脂代谢影响的机理。对酶活的测定结果显示,肝脏组织FAS活性较高,而腹腔脂肪(IPF)组织几乎不能检测到该酶,说明FAS在黑鲷幼鱼中的表达具有组织特异性,以肝脏为脂肪合成主要器官。FAS活性在试验组1-4之间无显著差异,当饲料n-3HUFA含量在0.92%以上时开始有显著下降。腹腔脂肪组织中HSL活性随饲料n-3HUFA的添加有增加趋势,当饲料n-3HUFA含量达到最高时(0.94%),HSL活性增加到将近一倍。饲喂不同DHA/EPA比值饲料的试验鱼肝脏组织中FAS活性不受饲料1-4的影响,随着饲料DHA/EPA比值的进一步增加呈显著下降趋势。脂肪组织HSL活性随饲料DHA/EPA比值的增加有上升趋势,但当饲料DHA/EPA大于2.88时进入平台期,保持在0.79左右。荧光定量分析与酶活测定结果相似,同样表现为FAS表达水平在试验组4以后开始下降,而HSL随饲料n-3HUFA或DHA/EPA升高而上升。以上研究结果表明,饲料n-3HUFA及DHA/EPA对黑鲷幼鱼脂肪代谢影响主要是对脂肪酸合成酶(FAS)和激素敏感脂肪酶(HSL)活性及基因表达进行同步调控的结果。
Four experiments were conducted to investigate the effect of dietary n-3 highly unsaturated fatty acids (HUFA, mainly EPA and DHA), on growth performance, body composition and plasma biochemistry in juvenile black sea bream, Sparus macrocephalus. The aim of this study was to deduce the optimum requirement of n-3 HUFA and DHA to EPA ratio for the best growth performance of juvenile black sea bream, Sparus macrocephalus, and then to explore the main mechanism of n-3 HUFA regulation on lipid metabolism in black sea bream. The present study include the following:(1) Effect of supplementation of dietary n-3 HUFA on growth and body composition of black sea bream juveniles, Sparus macrocephalus; (2) Effect of dietary DHA to EPA ratio on growth performance, body compositon and fatty acid profile of juvenile black sea bream, Sparus macrocephalus;(3) Cloning of fatty acid synthse (FAS) and hormone sensitive lipase (HSL) in black sea bream, Sparus macrocephalus;(4) Effect of dietary n-3 level and DHA to EPA ratio on lipogenic and lypolytic enzymes activities and relative gene expression in black sea bream, Sparus macrocephalus.
     (1) Three hundred and sixty black sea bream juveniles (average weight, 8.08±0.09) were randomly allocated into 18 net cages built in a big concrete pond. Six diets with a constant DHA to EPA ratio (2.8/1) were formulated to contain different levels (8.48,8.89,9.08,9.43,9.88,10.12%) of n-3 HUFA, by supplementing corn oil and fish oil to modulate the fatty aid content. All diets were assigned to six grous of fish with triplicate. Fish were fed twice every day (8:00 and 16:00) to apparent satiation. The experiment conditions were mentioned above. At the end of the feeding trial, growth performance, feed efficiency (FE) and protein efficiency ratio (PER) of black sea bream were calculated, and plasma biochemisty parameters, the proximate composition as well as fatty acid profiles in liver, dorsal muscle and white adipose tissue (WAT) were analysized. At the end of the experiment, hepotasomatic index (HSI) and intraperitoneal fat (IPF) ratio decreased with the increase of dietary n-3 HUFA and the values in group 5 and 6 were significantly lower than that in other four groups (P<0.05). Adipocyte diameter in IPF was decreased by dietary n-3 HUFA and the significance occurred between group 3 and 6. Proximate composition analysis showed that lipid content in muscle was affected by dietary n-3 HUFA significantly and reached the bottom at the level of 0.88%. No significance was found in whole body proximate composition of juvenile black sea bream. Concerning the fatty acid composition,ΣSFA and the main constituent 16:00 were negatively correlated with dietary n-3 HUFA; in contrast,Σn-3 HUFA content was significantly increased among all the treatment. DHA to EPA ratios in liver, dorsal muscle and WAT were unchanged with the supplementation of dietary n-3 HUFA. Plasma triglycerides (TG) and total cholesterol (T-CHO) were all significanlty decreased by dietary treatment. Quadratic analysis based on weight gain rate (WGR) indicated that dietary n-3 HUFA requirement for black sea bream was 0.87% DM, that is 8.7 g/kg in the diet.
     (2) Black sea bream juveniles (11.01±0.02 g, mean weight) were fed diets containing different DHA/EPA ratios (from 1.98 to 4.04) with constant dietary n-3 HUFA level (about 1.0%) for 8 weeks. Four hundred and twenty fish were allocated into seven groups with triplicate and were fed different experimental diets. Fish feeding and the experimental condition were all just the same with experiment 1. Growth performance, FE and PER were calculated, while tissue proximate composition, fatty acid composition and plasma biochemical parameters were all analyzed at the end of the feeding trial. IPF ratio in other treatments was significantly lower than that in group 1, and fish in group 3 showed the lowest fat deposit in viscera. Diameter of adipocyte in IPF was significantly reduced compared to the other groups. Proximate composition analysis showed that lipid content in muscle was decreased by 8.59% at large, and lipid deposit in whole body was decreased by 28.3%. Fatty acid profile analysis indicated that n-3 HUFA content in liver, dorsal muscle and WAT was independ of dietary DHA to EPA ratios, while DHA/EPA ratio in these tissues were positively correlated with dietary DHA/EPA ratio. Based on weigt gain rate (WGR), quadratic analysis (y=-9.9707x2+62.696x+10.309, R2=0.9258; x, DHA/EPA ratio; y, WGR) showed that at the present experiment condition, the DHA/EPA requiremet for juvenile black sea bream was 3.15.
     (3) FAS gene of 464 bp and HSL of 665 bp were cloned in this experiment. Blast analysis showed that the high similarity (76% and 69%) between black sea bream and zebrafish is a strong indication that these two sequences correspond to a FAS or HSL gene. Clone of partial FAS and HSL gene in the experiment made preparations for the next real-time PCR determination of FAS and HSL gene expression in the following experiment.
     (4) Postulated mechanism of fatty acid regulation in lipid metabolism in black sea bream was discussed according to the study of the effect of dietary n-3 HUFA and DHA to EPA ratio on FAS or HSL gene expression and enzyme activities. Determination of FAS and HSL activities showed that FAS activity was higher in liver than that in adipose tissue, which means the tissue specificity of FAS in black sea bream and liver was considered to be the main organ of fatty acid synthesis. In both experiment, FAS activity kept constant in group 1 to 4, and then decreased significantly with further increment of dietary n-3 HUFA or DHA/EPA ratio. HSL activity increased significantly with the elevation of dietary n-3 HUFA level or dietary DHA/EPA ratio, but reached a plateau when the ratio was higher than 2.88. Real-time PCR determination showed that FAS gene expression changed following the similar trend with FAS activity in liver; while liver HSL gene expression, just as in adipose tissue, was positively correlated with dietary n-3 HUFA level or DHA/EPA ratio. In summary, we can deduce that n-3 highly unsaturated fatty acid regulation in lipid metabolism was realized by affecting the two pathways, that is, lipogenesis and lipolysis at the same time.
引文
[1]Aclanan, R.G.,1964. Structural homogeneity in unsaturated fatty acids of marine fish lipids. Journal of fisheries Research of Canadian 21,247-254.
    [2]Albalat, A., Sanchez-Gurmaches, J., Gutierrez, J., Navarro, I.,2006. Regulation of lipoprotein lipase activity in rainbow trout(Oncorhynchus mykiss) tissues. General and Comparative Endocrinology 146, 226-235.
    [3]Albalat. A.. Saera-Vila, A., Capilla, E., Gutierrez. J., Perez-Sanchez, J., Navarro,I.,2007. Insulin regulation of lipoprotein lipase (LPL) activity and expression in gilthead seabream (Sparus aurata). Comp. Biochem. Physiol.148B,157-159.
    [4]Allee, G.L., O'Hea, E.K., Leveille, G.A., et al.,1971. Influence of dietary protein and fat on lipogenesis and enzymatic activity in pig adipose. J. Nutri.101,869-878.
    [5]Alvarez, M.J., Diez, A., Lopez-Bote, C., Gallego. M., Bautistam J.M.,2000. Short-term modulation of lipogenesis by macronutrients in rainbow trout (Oncorhynchus mykiss) hepatocytes. Br. J. Nutr.84, 619-628.
    [6]'Arantzamendi, L.,2002. Effect of dietary lipids on production, composition and lipolytic activity in commercial fish. PhD Thesis, University of Las Palmas de Gran Canaria. Spain.
    [7]Awad, A.B., Chattopadhyay, J.P.,1986. Effect of dietary saturated fatty acids on intracellular free fatty acids and kinetic properties of hormone-sensitive lipase of rat adipocytes. Journal of Nutrition 116 (6), 1095-1100.
    [8]Babin, P.J., Vernier, J.M.,1989. Plasma lipoproteins in fish. J. Lipid Res.30,467-489.
    [9]Bauman, D.E.1976. Intermediary metabolism of adipose tissue. Fed. Proc.35,2308-2313.
    [10]Bell, M.V., Batty, R.S., Dick, J.R., et al,1995. Dietary deficiency of docosahexaenoicacid impairs vision at low light intensities in juvenile herring (Clupea harengus L.). Lipids 30,373-476.
    [11]Bell, M.V., Dick, J.R., Thrush, M., Navarro, J.C.,1996. Decreased 20:4n-6/20:5n-3 ratio in sperm from cultured sea bass Dicentrarchus labrax. broodstock compared to wild fish. Aquaculture 144,189-199.
    [12]Bell, J.G., Sargent, J.R.,2003. Arachidonic acid in aquaculture feeds:current status and future opportunities. Aquaculture 218,491-499.
    [13]Benitez-Santana, T., Masuda, R., Carrillo, E. Ju'arez, Ganuza, E., Valencia, A., Hern'andez-Cruz, C.M., Izquierdo, M.S.,2006. Dietary n-3 HUFA deficiency induces a reduced visual response in gilthead seabream Sparus aurata larvae, Aquaculture (2006), doi:10.1016/j.aquaculture.10.024
    [14]Bergo, M., Olivecrona, G, Olivecrona, T.,1996. Diurnal rhythms and effects of fasting and re-feeding on rat adipose tissue lipoprotein lipase. Am. J. Physiol.271(6), E1092-1097.
    [15]Bimbo, A.P.,1990. Production of fish oil. Ch6 in Fish Oils Nutrition. In:Stansby, M.E. (Ed.), Van Nostrand Reinhold, New York, pp.141-180.
    [16]Blake, W.L, Clarke, S.D.,1990. Suppression of rat hepatic fatty acid synthase and S14 gene transcription by dietary polyunsaturated fat. Nutr.120,1727-1729.
    [17]Brooks, S., Tyler, C.R., Sumpter, J.P.,1997. Egg quality in fish:what makes a good egg? Rev. Fish Biol. Fish.7,387-416.
    [18]Buranapanidgit, J., Boonyaratpalin, M., and Watanababe T.1989. Essential fatty acid requirement of juvenile seabass. Lates calcarifer. Paper presented at Third International Symposium on Feeding and Nutrition in Fish,Toba, Japan, August 28-September 1,1989.
    [19]Caballero, M.J., Obach. A., Rosenlund, G., Montero, D.. Gisvold, M., Izquierdo, M.S.,2002. Impact of
    different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss. Aquaculture 214,253-271.
    [20]Castell, J.D., Sinnhuber, R.O., Wales, J.H.. Lee. J.D.,1972. Essential fatty acids in the diet of rainbow trout (Salmo gaidneri):Growth, feed conversion and some gross deficiency symptoms. J. Nutr.102.77-86.
    [21]Chilliard,Y.,1993. Dietary fat and adipose tissue metabolism in ruminants, pigs and rodents:a review. J. Dairy Sci.,76:3897-3931.
    [22]Chu, F.L.E. and Ozikizilcik, S.,1995. Lipid and fatty acid composition of striped bass (Morone saxatilis) larvae during development. Comp. Biochem. Physiol.111B,665-674.
    [23]Clarke, S.D., Armstrong, M.K., and Jump, D.B.,1990. Nutritional control of rat liver fatty acid synthase and S14 mRNA abundance. J Nutr 120,218-241.
    [24]Clarke, S.D., Abraham, S.,1992. Gene expression:nutrient control of pre-and post-transcriptional events. FASEB J.6,3146-3152.
    [25]Clarke, S.D.,1993. Regulation of fatty acid synthase gene expression:an approach for reducing fat accumulation. J Anim. Sci.71.1957-1966.
    [26]Coup, C., Perdereau, D.P., Ferre, Y.. Hitier, Y.. Narkewicz and Girarz. J.,1990. Lipogenic enzyme activities and mRNA in rat adipose tissue at weaning. Am J Physiol 258. E126.
    [27]Craig, S.,1989. The effects of enriching live foods with highly unsaturated fatty acids on the growth and fatty acid composition of larval red drum Sciaenops ocellatus Linnaeus. Master's thesis. Corpus Christi State University, Corpus Christi, TX, USA,36.
    [28]Dendrinos, P., Thorpe, J.P.,1987. Experiments on the artificial regulation of amino acid and acid contents of food organisms to meet the assessed nutritional requirements of larval, post-larval and juvenile Dover sole (Solea solea L.). Aquaculture 61,121-154.
    [29]Deshimaru, O., and K. Kuroki.1983. Studies on the optimum levels of protein and lipid in yellowtail diets. Pp.44-79 in Reports of Kagoshima Prefectural Fishery Experimental Station. Kagoshima, Japan: Kagoshima Prefectural Fishery Experimental Station.
    [30]Dias, J., Alvarez, M.J., Diez, A., Arez, J., Corraze. G., Bautista, J.M., Kaushik, S.J.,1998. Regulation of hepatic lipogenesis by dietary protein/energy in juvenile European seabass (Dicenrarchus labrax). Aquaculture 161,169-186.
    [31]Duncan. D.B.,1955. Mulitple F-test. Biometrics 11.1-42.
    [32]Duplus, E., Glorian, M., Forest, C.,2000. Fatty acid regulation of gene transcription. J. Biol. Chem. 275(40),30749-30752.
    [33]Duplus. E., Forest, C,2002. Is there a single mechanism for fatty acid regulation of gene expression? Biochemical Pharmacology 64,893-901.
    [34]Faulconnier Y., Bonnet Y., Bocquier, M., Leroux, C., Chilliard. Y.,2001. Effects of photoperiod and feeding level on adipose tissue and muscle lipoprotein lipase activity and mRNA level in dry non-preganant sheep. British Journal of Nutrition 85 (3),299-306.
    [35]Fernandez-Palacios, H., Izquierdo, M.S., Robaina. L.. Valencia, A., Salhi. M., Vergara. J.M.,1995. Effect of n-3 HUFA level in broodstock diets on egg quality of gilthead sea bream (Sparus aurata L.). Aquaculture 132,325-337.
    [36]Foufelle. F., Lepetit, N., Bosc, D., Delzenne. N., Morin, J., Raymondjean,M., and Ferre, P.,1995. Dnase(?) hypersensitivity sites and nuclear protein binding on the fatty acid synthase gene:Identification of an element with properties similar to known glucose-responsive elements. Biochemistry J 308,521.
    [37]Fraser, A.J., Sargent, J.R., Gamble. J.C., and MacLachlan, P.,1987. Lipid class and fatty acid composition as indicators of the nutritional condition of larval Atlantic herring. Am. Fish. Soc. Symp.2,129-143.
    [38]Furuita, H., Takeuchi, T., Uematsu, K.,1998. Effect of eicosapentaenoic and docosahexaenoic acids on growth, survival and brain development of larval Japanese flounder(Paralichthys olivaceus). Aquaculture 161,269-279.
    [39]Furuita, H., Konishi. K., Takeuchi, T.,1999. Effect of different levels of eicosapentaenoic acid and docosahexaenoic acid in Artemia nauplii on growth, survival and salinity tolerance of larvae of the Japanese flounder, Paralichthys olivaceus. Aquaculture 170,59-69.
    [40]Furuita, H., Tanaka, H., Yamamoto, T., Suzuki, N., Takeuchi, T.,2002. Effects of high levels of n-3 HUFA in broodstock diet on egg quality and egg fatty acid composition of Japanese flounder, Paralichthys olivaceus. Aquaculture 201,323-333.
    [41]Ghioni, C., Tocher, D.R., Bell, M.V., Dick, J.R., Sargent, J.R..,1999.Low C18 to C20 fatty acid elongase activity and limited conversion of stearidonic acid,18:4n-3, eicosapentaenoic acid,20:5n-3, in a cell line from the turbot. Scophthalmus maximus. Biochim. Biophys. Acta 1437,170-181.
    [42]Glencross. B.D., Smith, D.M., Thomas. M.R., Williams, K.C.,2002. Optimising the essential fatty acids in the diet for weight gain of the prawn, Penaeus monodon. Aquaculture 204,89-99.
    [43]Girard, J.D., Perdereau, F., Foufelle, C., Prip-Buus. C., and Ferre, P.,1994. Regulation of lipogenic enzyme gene expression by nutrients and hormones. FASEB J 8,36-42.
    [44]Huang, Q.C., Xu. Z.R., Han, X.Y., Li, W.F.,2008. Effect of dietary betaine supplementation on lipogenic enzyme activities and fatty acid synthase mRNA expression in finishing pigs. Animal Feed Scienc and Technology 140,365-375.
    [45]Ibeas, C., Cejas, J., Gomez., T., Jerez, S., Lorenzo, A.,1996. Influence of dietary n-3 highly unsaturated fatty acids levels on juvenile gilthead seabream(Sparus aurata) growth and tissue fatty acid composition. Aquaculture 142,221-235.
    [46]Ibeas, C., Cejas, J.R., Fores, R., Badia, P., Gomez, T., Hernandez, A.L.,1997. Influence of eicosapentaenoic t docosahexaenoic acid ratio (EPA/DHA) of dietary lipids on growth and fatty acid composition of gilthead seabream (Sparus aurata) juveniles. Aquaculture 150,91-102. [47] Ikeda, I., Wakamatsu, K., Inayoshi, A., Imaizumi, K., Sugano,M., Yazawa, K.,1994. α-linolenic, eicosapentaenoic and docosahexaenoic acids affect lipid metabolism differently in rats. J. Nutr.124, 1898-1906.
    [48]Izquierdo, M.S., Watanabe, T., Arkawa. T.,1989. Requirement of larval red seabream Pagrus major for essential fatty acids. Nippon Suisan Gakkaishi 55,859-867.
    [49]Izquierdo, M.S., Aakawa, T., Takeuchi, T.,1992. Effect of the n-3 HUFA levels in Artemia on growth of larval Japanese flounder Paralichthys olivaceus. Aquaculture 105,73-82.
    [50]Izquierdo, M.S., Fernandez-Palacios, H.. Tacon, A.GJ.,2001. Effect of broodstock nutrition on reproductive performance of fish. Aquaculture 197,25-42.
    [51]Izquierdo, M.S., Obach. A., Arantzamendi, L., Montero, D., Robaina, L., Rosenlund, G.,2003. Dietary lipid sources for seabream and seabass:growth performance, tissue composition and flesh quality. Aquacult. Nutr.9,397-407.
    [52]Jeney, G., Nemcsok, J., Jeney, Z., Olah, J.,1992. Acute effect of sublethal ammonia concentrations on common carp (Cyprinius carpio L.):Ⅱ. Effect of ammonia on blood plasma transaminases (GOT, GPT), G1DH enzyme activity, and ATP value. Aquaculture 104,149-156.
    [53]Ji. F.Y., Yu. Q.X., Liu. J.D.,2002. The development of individual-chromosomal DNA pools for rice field eel and their application to gene mapping. Chinese Science Bulletin 47 (6),485-489.
    [54]Jones. B.H., Kim, J.H., Zemel, M.B., Woychik, R.P., Michaud, E.J., Wilkison, W.O., and Moustaid, N., 1996. Upregulation of adipocyte metabolism by agouti protein:Possible paracrine actions in yellow mouse
    obesity. Am. J. Physiol.270, E192-196.
    [55]Jump, D.B., Clarke, S.D., Thelen, A., and Liimatta, M.,1994. Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids.J Lipid Res 35,1076-1084.
    [56]Jung, S.H., Sim. D.S., Park. M.S., Jo. Q.T., Kim, Y.,2003. Effects of formalin on haematological and blood chemistry in olive flounder, Paralichthys olivaceus (Temminck at Schlegel).Aquac. Res.34,1269-1275.
    [57]Kalogeropoulos, N., Alexis, M.N., Henderson. J. R.,1992. Effects of dietary soybean and cod liver oil levels on growth and body composition of gilthead bream (Sparus aurata). Aquaculture 104,293-308.
    [58]Kanazawa, A., Teshima, S., Sakamoto, M.,1982. Requirements of essential fatty acids for the larval ayu. Bull. JPn. Soc. Sci. Fish.48,587-590.
    [59]Kanazawa, A.,1993. Nutritional mechanisms involved in the occurrence of abnormal pigmentation in hatchery-reared flatfish. J. World Aquac. Soc.24,162-166.
    [60]Kanazawa, A.,1997. Effects of docosahexaenoic acid and phospholipids on stress tolerance of fish. Aquaculture 155,129-134.
    [61]Kim, T.S., Freake H.C.,1996. High carbohydrate diet and starvation regulate lipogenic mRNA in rats in a tissue-specific manner. J Sutr 126 (3),611-617.
    [62]Kim, K.D., Lee, S.. M.,2004. Requirement of dietary n-3 highly unsaturated fatty acids for juvenile flounder (Paralichthys olivaceus). Aquaculture 229,315-323.
    [63]Kiorsvik, E., Olsen, Y., Roselund, G., et al.,1991, Effect of various lipid enrichments in rotifers on the development of early stages in turbot. In:Lavens P, Sorgeloos P, Jaspers, E., et al., ed. Larvi'91-Fish and Crustacean Larvi culture Symposium Special Publication No.15. European Aquaculture Society. Gent Belgium 73-74.
    [64]Koven, W.M., Tandler, A., Kissil, G, W.,1990. The effect of dietary (n-3) polyunsaturated fatty acid on growth, survival and swim bladder development in Sparus aurata larvae. Aquaculture 91,131-141.
    [65]Koven, W.M., Tandler, A., Sklan, D., and Kissil, G., Wm.,1993. The association of eicosapentaenoic and docosahexaenoic acids in the phospholipids of different age Sparus aurata larvae with growth. Aquaculture 116,71-82.
    [66]Lavens, P., Leregue, E., Jaunet, H., Brunei, A., Dhert, Ph., Sorgeloos, P.,1999. Effect of dietary essential fatty acids and vitamins on egg quality in turbot broodstocks. Aquacult. Int.7,225-240.
    [67]Lee. S.-M.,2001. Review of the lipid and essential fatty acid requirements of rockfish (Sebastes schlegeli). Aquac. Res.32 (S-1),8-17.
    [68]Lee S M, Lee J H, Kim K D.2003. Effect of dietary essential fatty acids on growth, body composition and blood chemistry of juvenile starry flounder (Platichthys stellatus). Aquaculture 225,269-281.
    [69]Leger, C., Gatesoupo, F.J., Metailler, R., et al.,1979. Effect of dietary fatty acids difering by chain lengths and omega series on the growth and lipid composition of turbot Scophthalmus max imus. Comp Biochem Physiol B 64(4),345-350.
    [70]Lemaire, P., Drai, P., Mathieu, A., Lemarie, S., Carriere, S., Guidicelli, J., Lafaurie, M.,1991. Changes with different diets in plasma enzymes (GOT, GPT. LDH, ALP) and plasma lipids (cholesterol, triglycerides) of seabass (Dicentrarchus labrax). Aquaculture 93,63-75.
    [71]Li, Y.Y., Chen, W.Z., Sun, Z.W., Chen, J.H., Wu. K.G.,2005. Effect of n-3 HUFA content in brookstock diet on spawning performance and fatty acid composition of eggs and larvae in Plectorhynchus cinctus. Aquaculture 245.263-272.
    [72]Liang, X.F., Ogata, H.Y., Oku, H.,2002a. Effect of dietary fatty acids on lipoprotein lipase gene expression in the liver and visceral adipose tissue of fed and starved red sea bream Pagrus major, Comp. Biochem. Physiol.132A,913-919.
    [73]Liang, X.F., Oku, H., Ogata, H.Y.,2002b. The effects of feeding condition and dietary lipid level on lipoprotein lipase gene expression in liver and visceral adipose tissue of red sea bream Pagrus major. Comp. Biochem. Physiol.131A,335-342.
    [74]Lu Z., Gu, Y., Rooney, S.A.,2001. Transcriptional regulation of the lung fatty acid synthase gene by glucocorticoid, thyroid hormone and transforming growth factor-beta 1. Biochem Biophys Acta 1532, 213-222.
    [75]Ma. J.J., Xu. Z.R., Shao, Q.J., Xu, J.Z., Hung, S.O., Hu, W.L., Zhuo, L.Y.,2008. Effect of dietary supplemental L-carnitine on growth performance, body composition and antioxidant status in juvenile black sea bream, Sparus macrocephalus. Aquaculture Nutrition, in press.
    [76]Maier, T., Jenni, S., Ban, N.,2006. Architecture of mammalian fatty acid synthase at 4.5 A resoluation. Science 311,1258-1262.
    [77]Mao, S., Leone. T.C.. Kelly, D.P., and Medeiros, D.M.,2000. Mitochondrial transcription factor A is increased but expression dehydrogenase genes are decreased in hearts of copper-deficient. J Nutr.130. 2143-2150.
    [78]Matthew, J.T., Mark, D.W., and Clarke, S.D.,1981. Coordinate suppression of liver acetyl-CoA carboxylase and fatty acid sythetase by polyunsaturated fat. J Nutr 111,146-153.
    [79]Mersmann, H.J., Phinney, G., Sanguinetti. M.C., Houk, J.M.,1973a. Lipogenesis by in vitro liver and adipose tissue preparations from neonated swine. Am J Physiol 224,1123-1129.
    [80]Mersmann, H.J., Phinney, G., Sanguinetti, M.C., Houk, J.M.,1973b. Lipogenic capacity of liver from perinatal swine (Sus domesticus). Comp. Biochem. Physiol.46 (3),493-497.
    [81]Mildner, A.M., Clarke. S.D.,1991. Porcine fatty acid synthase:Cloning of a complementary DNA, tissue distribution of its mRNA and suppression of expression by somatotropin and dietary protein. J Nutr 121, 900-907.
    [82]Mourente, G., Tocher. D.R.. Sargent, J.R.,1991. Specific accumulation of docosahexaenoic acid (22:6n-3) in brain lipids during development of juvenile turbot Scophthalmus maximus L. Lipids 26,871-877.
    [83]Mourente, G., and Tocher. D.R.,1992.. Effects of weaning onto pelleted diet on docosahexaenoic acid (22:6n-3) levels in brain of developing turbot (Scophthalmus maximus L.). Aquaculture 105,363-377.
    [84]Mourente, G., Rodriguez. A., Tocher, D.R.,1993. Effects of dietary docosahexaenoic acid (DHA:22:6n-3) on lipid and fatty acid compositions and growth in gilthead seabream (Sparus aurata L.) larvae during first feeding. Aquaculture 112,79-98.
    [85]Moustaid, N., Sul. H.S.,1991. Regulation of expression of the fatty acid synthase gene in 3T3-L1 cells by differentiation and triiodothyronine.J Biol Chem,266,18550-18554.
    [86]Moustaid, N.. Jones, B.H., Taylor, J.W.,1996. Insulin increases lipogenic enzyme activity in human adipocytes in primary culture. J. Nutr.126:865-870.
    [87]Navarro, J.C., Batty, R.S., Bell. M.V., and Sargent, J.R.,1993. Effect of two Artemia diets with different contents of polyunsaturated fatty acids on the lipid composition of larvae of Atlantic herring (Clupea harengus). J. Fish. Biol.43.503-515.
    [88]Navarro. J.C., McEvoy, L.A., Bell, M.V., Amat, F., Hontoria, F. and Sargent. J.R.,1995. Effect of dietary lipids on the lipid composition of fish larvae eyes. In:P. Lavens, E., Jaspers and I. Roelants (Editors), Larvi'95-Fish and Shellfish Larviculture Symposium. Spec. Publ. No.24, European Aquaculture Society, Ghent, Belgium, pp.196-199.
    [89]Navas, J.M., Bruce, M., Thrush, M., Famdale, B.M., Bromage. N., Zanuy, S., Carrillo, M., Bell, J.G., Ramos, J.,1997. The impact of seasonal alternation in the lipid composition of broodstock diets on egg quality in the European sea bass. J. Fish Biol.51,760-773.
    [90]Neuringer, M., Connor. W.E., van Petten, C. and Bastad, L.,1984. Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J. Clin. Invest.73,272-276.
    [91]Neuringer, M., Anderson. G.J. and Connor, W.E.,1988. The essentiality of n-3 fatty acids for the development and function of the retina and brain. Annu. Rev. Nutri.8,517-541.
    [92]New. M.B.,1986. Aquaculture diets of postlarval marine fish of the super-family Percoidae, with special reference to sea basses, sea breams, groupers and yellowtail:a review. Kuwait Bull. Mar. Sci.7,75-148.
    [93]O'Hea, E.K.. Leveille, GA.,1969. Lipid biosynthesis and transport in the domestic chick (Gallus domesticus). Comp. Biochem. Physiol.30 (1),173-178.
    [94]Oku. H., Koizumi, N., Okumura, T., Kobayashi, T., Umino, T.,2006. Molecular characterization of lipoprotein lipase, hepatic lipase and pancreatic lipase genes:Effects of fasting and refeeding on their gene expression in red sea bream Pagrus major. Comp. Biochem. Physiol.145B,168-178.
    [95]Om, A.D., Nakaqawa. H.,2001. Effect of dietary EPA and DHA fortification on lipolysis activity and physiological function in juvenile black sea bream Acanthopagrus schlegeli (Bleeker). Aquaculture Research 32,255-262.
    [96]Ostrowski, A.C., Divakaran, S.,1990. Survival and bioconversion of n-3 fatty acids during early development of dolphin (Coryphaena hippurus) larvae fed oil-enriched rotifers. Aquaculture 89,273-285.
    [97]Owen, J.M., Adron, J.W., Sargent, J.R.,1972. Studies on the nutrition of marine flatfish. The effect of the plaice learonectes platessa. Marine Biology 13,160-166.
    [98]Owen. J.M., Adron, J.A., Middleton, C., Cowey. C.B.,1975. Elongation and desaturation of dietary fatty acids in turbot (Scophthalmus maximus) and rainbow trout (Salmo gairdneri). Lipids 10,528-531.
    [99]Parpoura, A.C.R., Alexis. M.N.,2001. Effects of different dietary oils in sea bass (Dicentrarchu labrax) nutrition. Aquac. Int.9,463-476.
    [100]Paulauskis, J.D., Sul, H.S.,1988. Cloning and expression of mouse fatty acid synthase and other specific mRNAs. Developmental and hormonal regulation in 3T3-L1 cells. J Biol Chem 263,7049-7054.
    [101]Paulauskis, J.D., Sul. H.S.,1989. Hormonal regulation of mouse fatty acid synthase gene transcription in liver. J Biol Chem 264,574-577.
    [102]Raclot, T., Groscolas, R., Langin, D., Ferre, P.,1997. Site-specific regulation of gene expression by n-3 polyunsaturated fatty acids in rat white adipose tissues. Journal of Lipid Research 38,1963-1971.
    [103]Reitan. K.L., Rainuzzo, J. R., Olsen, Y.,1994. Influence of lipid composition of live feed on growth, survival and pigmentation of turbot larvae. Aquacult. Int 2,33-48.
    [104]Richard, N., Mourente, G., Kaushik, S., Corraze. G.,2006. Repalcement of a large portion offish oil by vegetable oils does not affect lipogenesis. lipid transport and tissue lipid uptake in European seabass (Dicentrarchus labrax L.). Aquaculture 261,1077-1087.
    [105]Rodriguez. C., Perez, J. A., Lorenzo. A., et al.,1994. n-3 HUFA requirement of larval gilthead seabream Sparus aurata when using high levels of eicosapentaenoic acid. Comp. Biochem. Physiol.107A,693-698.
    [106]Rodriguez, C., Perez, J.A., Diaz, M., Izquierdo, M.S., Fernandez-Palacios, H., Lorenzo, A.,1997. Influence of the EPA/DHA ratio in rotifers on gilthead seabream(Sparus aurata) larval development. Aquaculture 150,77-89.
    [107]Rodriguez, C., Cejas, J.R., Martin. M.V., Badia, P., Samper, M., Lorenzo. A.,1998. Influence of n-3 highly unsaturated fatty acid deficiency on the lipid composition of broodstock gilthead seabream (Sparus aurata) and on egg quality. Fish. Physiol. Biochem.18,177-187.
    [108]Roncari. D.A.K.,1990. Abnormalities of adipose cells in massive obesity. Int J Obesity 14 (S3),187-192.
    [109]Sargent, J., Henderson, R.J., Tocher, D.R.,1989. The lipids. In:Halver, J.E.(Ed.). Fish Nutrition, vol.2. Academic Press, New York, pp.154-218.
    [110]Sargent, J.R., Bell, M.V., and Tocher, D.R.,1993. Docosahexaenoic acid and the development of brain and retina in marine fish. In:C.A. Drevon, I. Baksaas and H.E., Krokan (Editors), Omega-3 Fatty Acids: Metabolism and Biological Effects. Birkhauser. Bassel, Switzerland, pp.139-149.
    [111]Sargent, J.R., Bell, J.G., Henderson, R.J. and Tocher, D.R.,1995. Origins and function of n-3 polyunsaturated fatty acids in marine organisms. In:G. Ceve and F. Palatauf (Editors), Phospholipids: Characterization, Metabolism and Novel Biological Applications. American Oil Chemical Society Press, Champaign, IL., pp.248-259.
    [112]Sargent, J.R., Tocher, D.R., Bell, J.G.,2002. The lipids. In:Halver, J., Hardy, E. (Eds.), Fish Nutrition, (Third edition) Academic, San Diego, pp.181-257.
    [113]Shao, Q.J., Ma, J.J., Xu, Z.R., Hu, W.L., Xu, J.Z. Xie, S.Q.,2008. Dietary phosphorus requirement of juvenile black sea bream, Sparus macrocephalus. Aquaculture 277,92-100.
    [114]Sheridan, M.A.,1988. Lipid dynamics in fish:aspects of absorption, transportation, deposition and mobilization. Comp. Biochem. Physiol.90B,679-690.
    [115]Sitch, V.,1997. Adipose tissue lipolysis and hormone-sensitive lipase expression during very low calorie diet in obese female identical twins. Journal of Clinical Endocrinology and Metabolism 82(3),739-744.
    [116]Smith, T.R., McNamara, J.P.,1990. Regulation of bovine adipose tissue metabolism during lactation-Cellularity and hormone sensitive lipase activity as affected by genetic merit and energy intake. Journal of Dairy Science 73 (3),772-783.
    [117]Smith, S.,1994. The animal fatty acid synthase:One gene, one polypeptide, seven enzymes. FASEB J 8, 1248-1259.
    [118]Smith, D.R., Knabe, D.A., and Smith, S.B.,1996. Depression of lipogenesis in swine adipose tissue by specific dietary fatty acids. J. Anim. Sci.74,975-983.
    [119]Smith, S.,2006. Architectural options for a fatty acid synthase. Science 311,1251-1252.
    [120]Sorbera, L.A., Asturiano, J.F., Carrillo. M., Zanuy, S.,2001. Effects of polyunsaturated fatty acids and prostaglandins on oocyte maturation in a marine teleost, the European sea bass (Dicentrarchus labrax). Biol. Reprod.64,382-389.
    [121]Sztalryd, C., Kraemer, F.B.,1994. Differences in hormone-sensitive lipase expression in white adipose tissue from various anatomic locations of the rat. Metabolism 44 (11),1391-1396.
    [122]Takahashi, K., Akiba, Y.,1996. Influences of dietary protein. sulfur amino acid content and their ratio on activities of malic enzyme. fatty acid synthetase and hormone sensitive lipase in male broilers. Animal Science and Technology 67 (3),305-309.
    [123]Takeuchi, T., Watanabe, T.,1982. Effect of various polyunsaturated fatty acids on growth and fatty acid composition of Rainbow trout,Salmo gairdneri, Onchorychus keta. Bull. Japan. Soc. Sci. Fish.48 (1), 1745-1752.
    [124]Takeuchi, T., Toyota, M., Satoh, S., et al.,1990. Requirement of juvenile red sea bream Pagrus major for eicosapentaenoic and decosahexaenoic acids. Nippon Suisan Gakkaishi 56,1263-1269.
    [125]Takeuchi, T., Shiina, Y., Watanabe, T., Sekiya, S.. Imaizumi, K.,1992. Suitable levels of n-3 highly unsaturated fatty acids in diet of fingerlings of yellowtail. Nippon Suisan Gakkaishi 58,1341-1346.
    [126]Takeuchi, T.,1997.Essential fatty acid requirements of aquatic animals with emphasis on fish larvae and fingerlings. Rev. Fish. Sci.5,1-25.
    [127]Tanaka, K., Ohtani, S.,1986. Effects of diets on lipogenesis and on lipoprotein and hormone-sensitive lipases in adipose and mammary tissues of lactating goats. Japanese Journal of Zoo technical Science 57 (9),747-757.
    [128]Tang, Z., Gaspercova, D., Wu, J., et al.,2000. Copper deficiency induced hepatic fatty acid synthase gene
    transcription in rats by increasing the nuclear content of mature sterol regulatory element binding protein. J. Nutr.130,2915-2921.
    [129]Teruel, T., Valverde, A.M., Benito, M., Lorenzo. M.,1995. Transforming growth factor beta 1 induces differentiation-specific gene expression in fetal rat brown adipocytes. FEBS Lett 364,193-197.
    [130]Tocher. D.R.,and Harvie, D.G.,1988. Fatty acid composition of the major phosphoglycerides from fish neural tissues;(n-3) and (n-6) polyunsaturated fatty acids in rainbow trout (Salmo gairdneri) and cod (Gadus morhua) brains and retinas. Fish Physiol. Biochem.5,229-239.
    [131]Tocher, D.R., Ghioni, C.,1999. Fatty acid metabolism in marine fish:low activity of D5 desaturation in gilthead sea bream (Sparus aurata) cells. Lipids 34,433-440.
    [132]Tocher. D.R.,2003. Metabolism and functions of lipids and fatty acids in teleost fish. Fish. Sci.11, 107-184.
    [133]Volpe, J.J, Marasa J.C.,1975. Hormonal regulation and fatty acid synthase, acetyl-CoA carboxylase and fatty acid synthesis in mammalian adipose tissue and liver. Biochim Biophys Acta 380,454-472.
    [134]Watanabe, T., T. Takeuchi, T. Arakawa, K. Imaizumi, S. Sekiya. and C. Kitajima.1989a. Requirement of juvenile striped jack Longirostris delicatissimus for n-3 highly unsaturated fatty acids. Nippon Suisan Gakkaishi 55:1111-1117.
    [135]Watanabe, T., Izquierdo, M.S., Takeuchi, T., et al.,1989. Comparison between eicosapentaenoic and docosahexaenoic acids in terms of essential fatty acid efficacy in larval red sea bream. Nippon Suisan Gakkaishi 55,1635-1640.
    [136]Watanabe, T.,1993. Impotance of docosahexaenoic acid in marine larval fish. J. World Aqua. Soc.,24, 152-161.
    [137]Watanabe, T., Vassallo-Agius, R.,2003. Broodstock nutrition research on marine finfish in Japan. Aquaculture 227,35-61.
    [138]Webster, C. D., and R. T. Lovell.1990. Response of striped bass larvae fed brine shrimp from different sources containing different fatty acid compositions. Aquaculture 90:49-61.
    [139]Weiss, L., Hoffmann, G.E., and Schreiber, R.,1989. Fatty-acid biosynthesis in man. a pathway of minor importance:purification, optimal assay conditions, and organ distribution of fatty acid synthase. Biol. Chem. Hoppe-Seyler 367,905-912.
    [140]William, L.B., and Clarke. S.D.,1990. Suppression of rat hepatic fatty acid synthase and S14 gene transcription by dietary polyunsaturated fat. J. Nutr.120,1727-1729.
    [141]Wilson, J., Kim, S., Allen, K.G.D., Baillie, R., Clarke. S.D.,1997. Hepatic fatty acids synthase gene transcription is induced by a dietary copper deficiency. Amer. J. Physiol.272, E1124-1129.
    [142]Winzell, M.S., Holm, C., and Ahren. B.,2003. Downregulation of islet hormone-sensitive lipase during long-term high-fat feeding. Biochemical and Biophysical Research Communications 304,273-278.
    [143]Yone. Y.. M. Furuichi, and S. Sakamoto.1971. Studies on nutrition or red sea bream.3. Nutritive value and optimum content of lipids in diet. Rep. Fish. Res. Lab. Kyushu Univ.1:49-60.
    [144]Yoshiharu. S., Tomohiro, T., and Masashige, S.,1990. Less body fat accumulation in rats fed a sunflower oil diet than in rats fed a beef tallow diet. J. Nutr.120,1291-1296.
    [145]曹俊明,田丽霞,陈竹等.饲料中不同脂肪酸对草鱼生长和组织营养成分组成的影响[J].华南理工大学学报(自然科学版),1996,24(s):50-54.,
    [146]陈文,陈代文,黄艳群,脂蛋白脂酶(LPL)生理功能及特异表达[J].中国畜牧兽医,2004,31(4):29-30.
    [147]段铭,高宏伟,梁鸿雁.毗啶羧酸铬对肉仔鸡血清生化指标及肝脏中相关酶基因表达的影响[J].畜牧兽医学报,2003,34(4):336-339.
    [148]冯建,覃志彪.四种不同脂肪源对太平洋鲑生长和体组成的影响[J].水生生物学报,2006,30(3):256-261.
    [149]戢福云,刘江东,易梅生,等.应用PRINS技术定位黄鳝HOX基因的研究[J].遗传学报,2002,29(7):612-615.
    [150]胡王龙,2005.饲料磷对黑鲷幼鱼生长和组织生化指标的影响.浙江大学硕士学位论文.
    [151]戢福云,余其兴,郭一清,等.黄鳝单条染色体的显微分离及特异性检测[J].动物学报,2002,48(1):114-120.
    [152]戢福云,余其兴,刘江东.显微分离黄鳝单条染色体用于基因定位的研究[J].科学通报,2001,46(22):1894-1898.
    [153]戢福云,余其兴,潘佩文.黄鳝激素敏感脂肪酶基因HSL染色体原位杂交定位[J].遗传,2003,25(2):163-167.
    [154]蓝干球.猪体脂合成代谢的研究[J].南京农业大学学报.1990,13(1):92-97.
    [155]李爱杰等,水产动物营养与饲料学[M].北京:农业出版社,1996,101-105.
    [156]刘洪杰等.牙鲆幼鱼对n-3高度不饱和脂肪酸的吸收及生长关系的初步研究[J].海洋与湖沼.1999,30(3):238-244.
    [157]刘镜恪,陈晓林,周利,雷霁霖.真鲷仔稚鱼微粒饲料中DHA与EPA最佳比例的研究[J].海洋科学,2004,28 (2):18-20.
    [158]刘镜恪,雷霁霖,人工调节卤虫n-3 HUFA对黑鲷仔稚鱼生长、存活的影响[J].科学通报,1997,42(12):1330-1333.
    [159]刘镜恪,陈晓琳.海水仔稚鱼的必需脂肪酸-n-3系列高度不饱和脂肪酸研究[J].青岛海洋大学学报,2002,32(5):897-902.
    [160]刘镜恪,张百刚,陈剑慧,等.海鱼微粒饲料在牙鲆生产性育苗中的应用[J].饲料工业,2001,22(11):26-27.
    [161]王蕾蕾,2007.黑鲷幼鱼适宜蛋白需要量的研究.浙江大学硕士学位论文.
    [162]王秀英,2004.饵料维生素C对黑鲷仔鱼生长和体组织生化指标的影响.浙江大学硕士学位论文.
    [163]占秀安,许梓荣.L-肉碱对肉鸡腹脂沉积的影响及作用机理探讨[J].中国粮油学报,2004,19(5):75-78.
    [164]周长海,王淑杰,田中桂一,大谷滋.肉鸭和肉鸡脂肪酸及脂类合成能力的对比研究[J].营养学报,2006,28(1):87-88.
    [165]朱大世,2005.饥饿和不同脂肪源对草鱼体脂含量及脂肪酸合成酶的影响.华中农业大学硕士论文.
    [166]卓立应,2006.黑鲷幼鱼饲料中适宜蛋白能量比的研究.浙江大学硕士学位论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700