用户名: 密码: 验证码:
洞庭盆地第四纪地质环境演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第四纪洞庭盆地西、南、东三面分别为武陵隆起、雪峰隆起和幕阜山隆起;北为江汉盆地,二者在西段相接,东段以华容(次级)隆起相隔。洞庭盆地内部由若干次级构造单元组成,西北部为澧县凹陷;南面大部为安乡凹陷和沅江凹陷,其间为赤山次级隆起;西部发育临澧凹陷;临澧凹陷和安乡凹陷之间为太阳山次级隆起。本文在详细的地表地质调查,大量前人钻孔和少量新施工钻孔资料的利用,以及新施工安乡凹陷两护村ZKC1孔第四系的ESR和OSL年龄、孢粉、粒度、磁化率、主量与微量元素地球化学、重矿物、砾石特征等分析测试基础上,对洞庭盆地第四纪地质环境进行了较系统、深入研究,取得以下主要进展和认识:
     1.以大量钻孔资料和详细的地表地质调查为基础,分别对澧县凹陷、临澧凹陷、安乡凹陷、赤山隆起、沅江凹陷(东部)、华容隆起等次级构造单元的第四纪构造活动、沉积特征及环境演化等进行详细解剖,揭示出洞庭盆地第四纪构造活动与沉积作用的横向差异。
     2.早更新世—中更新世中期洞庭盆地处于断陷阶段。盆地及周缘地区构造活动主要表现在以下几方面:①根据大量钻孔资料所编制的第四纪沉积等厚图及第四纪地质剖面图,清楚显示第四纪洞庭盆地及其次级凹陷受NNE、NW、EW和SN向等4组正断裂控制。②各次级凹陷强烈沉降并接受沉积,沉降中心位于凹陷内部或中央而远离边界断裂,如澧县凹陷、安乡凹陷和沅江凹陷等;断裂下盘局部可具明显沉降。③随着盆地逐渐扩张,断陷活动向盆地东、西边缘(沅江凹陷东缘、安乡凹陷西缘、澧县凹陷西缘等)迁移。④盆地断陷活动具幕式特征,总体可分为早更新世早期、早更新世晚期和中更新世早—中期等3个裂陷幕。⑤盆地北面的华容隆起具明显构造沉降,盆地周缘其它隆起及盆地内部的赤山隆起具脉动式抬升。⑥赤山隆起构造较稳定期和构造抬升期分别对应于安乡凹陷缓慢沉降期和快速沉降期。
     中更新世晚期以来洞庭盆地处于坳陷阶段。其中中更新世晚期洞庭盆地整体抬升并遭受剥蚀;在盆地东缘和西缘产生倾向盆地的构造掀斜,局部第四系变形形成褶皱。晚更新世—全新世洞庭盆地主体产生坳陷沉降并接受沉积,盆地周缘部分地区存在小幅抬升。
     3.从构造活动特征出发,提出洞庭盆地及周缘地区第四纪构造活动新的动力机制模式。
     第四纪早期(早更新世—中更新世中期)洞庭盆地断陷活动的动力机制:洞庭盆地区首先深部地幔上隆对地壳加热,使上部中地壳韧塑性物质(低速层)膨胀而向周边侧向迁移,尔后在冷却收缩条件下物质迁出部位产生虚脱空间,上层地壳因此“塌陷”而产生整体性下拗沉降,下沉块体的侧翼发育断裂而形成控盆控凹正断裂。与之相耦合,盆地或凹陷周缘隆起带因中地壳物质补充而抬升。不同级次和不同规模范围的深部物质迁移运动,造成了第四纪洞庭盆地与其内部次级构造单元之间的叠加关系。上述机制可以很好地解释洞庭盆地早期断陷具有的以下现象:一是沉降幅度最大处并非紧邻断裂;二是边界伸展断裂下盘局部也可存在较大幅度的沉降;三是控凹正断裂存在EW向、NNE向、NW向等多组方向,而不是一般断陷盆地所具有的单走向正断裂。
     中更新世晚期盆地构造抬升、掀斜和褶皱变形与深部迁出物质的回返以及板块尺度的物质运动和挤压作用有关。
     晚更新世和全新世盆地坳陷沉降与区域挤压应力下的坳陷或拱坳变形有关,可能同时伴有NE向的深部物质流动与拉张。
     4.两护村ZKC1孔第四系自下而上可划分出16个孢粉组合带。ESR年龄和孢粉组合及其反映的气候特征,指示华田组下段可能形成于上新世末。根据孢粉组合特征,结合构造-沉积演化和区域气候背景,重塑洞庭盆地上新世末以来的气候演化过程:上新世末期由孢粉带Ⅰ和Ⅱ指示具暖干气候。早更新世经历了凉干(孢粉带Ⅲ、Ⅳ)→暖湿间凉干(孢粉带Ⅴ-Ⅶ)→冷干间温湿(孢粉带Ⅷ-Ⅹ)→暖较湿(孢粉带Ⅺ,Ⅻ)的气候演变过程。中更新世早期无孢粉样品(洞庭湖组下部砾石层),其沉积环境暗示冷干气候条件;中期由孢粉带ⅩⅢ反映出暖稍湿的气候特征;晚期因构造抬升缺失沉积,同期湿热化事件指示暖湿气候。晚更新世早期缺乏沉积,据区域对比应为寒冷气候;中期由孢粉带ⅩⅣ指示温较湿的气候特征;晚期缺失沉积,系寒冷气候下区域海平面下降所致。全新世经历了暖稍湿(孢粉带ⅩⅤ)→暖稍干(孢粉带ⅩⅥ)的演变。上述气候演变过程与ZKC1孔化学蚀变指数曲线反映的气候演变过程以及中国东部第四纪气候演化基本吻合。以孔深140m为界,上部孢粉数量显著高于下部,种属也更为丰富。分析提出其成因可能与早更新世早期洞庭盆地内发育多个孤立的小盆地或沉积区,早更新世晚期开始各沉积区扩展并连成一体的构造古地理差异有关。
     5.对ZKC1孔第四纪沉积物磁化率及有关地球化学特征的气候意义进行了探讨。根据化学蚀变指数(CIA)理论上与温度和湿度呈正相关,ZKC1孔第四纪沉积物的CIA变化曲线大致反映自下而上地层对应气候信息为:早更新世华田组下段对应气候温湿,华田组上段下部对应气候冷干,华田组上段上部对应气候暖湿,泪罗组下部对应气候冷干,泪罗组上部对应气候暖湿;中更新世洞庭湖组中部对应气候暖湿(下部砂砾层无样品),上部对应气候冷干—温湿;晚更新世坡头组对应气候温湿;全新世湖冲积对应气候变化较复杂,总体温湿—暖湿。此与上述孢粉组合指示的古气候信息大体一致。
     变化曲线的协变性及相关性分析表明ZKC1孔磁化率与CIA呈负相关,此与气候越干燥则陆相盆地沉积物磁化率值越高的理论相符,同时表明磁化率可作为洞庭盆地第四纪气候代用指标。Ga、Nb、Sr、Th、Rb、Li等微量元素含量与CIA、Al2O3含量暨泥质含量呈正相关,反映出粘土对微量元素的吸附作用。
     6.对ZKC1孔第四系进行了系统的重矿物分析,进而根据特征重矿物来源和含量变化,结合钻孔岩性和岩相变化以及区域地质和地理背景,探讨洞庭盆地南部早-中更新世沉积环境暨河湖变迁以及构造沉降过程。研究表明,洞庭盆地存在幕式断陷活动,早更新世早期、早更新世末期和中更新世中-后期等3个时期强烈断陷沉降,相对湖平面上升,来源于盆地南缘中段的资江河水部分向西注入安乡凹陷,导致ZKC1孔华田组下段下部、汨罗组顶部、洞庭湖组上段等相应层位中的锆石、金红石、锐钛矿和菱铁矿等(主要来源于资江流域)含量显著增高。其它时期断陷作用较弱,河湖水位低,沅水和资江分别沿其主水道于赤山隆起西侧和东侧向北汇入长江,导致ZKC1孔相应沉积层位中锆石、金红石、锐钛矿和菱铁矿的含量明显偏低。重矿物ZTR指数和Gzi指数曲线的起伏未象孢粉和CIA曲线一样反映出干湿变化,暗示上述3次相对湖平面上升的主要原因不是降水增加,而是构造沉降增强。
     7.对ZKC1孔中更新世洞庭湖组砾石层进行的统计表明,砾石的粒度变化反映出2个较大尺度的由大→小的旋回,早旋回由洞庭湖组下段砂砾层组成,晚旋回由洞庭湖组中段上部的砂砾层组成,反映出中更新世早期—中期安乡凹陷的2次由慢→快的幕式沉降过程。在上述2个大的粒度旋回之上,叠加有多个更小尺度的砾石粗、细变化,主要与气候干湿的频繁波动有关。洞庭湖组中段顶部砾石的磨圆度明显偏低,反映其沉积时期盆地沉降和周缘隆起区抬升活动的增强。
     8.对曾被认为属冰川成因的津市黄牯山泥砾混杂堆积进行了详细的野外考察。泥砾混杂堆积中下细上粗的层序特征,砾石扁平面的优选定向,沿层理经差异风化和磨蚀所形成的假“冰川擦痕”,由壳状裂口经磨蚀、圆化所形成凹面石,沉积体短距离内的相变,以及周边仅有低矮丘陵的地貌背景等,表明津市黄牯山泥砾混杂堆积为泥石流产物,而不是冰川成因。这一认识为湖南及中国东部第四纪冰川问题研究补充了新的资料。
Quaternary Dongting basin is adjacent to west Wuling uplift, south Xiefeng uplift and east Mofushan uplift, and is adjacent to north Jianghan basin with Hurong uplift interposing at east segment. The basin possesses uplift-depressional tectonic framwork with being composed of Lixian sag, Linlin sag, Taiyangshan uplift, Anxiang sag, Chishan uplift and Yuanjiang sag. The Lixian sag is in the northwest of the basin; the Anxiang sag and the Yuanjiang sag composed of the main body of the basin with Chisha uplift interposing; the Linli sag is in the west of the basin and is adjacent to Anxiang sag with Taiyangshan uplift interposing. On the bases of detailed geologic mapping, a great deal former bore date and a few new bore data, and systemic analysises of ESR and OSL ages, sporopollen, grain size, magnetic susceptibility, main and trace elements, heavy minerals, and gravel statistics of the Quaternary deposits from the core of ZKC1 borehole in Lianghucun in Anxiang sag, the writer studied the Quaternary geological and environmental characteristics of the Dongting basin. The main progress and ideas are put forward as follows.
     Based on great deal borehole data and detailed geologic mapping, the writer studied amply the Quaternary tectonic and sedimentary characteristics and environmental evolution of every secondary tectonic unit of the Dongting basin such as Lixian sag, Linli sag, Anxiang sag, Chishan uplift, Yuanjiang sag(east edge) and Huarong uplift, and revealed the lateral variation of Quaternary tectonic activities and sedimentations of Dongting basin.
     Early Pleistocene-late Middle Pleistocene is a faulting-subsiding period for Dongting basin, when there were tectonic movements as follows:①Maps of contour line of Quaternary deposits thickness and Quaternary geological sections based on a great lot borehole datas show that the basin and its secondary sags were controlled by four groups of normal faults such as NNE-, NW-, EW- and SN-trending faults.②Every secondary sag such as Lixian sag, Anxiang sag and Yuanjiang sag subsided violently and received depostis with interior subsiding center far from boundary faults, while part of footwall of faults subsided evidently.③The faulting subsidence moved toward east and west margin of Dongting basin such as east edge of the Yuanjiang sag, west periphery of Anxiang sag and west periphery of Lixian sag for gradual expanding of the basin.④The faulting subsidence of the basin possessed episodic characteristics and can be divided into three faulting-subsiding episodes such as early Early Pleistocene, late Early Pleistocene and early-middle Middle Pleistocene.⑤Huarong uplift subsided observably, while other uplifts around Dongting basin experienced pulsative rises.⑥Steady and rising period of Chishan uplift corresponded with slow and rapid subsiding period of Anxiang sag, respectively.
     Dongting basin entered into a depressive phase since late Middle Pleistocene. The basin rose and were denuded in late Middle Pleistocene, while there occurred tectonic tilt on the east and west margine of the basin, and folds in Quaternary deposits formed in part areas. Main body of the basin subsided for depression and received deposits during Late Pleistoncene-Holocene, while there existed clear rise in part areas around the basin.
     According to the tectonic characteristics, the writer bring forward new modes about the dynamic mechanisms of Quaternary tectonic activities of Dongting basin.
     The dynamic mechanism of the faulted-subsidence of Dongting basin during Early Pleistocene-middle Middle Pleistocene was as follow:as the deep uplifting mantle heated the crust in Dongting basin, the ductile matter of the middle curst expanded and moved toward the periphery and then shrank by cooling, which brought about collapse and subsidence of the upper crust, and hence normal faults were formed on the margin of the subsided block. Responding to the matter movement, the uplifts around the basin or sags rose for supplement of middle curst matter. Deep matter movements of different grades and different scales caused the superposition of Dongting basin and its secondary tectonic units. this mechanism can explain satisfactorily following appearances in the faulted-subsidence of Dongting basin in early stage:Place with greatest subsiding extent isn't adjacent to fault; part of footwall of boundary normal faults subsided evidently; there existed four groups of normal faults such as NNE-, NW-, EW- and SN-trending faults, which is different with single-direction normal fault of general down-faulted basin.
     The rise, tilt and fold deformations of Dongting basin in late Middle Pleistocene were possibly related with return of the earlier transported matter, the movement of the plate-scale material and compression.
     The depressive subsidence of Dongting basin during Late Pleistocene-Holocene was probably related with depression or dome-col deformation under regional compression, and with NE-directed deep matter movement and tectonic extension.
     Detailed sporopollen analysis on the Quaternary deposits from ZKC1 borehole was conducted and 16 sporopollen-zones were identified. ESR ages, sporopollen assemblages and corresponding climatic feature indicate that the lower part of Huatian Formation was formed at the end of Pliocene. According to the features of sporopollen assemblages and combined with tectonic-sedimentary evolution and regional climatic settings, the climatic evolution of Dongting basin since the end of Pliocene was revealed as follows:Sporopollen-zoneⅠandⅡindicate that the climate at the end of Pliocene was tropical and dry. From early to late, The climatic variations during Early Pleistocene are cool and dry (sporopollen-zoneⅢandⅣ), tropical and humid interposed with cool and dry (sporopollen-zoneⅤ-Ⅶ), cold and dry interposed with warm and humid (sporopollen-zoneⅧ-Ⅹ), tropic and weakly humid (sporopollen-zoneⅪandⅫ). During Early Middle Pleistocene with no sporopollen sample the climate was cold and dry, which is suggested by sedimentary environment of gravels from lower part of Dongtinghu Formation; during middle Middle Pleistocene the climate was tropical and weakly humid which is indicated by sporopollen-zoneⅩⅢ; during late Middle Pleistocene with no deposits formed for rise, the climate was tropical and humid which is indicated by tropical-humid event. According to regional climatic feature, the climate was dry in early Late Pleistocene with no deposits formed; during middle Late Pleistocene the climate was warm and weak humid which is indicated by sporopollen-zoneⅩⅣ; there were no deposits formed for cold climate and sea-level dropped. From early to late, The climatic variations during Holocene are tropical and weak humid (sporopollen-zoneⅩⅤ), and tropical and weak dry (sporopollen-zoneⅩⅥ). This climatic evolution process coincide basically with climatic change indicated by CIA (chemical index of alteration), and with Quaternary climatic variations of eastern China. There exist a sporopollen boundary at depth of 140m over which there were more pollen and spore then under, which is related with tectono-paleogeographic difference that there occurred several isolated small sags or sedimentary areas in Dongting basin during early Earlly Pleistocene, while all sedimentary areas spreaded and connected with each other to a integer since lata Early Pleistocene.
     The climatic implications of magnetic susceptibility and Geochemical characteristics of the Quaternary deposits from ZKC1 borehole was approahed.
     According to the idea that chemical alteration index (CIA) has a positive correlation with temperature and humidity, the climatic informations of CIA curve of the Quaternary deposits from ZKC1 borehole was defined as follows:For Early Pleistocene, the lower Huatian Formation correspond to warm and humid climate, the lower part of upper Huatian Formation correspond to cold and dry and the upper part to tropical and humid climate; the lower part of Miluo Formation correspond to cold and dry and the upper part to tropical and humid climate. The middle part of Middle Pleistocene Dongtinghu Formation correspond to tropical and humid, and the upper to cold and dry-warm and humid climate. The Late pleistocene Potou Formation correspond to warm and humid climate. The Holocene lacustrine-alluvial deposits correspond to warm and humid-tropical humid climate as a whole. Above informations is roughly in accordance with that indicated by sporopollen assemblages.
     Covariability of curves and relativity analysis show that the magnetic susceptibility of the deposits from ZKC1 borehole has a negative correlation with CIA, which coincide with the idea that drier the climate is, greater the magnetic susceptibility of deposits in continental basin is, and indicate that magnetic susceptibility can be taken for substitutive index of the Quaternary climate in Dongting basin. Contents of some trace elements such as Ga, Nb, Sr, Th, Rb and Li have a positive correlation with CIA and content of Al2O3, which hints adsorption property of clay for trace elements.
     The heavy minerals from the core of the ZKC1 borehole in Lianghucun were analysed by the numbers. Based on the source and contents variations of diagnostic heavy minerals and combined with lithological and petrographic variations, and regional geologic and geographic backgrounds, the writer probed into the evolutions of the sedimentary environment and tectonic subsidence of the southern Dongting basin during Early and Middle Pleistocene. The studies show that there existed episodic faulted subsidences in the Dongting basin, and there existed three violent subsidences apart in early Early Pleistocene, last stage of Early Pleistocene and middle-late Middle Pleistocene; when the relative lake-level rose, and thus partial water of the Zijiang River got west toward into Anxiang sag, which caused notable raises of the contents of heavy minerals came mainly, from the Zijiang valley in the low part of lower Huatian Formation, the top of Miluo Formation and the upper Dongtinghu Formation, such as zircon, rutile, anatase and siderite. The subsidences were weak and the river-lake levels were low in other epochs, which led the water of the Yuanshui River to the west of Chishan uplift and the water of th e Zijiang River to the east of Chishan uplift flow into the Yangtze River along their primary flume respectively, and thus the contents of zircon, rutile, anatase and siderite in corresponding sediments in ZKC1 borehole were lower. Curves of heavy mineral ZTR and Gzi indexes don't show dry and wet changes as Sporopollen assemblages and Curves of CIA, which suggest that the main cause of the three raises of relative lake-level is subsidence strengthening but not precipitation increase.
     The statistics and analysis of gravel particle size and shape features of Middle Pleistocene Dongtinghu Formation from Lianghucun ZKC1 borehole were taken. The variations of gravel particle size show two big-to-small cycles whose early cycle corresponded with the lower member of Dongtinghu Formation and late cycle corresponded with upper part of the middle member of Dongtinghu Formation. The two particle size cycle indicate two slow-to-rapid episodic subsidence of Anxiang sag during early-middle Middle Pleistocene. Superposed on the two large cycle there existed a lot of small scale variations of gravel particle size which were mainly related with aridity-humidity changes. The roundness of gravels from top of middle member of Dongtinghu Formation is evidently low, which indicated strengthen of tectonic movement such as subsidence of the basin and rise of around uplifts.
     There is a sequence of muddy gravel deposits at Huanggushan, Jinshi City. This sequence was once considered as moraine deposits. The writer of this paper re-surveyed the lithology, compositions and lateral change of the deposits, and studied the fabric characteristics and surface textures of the gravels. On the outcrop of the muddy gravel deposits, the gravels from the lower section are smaller, which suggest that the lower section is probably the main body of debris flow deposits, while the upper section represents surface float-gravel deposit. The gravels show certain degrees of orientation. There isn't typical moraine gravel with scrape surface in the deposits. The so-called "glacial striae" on some gravel were formed under differential weathering and abrasion along stratification. The concave-surface gravels show abrasion and fracture appearance. Some gravels have cracks but are not broken, which is caused probably by strike, rotation and staggering in debris flow. From north to south, the muddy gravel deposits (viscous debris flow deposits) change into non-viscous debris flow deposits within short distance with grain size become less and roundness higher. There are small low-rise hills to the west of the deposits but there aren't high-elevation mountains around. All evidences indicate that the muddy gravel deposits in Huanggushan, Jinshi Hunan are of debris flow deposits and not moraines. This cognition provides new information for the studies of Quaternary glaciations in Hunan and east China.
引文
[1]向万胜,李卫红.洞庭湖区洪涝灾害的时空分布与防灾减灾对策[J].生态学杂志,2001,20(2):48-51.
    [2]毛德华,夏军.洞庭湖湿地生态环境问题及形成机制分析[J].冰川冻土,2002,24(4):444-451.
    [3]吴秀芹,龙花楼,高吉喜,等.江汉平原湿地功能下降与洪涝灾害关系分析[J].生态环境,2005,14(6):884-889.
    [4]易朝路,蔡述明,黄进良,等.江汉平原(四湖地区)和洞庭湖区湿地的分类与分布特征[J].应用基础与工程科学学报,1998,6(1):19-25.
    [5]林承坤,许定庆,吴小根.洞庭湖的调节作用对荆江径流的影响[J].湖泊科学,2000,12(2):105-110.
    [6]王学雷.江汉平原湿地生态脆弱性评估与生态恢复[J].华中师范大学学报(自然科学版),2001,35(2):237-240.
    [7]邓宏兵,蔡述明,杜耘,等.近50年来江汉湖群水域演化定量研究[J].长江流域资源与环境,2006,15(2):244-248.
    [8]龚胜生.江汉-洞庭湖平原湿地的历史变迁与可持续利用[J].长江流域资源与环境,2002,11(6):569-574.
    [9]余德清,皮建高.洞庭湖区洲土变化特征与地壳沉降遥感研究[J].湖南地质,2002,21(1):46-50,76.
    [10]童潜明.洞庭湖近现代的演化与湿地生态系统演替[J].国土资源导刊,2004,(1):38-44.
    [11]黄群,姜加虎.近50年来洞庭湖区的内湖变化[J].湖泊科学,2005,17(3):202-206.
    [12]袁正科,李星照,田大伦,等.洞庭湖湿地景观破碎与生物多样性保护[J].中南林学院学报,2006,26(1):109-116.
    [13]施修端,夏薇,杨彬.洞庭湖冲淤变化分析(1956—1995年)[J].湖泊科学,1999,11(3):199-205.
    [14]李义天,邓金运,孙昭华,等.泥沙淤积与洞庭湖调蓄量变化[J].水利学报,2000,(12):48-52.
    [15]高俊峰,张琛,姜加虎,等.洞庭湖的冲淤变化和空间分布[J].地理学报,2001,56(3):269-277.
    [16]姜加虎,黄群.洞庭湖近几十年来湖盆变化及冲淤特征[J].湖泊科学,2004,16(6):209-214.
    [17]陈新国,潘晟,皮建高.洞庭湖区构造沉降特征研究[J].西部探矿工程,2004,(9):108-111.
    [18]皮建高,潘晟.洞庭湖区构造沉降特征及监测方案[J].中国地质灾害与防治学报,2005,16(1):9-12.
    [19]来红州,莫多闻.构造沉降和泥沙淤积对洞庭湖区防洪的影响[J].地理学报,2004,59(4):574-580.
    [20]来红州,莫多闻,苏成.洞庭湖演变趋势探讨[J].地理研究,2004,23(1):78-86.
    [21]梁杏,张人权,皮建高,等.构造沉降对近代洞庭湖区演变的贡献[J].海洋与湖沼,2001,32(6):690-696.
    [22]梁杏,张人权,皮建高,等.洞庭盆地第四纪构造活动特征[J].地质科技情报,2001,20(2):11-14.
    [23]苏成,莫多闻,王辉.洞庭湖的形成、演变与洪涝灾害[J].水土保持研究,2001,8(2):52-55,87.
    [24]林承坤.洞庭湖的演变与治理(上)Ⅰ洞庭湖的沉积[J].地理学与国土研究,1985,1(4):28-35.
    [25]景存义.洞庭湖的形成与演变[J].南京师院学报自然科学版,1982,(2):52-60.
    [26]蔡述明,官子和,孔昭宸,等.从岩相特征和孢粉组合探讨洞庭盆地第四纪自然环境的变迁[J].海洋与湖 沼,1984,15(6):527-539.
    [27]杨达源.洞庭湖的演变及其整治[J].地理研究,1986,5(3):39-46.
    [28]皮建高,张国梁,梁杏,等.洞庭盆地第四纪沉积环境演变的初步分析[J].地质科学情报,2001,20(2):6-10.
    [29]张人权,梁杏,张国梁,等.洞庭湖区第四纪气候变化的初步探讨[J].地质科技情报,2001,20(2):1-5.
    [30]杜耘,殷鸿福.洞庭湖历史时期环境研究[J].地球科学——中国地质大学学报,2003,28(2):214-218.
    [31]刘锁旺,甘家思,李蓉川,等.江汉洞庭盆地的非对称扩张与潜在地震危险性[J].地壳形变与地震,1994,14(2):56-66.
    [32]薛宏交,耿爱玲,龚平.江汉洞庭盆地水系展布特征与新构造运动[J].地壳形变与地震,1996,16(4):58-65.
    [33]王道经,黄怀勇.洞庭湖现代构造与湖盆演变[J].湖南地质,2000,19(1):30-36.
    [34]张晓阳,杜耘,蔡述明.洞庭湖演变趋势分析[J].长江流域资源与环境,1995,4(1):64-69.
    [35]李春初.构造沉降是控制近代洞庭湖演变的关键因素吗?——评《洞庭湖地质环境系统分析》[J].海洋与湖沼,2000,31(4):460-464.
    [36]施之新.江汉平原47号钻孔中化石硅藻及其在古环境分析上的意义[J].植物学报,1997,39(1):68-76.
    [37]朱育新,薛滨,羊向东,等.江汉平原沔城M1孔的沉积特征与古环境重建[J].地质力学学报,1997,3(4):77-84.
    [38]朱育新,王苏民,羊向东,等.中晚全新世江汉平原沔城地区古人类活动的湖泊沉积记录[J].湖泊科学,1999,11(1):33-39.
    [39]谢远云,李长安,王秋良,等.江汉平原6000年以来的古降水变化:江陵剖面沉积物粒度记录[J].海洋地质与第四纪地质,2005,25(3):119-124.
    [40]谢远云,李长安,王秋良,等.江汉平原9.0 ka B.P.以来的气候演化:来自江陵剖面沉积物记录[J].地理科学,2006,26(2):199-204.
    [41]谢远云,李长安,王秋良,等.江汉平原江陵地区近9ka B.P.以来的气候演化:有机碳同位素记录[J].中国地质,2006,33(1):98-103.
    [42]谢远云,王秋良,李长安,等.湖泊沉积物粒度的气候指示意义—以江汉平原江陵剖面为例[J].地质科技情报,2004,23(4):41-43.
    [43]王秋良,袁胜元,李长安.江汉平原江陵剖面有机碳含量、碳同位素和磁化率的古气候意义[J].地质科技情报,2006,25(4):59-62.
    [44]施雅风,孔昭宸,王苏民,等.中国全新世大暖期的气候波动与重要事件[J].中国科学(B辑),1992,(12):1300-1308.
    [45]Thompson L G, YaoTangdong, DavisM E, et a.l Tropical climate instability:the last glacical cycle from a Qinghai-Tibetan ice core [J]. Science,1997,276(20):1822-1825.
    [46]王华,洪业汤,朱咏煊,等.红原泥炭腐殖化度记录的全新世气候变化[J].地质地球化学,2003,31(2):51-56.
    [47]Bond G, Showers W, Cheseby M, et a.l A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science,1997,278:1257-1266.
    [48]Grootes P M, Stuiver M, White J W C, et al. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores [J]. Nature,1993,366:552-554.
    [49]Stuiver M, Grootes P M, Braziunas T F. The GISP218O climat record of the past 16500 years and the role of the sun, ocean and volcanoes [J]. Quaternary Research,1995,44:341-345.
    [50]洪业汤,姜洪波,陶发祥,等.近5 ka温度的金川泥炭δ18O记录[J].中国科学(D辑),1997,27(6):525-530.
    [51]马振兴,黄俊华,魏源,等.鄱阳湖沉积物近8 ka来有机质碳同位素记录及其古气候变化特征[J].地球化学,2004,33(3):279-285.
    [52]张振克,王苏民,吴瑞金.全新世中期洱海湖泊沉积记录的环境演化与西南季风变迁[J].科学通报,1998,43(19):2127-2128.
    [53]张玉芬,李长安,陈国金,等.江汉平原湖区周老镇钻孔磁化率和有机碳稳定同位素特征及其古气候意义[J].地球科学—中国地质大学学报,2005,30(1):114-120.
    [54]马永法,李长安,王秋良,等.江汉平原周老镇钻孔砾石统计及其与长江三峡贯通的关系[J].地质科技情报,2007,26(2):40-44.
    [55]康春国,李长安,王节涛,等.江汉平原沉积物重矿物特征及其对三峡贯通的指示[J].地球科学,2009,34(3):419-427.
    [56]张玉芬,李长安,王秋良,等.江汉平原沉积物磁学特征及对长江三峡贯通的指示[J].科学通报,2008,53(5):577-582.
    [57]张修桂.云梦泽的演变与下荆江河曲的形成[J].复旦学报(社会科学版),1980,(2):40-48.
    [58]尹玲玲.从明代河泊所的置废看湖泊分布及演变——以江汉平原为例[J].湖泊科学,2000,12(1):38-46.
    [59]杨达源,韩辉友,吴新哲.气候变化对荆江变迁的影响[A].见:杨怀仁,唐日长.长江中游荆江变迁研究[M].北京:中国水利水电出版社,1999.159-177.
    [60]张晓阳,蔡明述,孙顺才.全新世以来洞庭湖的演变[J].湖泊科学,1994,6(1):13-21.
    [61]李长安,张玉芬,皮建高,等.洞庭湖古湖滨砾石层的发现及意义[J].第四纪研究,2006,26(3):491-492.
    [62]甘家思等.江汉洞庭盆地的构造演化与新构造运动特征.地壳形变与地震,第一集,地震出版社,1989.
    [63]任镇寰,李安然.初论拱坳构造及其与地震的关系——以鄂西江汉地区为例[J].西北地震学报,1984,6(3):68-76.
    [64]徐杰,邓起东,张玉岫,等.江汉-洞庭盆地构造特征和地震活动的初步分析[J].地震地质,1991,13(4):332-342.
    [65]张德厚.江汉盆地新构造与第四纪环境变迁[J].地壳形变与地震,1994,14(1):74-80.
    [66]姚运生,罗登贵,刘锁旺,等.江汉洞庭盆地及邻区晚中生-新生代以来的构造变形[J].大地构造与成矿学,2000,24(2):140-145.
    [67]高士钧,储昭坦.江汉盆地钻孔测井资料确定地应力最大水平主压应力方向[J].地壳形变与地震,1997,17(4):57-61.
    [68]李蓉川,吴兴国.江汉—洞庭盆地地震活动性研究[J].地震研究,1992,15(3):255-262.
    [69]万天丰.中国第四纪的构造事件与应力场[J].第四纪研究,1994,14(1):48-55.
    [70]陈小斌.中国陆地现今水平形变状况及其驱动机制[J].中国科学(D辑:地球科学),2007,37(8):1056-1064.
    [71]蔡述明,官子和.跨江南北的古云梦泽说是不能成立的——古云梦泽问题讨论之二[J].海洋与湖沼,1982,13(2):129-142.
    [72]何报寅.江汉平原湖泊的成因类型及其特征[J].华中师范大学学报(自然科学版),2002,36(2):241-244.
    [73]陶家元.江汉湖群的形成发育与新构造运动[J].福建地理,2000,15(3):8-11.
    [74]刘昌茂,刘武.第四纪江汉平原湖群的演变[J].华中师范大学学报(自然科学版),1993,27(4):533-536.
    [75]董和金.用地质学的观点探讨洞庭湖的治理[J].湖南地质,1997,16(3):142-146.
    [76]Du Yun, Cai Shuming, Zhang Xiaoyang,et al. Interpretation of the environmental change of Dongting Lake, middle reach of Yangtze River, China, by 210Pb measurement and satellite image analysis[J]. Geomorphology,2001,41:171-181.
    [77]蒋复初,吴锡浩,肖华国,等.九江地区网纹红土的时代[J].地质力学学报,1997,3(4):27-32.
    [78]乔彦松,郭正堂,郝青振,等.皖南风尘堆积-土壤序列的磁性地层学研究及其古环境意义[J].科学通报,2003,48(13):1465-1469.
    [79]杨浩,赵其国,李小平,等.安徽宣城风成沉积-红土系列剖面ESR年代学研究[J].土壤学报,1996,33(3):293-300.
    [80]赵志中,乔彦松,王燕,等.成都平原红土堆积的磁性地层学及古环境记录[J].中国科学(D辑:地球科学),2007,37(3):370-377.
    [81]尹秋珍,郭正堂.中国南方的网纹红土与东亚季风的异常强盛期[J].科学通报,2006,51(2):186-193.
    [82]杨怀仁,徐馨.中国东部第四纪自然环境的演变[J].南京大学学报(自然科学版),1980,(1):121-144.
    [83]柏道远,倪艳军,周柯军,等.湖南津市黄牯山第四纪泥砾混杂堆积成因探讨[J].热带地理,2009,(6):594-599.
    [84]邓养鑫.冰碛转化为冰川泥石流堆积过程及其沉积特征[J].沉积学报,1995,13(4):37-48.
    [85]邓养鑫.冰碛与冰川泥石流堆积研究的若干新成果[J].冰川冻土,1996,18(增刊):250-256.
    [86]李吉均,周尚哲.冰碛石的形态和表面特征[J].冰川冻土,1984,6(3):27-30.
    [87]来红州,莫多闻,李新坡.洞庭盆地红土地层中网纹的成因探讨[J].北京大学学报(自然科学版),2005,41(2):240-248.
    [88]林承坤.洞庭湖的演变与治理(下):Ⅱ洞庭湖的演变及治理设想[J].地理学与国土研究,1986,2(1):40-46.
    [89]杨怀仁,谢志仁.中国东部近20,000年来的气候波动与海面升降运动[J].海洋与湖沼,1884,15(1):1-13.
    [90]戴传瑞,张廷山,郑华平,等.盆山耦合关系的讨论——以洞庭盆地与周边造山带为例[J].沉积学报,2006,24(5):657-665.
    [91]戴传瑞,张廷山,郑华平,等.沅江凹陷古近纪层序地层、沉积相特征及演化[J].天然气工业,2006,26(11):40-43.
    [92]林畅松,张燕梅,李思田,等.中国东部中新生代断陷盆地幕式裂陷过程的动力学响应和模拟模型[J].地球科学——中国地质大学学报,2004,29(5):583-588.
    [93]毛际香,童敏.洞庭湖地区的地震活动特征[J].华南地震,2000,20(3):64-70.
    [94]胡雪峰,朱煜,沈铭能.南方网纹红土多元成因的粒度证据[J].科学通报,2005,50(9):918-925.
    [95]胡雪峰,沈铭能,方圣琼.皖南网纹红土的粒度分布特征及古环境意义[J].第四纪研究,2004,24(2): 160-166.
    [96]朱宗敏,杨文强,林文姣,等.安徽宣城第四纪网纹红土的磁组构特征及其意义[J].海洋地质与第四纪地质,2006,26(4):105-110.
    [97]朱丽东,周尚哲,叶玮,等.网纹红土稀土元素地球化学特征的初步研究[J].中国沙漠,2007,27(2):194-200.
    [98]毛龙江,莫多闻,杨兢红,等.环洞庭湖地区网纹红土中稀土元素的地球化学特征[J].环境化学,2008,27(2):222-225.
    [99]叶玮,杨立辉,朱丽东,等中亚热带网纹红土的稀土元素特征与成因分析[J].地理科学,2008,28(1):40-44.
    [100]付宜兴,张萍,李志祥,等.中扬子区构造特征及勘探方向建议[J].大地构造与成矿学,2007,31(3):308-314.
    [101]李昌鸿,刘新民,付宜兴,等.江汉平原区中、古生界构造特征及演化[J].地质科技情报,2008,27(2):34-38.
    [102]张人权,梁杏,张国梁,等.洞庭湖区构造沉降系统分析——洞庭湖地质环境系统分析之二.见:中国水文地质工程地质勘查院编.环境地质研究(第三辑).北京:地震出版社,1996,165-178.
    [103]张培震,王琪,马宗晋.中国大陆现今构造运动的GPS速度场与活动地块[J].地学前缘,2002,9(2):430-441.
    [104]张培震,王敏,甘卫军,等.GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约[J].地学前缘,2003,10(特刊):81-92.
    [105]张培震,甘卫军,沈正康,等.中国大陆现今构造作用的地块运动和连续变形耦合模型[J].地质学报,2005,79(6):946-657.
    [106]安芷生,艾莉.尚未完成的地质年代表——第四纪悬而未决的前程[J].地层学杂志,2005,29(2):99-103.
    [107]Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate[J]. Nature,1992,359:117-122.
    [108]Derry L A, Kaufman A J, Jacobsen S B. Sedimentary cycling and environmental change in the Late Proterozoic:Evidence from stable and radiogenic isotopes[J]. Geochimica et Cosmochimica Acta,1992,56: 1317-1329.
    [109]Kaufman A J, Jacobsen S B, Knoll A H. The Vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate[J]. Earth and Planetary Science Letters,1993,120:409-430.
    [110]Nesbitt H W, Young G M. Early proteozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature,982,299:715-717.
    [111]Fedo C M, Young G M. Paleoclimatic control on the composition of the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada:A greenhouse to icehouse transition[J]. Precambrian Research, 1997,86:201-223.
    [112]Young G M, Nesbitt H W. Paleoclimatology and provenance of the glaciogenic Gowganda Formation (Paleoproterozoic), Ontario, Canada:A chemostratigraphic approach[J]. GSA Bulletin,1999,111:264-274.
    [113]Panahi A, Young G M. A geochemical investigation into the provenance of the Neoproterozoic Port Askaig Tillite, Dalradian Supergroup, western Scotland[J]. Precambrian Research,1997,85:81-96.
    [114]Young G M. Geochemical investigation of a Neoproterozoic glacial unit:The Mineral Fork Formation in the Wasatch Range, Utah[J]. GSA Bulletin,2002,114:387-399.
    [115]冯连君,储雪蕾,张启锐,等.化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J].地学前缘,2003,10(4):539-544.
    [116]冯连君,储雪蕾,张启锐,等.湘西北南华系渫水河组寒冷气候成因的新证据[J].科学通报,2004,49(12):1172-1178.
    [117]Chen Jun, An Zhisheng, Head J. Variation of Rb/Sr ratios in the loess-paleosol sequences of Central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quaternary Research, 1999,51(3):215-219
    [118]Guo Zhengtang, Biscaye P, Wei Lanying et al. Summer monsoon variations over the last 1.2Ma from the weathering of loess-soil sequences in China[J]. Geophysical Research Letters,2000,27(12):751-1754.
    [119]Ding Z L, Yang S L, Sun J M et al. Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-term Asian monsoon evolution in the last 7.0 Ma[J]. Earth and Planetary Science Letters,2001,185(1-2):99-109.
    [120]Yang Shiling, Ding Feng, Ding Zhongli. Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan[J]. Geochimica et Cosmochim ica Acta, 2006,70(7):1695-1709.
    [121]熊尚发,朱园健,周茹,等.白水黄土红粘土化学风化强度的剖面特征与粒度效应[J].第四纪研究,2008,28(5):812-821
    [122]杨晓强,李华梅.泥河湾盆地典型剖面沉积物磁组构特征及其意义[J].海洋地质与第四纪地质,1999,19(1):75-84.
    [123]张振克,吴瑞金,王苏民.岱海湖泊沉积物频率磁化率对历史时期环境变化的反映[J].地理研究,1998,17(3):299-302.
    [124]Harnois L. The CIW index:Anew chemical index of weathering. Sedimentary Geology,1988,55:319-322.
    [125]Parker A. An index of weathering for silicate rocks[J]. Geological Magazine,1970,107(6):501-504.
    [126]Chittleborough D J. Indices of weathering for soil and paleosols formed on silicate rocks[J]. Australian Journal of Earth Sciences,1991,38:115-120.
    [127]Vogel D E. Precambrian weathering in acid metavolcanic rocks from the Superior Province, Villebon Township, South-Central Quebec[J]. Canadian Journal of Earth Sciences,1975,12:2080-2085.
    [128]Ruxton B P. Measures of the degree of chemical weathering of rocks[J]. Journal of Geology,1968,76:518-527.
    [129]Thompson R, Oldfield F. Environmental Magnetism[M]. London:George Allen & Unwin,1986:10-20.
    [130]杨守业,李从先.元素地球化学特征的多元统计方法研究——长江与黄河沉积物元素地球化学研究[J].矿物岩石,1999,19(1):63-67.
    [131]Haughton D W, Morton A C, Todd S P. Developments in sedimentary provenance studies[M]. London:Oxford University Press,1991.
    [132]Morton A C, Hurst A. Correlation of sandstones using heavy minerals:an example from the Statfjord Formation of the Snorre Field, northern North Sea.In:Dunay R E,Hailwood E A. eds. Nonbiostratigraphical Methods of Dating and Correlation[C]. Geological Society Special Publication,1995,89:3-22.
    [133]Morton A C, Hallsworth C R. Processes controlling the composition of heavy mineral assemblages in sandstones[J]. Sedimentary Geology,1999,124(1-4):3-29.
    [134]王中波,杨守业,李平,等.长江水系沉积物碎屑矿物组成及其示踪意义[J].沉积学报,2006,24(4):570-578.
    [135]李双建,王清晨,李忠.库车坳陷库车河剖面重矿物分布特征及其地质意义[J].岩石矿物学杂志,2005,24(1):53-61.
    [136]赵红格,刘池洋.物源分析方法及研究进展[J].沉积学报,2003,21(3):409-415.
    [137]湖南省地质矿产局.湖南省区域地质志[M].北京:地质出版社.1988.
    [138]第四纪冰川考察队.四川西昌螺髻山地区第四纪砾石层的砾组分析[C]//中国第四纪冰川地质文集.北京:地质出版社,1977:191-228.
    [139]周秉根,李典友.黄山不同类型砾石特性及成因分析[J].安徽师范大学学报(自然科学版),2000,23(1):57-60.
    [140]张倬元,陈叙伦,刘世青,等.丹棱-思濛砾石层成因与时代[J].山地学报,2002,18(增刊):8-16.
    [141]朱大岗,赵希涛,孟宪刚,等.念青唐古拉山主峰地区第四纪砾石层砾组分析[J].地质力学学报,2002,8(4):321-332.
    [142]韩建恩,余佳,孟庆伟,等.西藏阿里地区札达盆地第四纪砾石统计及其意义[J].地质通报,2005,24(7):630-636.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700