用户名: 密码: 验证码:
畜肉品质评定方法及综合评定系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在吉林省科技发展计划重点项目资助下,对畜肉品质评定方法及综合评定系统进行了研究。建立了畜肉品质综合评定指标体系,确定了评定指标的获取方法。建立了基于色差仪a*值的猪肉颜色评定模型;应用计算机图像处理技术对猪肉大理石花纹等级进行了评定;建立了猪肉品质评定模型。研究开发了基于压力传感器的牛肉嫩度快速评定装置,准确率达到了90%以上,评定时间为5分钟。应用逐步回归法对影响猪胴体瘦肉率的指标及影响牛胴体产肉率的指标进行优选,通过优选后的指标作为参数建立了基于支持向量回归机的猪胴体瘦肉率预测模型和牛胴体产肉率预测模型,核函数选择Poly核函数及RBF核函数构造的混合核函数。应用Matlab及Vc++混合编程技术,开发了畜肉品质综合评定系统,该系统分为4个模块:猪肉品质评定模块、牛肉品质评定模块、猪胴体瘦肉率预测模块和牛胴体产肉率预测模块。
Along with improvement of living standard, changing of meal structure and extension of international cooperation, the demand of meat of livestock become increasing and the meat of livestock quality become more and more importmant. China have a big margin at various aspects, the main reason is that we still don’t have the meat of livestock system assessment method and standard. It makes the consensus can’t be reached by manufacturer and consumer. The market operation was not standard enough, so it’s difficult to attain a superior quality and excellent price. The local meat of livestock production and foreign trade are influenced by all of these, in order to meet the market requirement, the thesis established a norm meat of livestock quality synthesize assessment system, the method is more objective, quicker and more accurate.
     The meat of livestock quality synthesize assessment indexes system was established and the indexes getting methods were determined. Eight indexes of pork quality were chose as follow: pH, a* value of lean color, WBSF, TVB-N, cooking loss, MB degree, Dry lean concent and ash concent to assess the pork quality. Most experiment method belongs to nation standard or profession standard. Nine indexes of cutability of pork carcass were chose as follow: carcass weight, carcass length, carcass width of foreside, carcass width of rearward, thickness of back fat, thickness of waist fat, the most thick of fat, fat of triangle meat and rib eye area.The fressness parameter and tenderness parameter of beef were chosed to assess the beef quality. Indexes of retail cut percentages of beef carcass were: gross weight, cold carcass weight, hot carcass weight, bone weight, carcass length, carcass width,thickness of back fat and rib eye area.
     Hunterlab was used to measure lean color. 1cm fresh pork thickness was chosen as sample thickness from 1cm, 2cm and 2.5cm. L*、a*、b* of lean color were measured, the relativity of sense organs assessment scores and a* value was 0.9230. So we use a* value of hunterlab to predict the lean color and the accuracy of predict equation was above 85%.
     Image was collected using image collect system which was designed by our group, and using Matlab to assess MB of beef. The relativity of sense organs assessment scores and the image processing technique of computer arrived to 0.9022 and the accuracy of this method was above 85%. The relativity of intramuscular fat content and the image processing technique of computer arrived to 0.8580. Therefore, the image processing technique of computer could predict the MB degree of pork exactly. At last, combine sense organs assessment result and the the intramuscular fat content measurement result to establish MB degree form. The MB content can be predicted by computer image process.
     Pork quality assessment model was built. The indexes dimension was reduced by PCA. The first fourth PCs were chose as latent vectors of assessment model, and the cumulative contribution rate arrived to 88.37%. Through using multiple linear regression model, BP artificial neural network model and RBF artificial neural network model, establish the best assessment model was established. As a result, multiple linear regression model was chosed as the most accurate model and accuracy was above 85%. So it could predict pork quality by this model exactly and quickly.The inspector of factory can assess pork quality by this method after training.
     Beef tenderness measuring device was designed. First, the circuits of the device were designed. The FSG-15N1A FS sensor/1500g was chosen and it can output mV signal. Power supply conversion circuit was designed, it could turn 220V AC into±15V AC. Signal amplificatory circuit was designed, the amplificatory times is: 7.28. The relativity of pressure and output voltage arrived to 0.9999. When 1 N weight was put on FS pressure sensor, the output voltage was 136.7 mV. Second, beef tenderness measuring device was designed. The material of sample box was insulating plastic. Choose insulating plastic stick which is 3 cm in length and the 5 mm in diameter as medium of meat sample and testing head of FS sensor. The power supply conversion circuit and signal amplificatory circuit were put in signal process box. The voltage signal was recorded by voltage meter. Third, Parameters of the device was determined. Choose 1.5cm as the experimental depths which the connect stick push into meat samples. The testing time of raw sample was 8-10s after the connect stick was pushed into raw sample. Maximum of output voltage was used as cooked sample testing voltage.
     The device was validated. Fifty pieces of LD sample were used in this experiment. The relativity of raw meat output voltage and sensory evaluation is 0.9403 and for WBSF is 0.9526. It shows that raw meat output voltage can predict the LD tenderness exactly. The relativity of cooked meat output voltage and sensory evaluation is 0.8704 and for WBSF is 0.8953, it shows that cooked meat output voltage can predict the LD tenderness though it’s a little lower, it’s more complex for cooked meat processing and difficult to collect datum of output voltage exactly by voltage meter. So raw meat output voltage was chose as testing parameter to evaluate the beef tenderness.
     Beef tenderness assessment equation was established: Y4 = ?2.8313+0.0259V
     Other 20 LDs was tested by the device and the raw meat output voltage was collected by voltage meter. The result shows that accuracy of the device arrived to 90%. The total testing time of each sample was 5 minutes. This method avoid interfere of man-made factor and the test result was objective, quick and exact.
     The cutability of pork carcass assessment model was built based on SVR. Choose carcass weight, carcass length, thickness of back fat and rib eye area to predict the cutability of pork carcass by stepwise regress method. The punishing coefficient was 300, the kernel function coefficient was 3 and limiting windage was 0.01. Poly kernel, RBF kernel and mix kernel were chosed as kernel function of SVR to predict the cutability of pork carcass. The accuracy of assessment equation of Poly kernel was 40% and the average windage was 5.77%>5%, it could not predict cutability of pork carcass exactly. The veracity of assessment equation of RBF kernel was 85% and the average windage was 2.93% <5%. The accuracy of assessment equation of mix kernel arrived to 90% and the average windage was 2.99% <5%. Therefore choose mix kernel as the kernel function of SVR.. Comparing SVR model with multiple linear regression model, the accuracy of multiple linear regression model was 85% and average windage was 3.21% < 5%, it could be used to predict the cutability of pork carcass, but it was lower than SVR model. Choose SVR model which based on mix kernel function as assessment model of the cutability of pork carcass.
     The retail cut percentages of beef carcass assessment model was built based on SVR. Choose cold carcass weight, hot carcass weight, carcass length to predict the cutability of pork carcass by stepwise regress method. The punishing coefficient of SVR was 5, the kernel function coefficient was 0.5 and limiting windage was 0.01. Poly kernel, RBF kernel and mix kernel were chosed as kernel function of SVR to predict the retail cut percentages of beef. The accuracy of assessment equation of Poly kernel was 70% and the average windage was 2.89% <4%, the accuracy of it was low. The accuracy of prediction equation of RBF kernel was 85% and the average windage was 1.88% <4%. The accuracy of assessment equation of mix kernel arrived to 90% and the average windage was 1.85% <4%. Choose mix kernel as the kernel function of SVR. SVR model was compared with multiple linear regression model. The distinct probability of multiple linear regression model was 0.06 >0.05, so the model could not be used. Choose SVR model which based on mix kernel function as assessment model to predict the retail cut percentages of beef carcass.
     The SVR method was used in cutability of pork carcass assessment and retail cut percentages of beef carcass assessment successfully. To input the datum to program, the prediction result can be attained by computer calculating. It’s simply, quickly, exactly and could be used in factory to inspect on line.
     The Matlab engine was used to carry out mix programming of Matlab and Vc++. It provided a meat quality synthesis evaluation system which operation surface was friendly and simple. This system included pork quality assessment module, beef quality assessment module, cutability of pork carcass prodiction module and retail cut percentages of beef carcass prodiction module. User could choose the module which he need. This system could implement many tasks such as data process, network training, network testing, data saving etc. And it has many good characters such as simple operating, quick analyses and so on.
     In summary, the result of assessment meat of livestock quality showed the methods which were chosed could assess the sample exactly, quickly, objectively. And the meat of livestock quality synthesis evaluation system could be used in factory to inspect on line.
引文
[1]周旭英,等.我国牛肉生产与需求情况分析[J] .当代畜牧2000,(1):1-2.
    [2]王雨秋.肉类市场七大变化[J].肉类工业,2000,(5):45.
    [3]陈润生,张伟力,经荣斌.猪肉品质研究三十年回眸[J].猪业科学,2007,(7):90-94
    [4]张伟力.2006年国际猪肉品质进展与中国地方猪种机遇评述[J].养猪,2006,(5):22-24.
    [5]孔保华,马丽珍.肉品科学与技术[M].北京:中国轻工业出版社,2003.
    [6]汤晓艳,周光宏,徐幸莲.对中国牛肉分级制度的几点思考[J].黄牛杂志, 2003,29(2):52-55.
    [7]万发春,等.牛肉品质评定的主要指标[J].中国畜牧兽医.2004,31(12):17-19.
    [8]周光宏,刘丽,孙宝国,王丽哲等.牛肉等级评定方法和标准[J].肉类工业,2001,(6):41-52.
    [9] C.J.Kim,E.S.Lee.Effects of quality grade on the chemical, physical and sensory characteristics of Hanwoo (Korean native cattle) beef[J].Meat Science,5(5):34-37.
    [10]张伟力.猪文化与猪肉品质改进理念[J].猪业科学,2006,(4):28-30.
    [11] Miller.Environmental enrichment influences on pig behavior, performance and meat quality [J].Applied Animal Behaviour Science.1998:57(2):51-68.
    [12] J. Tan.Meat quality evaluation by computer vision[J].Journal of Food Engineering.2004,61(1):27-35.
    [13]刘万峰,陈润生.猪肉嫩度(剪切力值)测定前处理方法的研究.猪肉品质研究参考资料汇编,1990,(3):6-24.
    [14]陈润生,刘万峰.国内外对肌肉嫩度测定前处理方法的研究概况.猪肉品质研究参考资料汇编,1990,(3):1-5.
    [15] E.Obuz,M.E. Dikeman,T.M.Loughin.Effects of cooking method,reheating,holding time,and holding temperature on beef longissimuslumborum andbiceps femoris tenderness.Meat Science,2003,65(2):841-851.
    [16]国标NY/T1180-2006,肉嫩度的测定.
    [17] L.E.Jeremiah,D.M.Phillips.Evaluation of a probe for predicting beef tenderness[J].Meat Science.2000,55(4):493-502.
    [18]丁武,寇莉萍,张静,等.质构仪穿透法测定肉制品嫩度的研究[J].农业工程学报,2005,21(10):138-140.
    [19] S.D. Shackelford,T.L.Wheeler,M. Koohmaraie.On-line classification of US Select beef carcasses for longissimus tenderness using visible and near-infrared re?ectance spectroscopy[J] .Meat Science,2005,69(3):409-415.
    [20]孙永海,鲜于建川,石晶.基于计算机视觉的冷却牛肉嫩度分析方法[J].农业机械学报, 2003,34(5):102-105.
    [21] D.J. Vote,K.E. Belk,J.DTatum,etc..Online prediction of beef tenderness usinga computer vision system equipped with a Beef Cam module[J].Journal of Animal Science.2003,81(2):457-465.
    [22] C. Kroger,C.M. Bartle,J.G. West. etc..Meat tenderness evaluation using dual energy X-ray absorptiometry(DEXA)[J] . Science Direct Computers and Electronics in Agriculture.2006,54(2):93–100.
    [23]吴信法.肉品科学及肉品卫生检验[M].北京:中心商业出版社,1985.
    [24]孟东.仪器分析法测定挥发性盐基氮的实验研究[J].中国卫生检验杂志,2002,12(1):82-83.
    [25]马荣安.肉新鲜度检验的进展[J].肉品卫生,2000,197(11):27-28.
    [26]傅启勇.应用电导仪检测肉品新鲜度的研究[J].肉品卫生,1994,(4):5-7.
    [27]王光华.用阻抗法快速检测猪肉鲜度[J].食品科学,1992,(4):52.
    [28]丁武,魏益民.色彩色差计在肉品新鲜度检验中的应用[J].肉类工业,2003, (6):22-24.
    [30]朱迅涛.近红外分析技术在肉制品检测中的应用[J].肉类工业,2002,(6):45-47.
    [31]屠康.肉类品质无损检测技术的研究进展[J].西北农林科技大学学报(自然科学版),2005,33(1):25-28.
    [32] E. Schaller , F. Escher .‘Electronic Nose’and Their Application toFood[J].Lebensm-Technol,1998,31(4):305-316.
    [33] A. Galdikas,Z. Kancleris,et al.In?uence of heterogeneous reaction rate on response kinetics of metal oxide gas sensors: application to the recognition of an odour[J].Sensors and Actuators B.2003,95(1-3):244-251.
    [34]聂雪梅,刘仲明,张水华,王启军.电子鼻及其在食品领域的应用[J].传感器技术,2004,23(10):1-3.
    [35]孙钟雷.基于遗传组合网络的猪肉新鲜度人工嗅觉系统研究[D].长春:吉林大学生物与农业工程学院,2006.
    [36] Z. Zhang,J. Tong,et al.Electronic Nose with an Air Sensor Matrix for Detecting Beef Freshness[J].Journal of Bionic Engineering,2008,(5):67-73.
    [37]蔡绍倩,王霞,张伟力.猪肉大理石纹遗传资源识别与选材利用.猪业科学.2007,(7):88-89.
    [38]陈润生.猪肉品质评定方法[J].东北农业大学学报,1981,(4):42-49.
    [39]陈润生,徐士清.猪肉品质评定方法[J].江西畜牧兽医杂志,1983,(1):28-34.
    [40]周波,黄瑞华,曲亮.色差仪和肉色板在猪肉肉色评定中的应用[J].江苏农业科学,2007,(2):121-124.
    [41]黄小维,朱振华,吴春明.测色色差仪的应用[J].现代商检科技,1995, (5):34-37.
    [42]黄鸿宾.肉的色泽与嫩度[J].肉类研究.2003,(3):12-14.
    [43] R.T. Graham,A.G. Dean.A Simple, rapid preparative method for isolating and purifying oxymyoglobin[J].Meat Science.1996,43(1):Pages 1-13.
    [44] D. E. Gerrard,X. Gao,J. Tan.Beef marbling and color score determination by image processing[J].Journal of Food Science,1996.61(1):145-148.
    [45]贾渊,汤晓艳,姬长英.牛肉颜色的RGB特征[J].食品科学.2004,25(7):86-89.
    [46]贾渊,姬长英,陈念年,罗霞.牛肉颜色HSL特征分析[J].农机化研究,2007,(1):78-80.
    [47]尹文进.测定冷藏鲜猪肉系水力的几种方法[J].肉类研究,1994,(2):27-29.
    [48]张伟力.猪肉系水力测定方法[J].养猪.2002,(3):25-26.
    [49] J. Brundum,M. Lars,et al.Prediction of water-holding capacity and composition of porcine meat by comparative spectroscopy[J] . Meat Science.2000,55(2):177-185.
    [50] E. Micklandera,et al.Early post-mortem discrimination of water-holding capacity in pig longissimus muscle using new ultrasound method[J].LWT.2005,38(5):437-445.
    [51]龚建军.德国猪肉品质测定技术[J].中国畜牧兽医,2005,32(9):23-26.
    [52] T.P. McDonald,Y.R. Chen.Separating connected muscle tissue in images of beef carcass rib eyes[J].Trans of ASAE,1990,33(6):2059-2065.
    [53] T.P. McDonald,Y.R. Chen.Visual characterization of marbling in beef rib eyes and its relationship to taste parameters[J].Tram of ASAE,1991,34(6):2499.
    [54] T.P. McDonald , Y.R. Chen . A geometric model of marbling in beef longissimusdorsi[J].Trans of the ASAE.1992,35(3):1057-1062.
    [55] F. Yoshikawa,et al.On a grading system for beef marbling [J].Pattern Recognition Letters.2000,21(12):1037-1050.
    [56]赵杰文,刘木华,张海东.基于数学形态学的牛肉图像中背长肌分割和大理石纹提取技术研究[J].农业工程学报,2004,20(4):144-146.
    [57]刘木华,段武貌,黎静,郑华东.基于图像处理和支持向量机分类的牛肉大理石花纹等级评定[J].沈阳农业大学学报.2005,36(6):650-654.
    [58]李哲.皓月牛肉质量评价研究[D].长春:吉林大学生物与农业工程学院,2007.
    [59]李志.牛胴体眼肌切面分级信息检测自动化研究[D].长春:吉林大学生物与农业工程学院,2008.
    [60] H.T. Fredeen.Changes in the characteristics of commercial hot carcasses in Canada[J].Can.J.Anim.Sci.1984,64(5):569-586.
    [61]朱正义,朱年华,王松均等.长白猪生产性能与肉质的关系[M]. 94养猪研究—养猪学术讨论会论文集.北京:中国农业科技出版社,1994:285-289.
    [62]罗明,朱砺.屠宰加工线上瘦肉型猪胴体瘦肉率估测方法的研究[J].四川农业大学学报,2002,20(2):153-155.
    [63]陈润生,王林云,经荣斌.猪生产学[M].北京:中国农业出版社,1995.
    [64]杨国勋,任广志.瘦肉型猪若干胴体性相关分析及瘦肉率估测方式的探讨[J].河南农业科学,1987,(7):27-28.
    [65]高山林,冯敏山,吴建华等.应用猪的胴体形状估测瘦肉率回归公式的研究[J].中国畜牧杂志,1997,33(1):11-14.
    [66]彭中镇,熊远著,喻传洲等.猪的形状相关与估测瘦肉率“最优”回归方程的初步研究[J].华中农学院学报,1982,(4):73-80.
    [67]韩俊文.用体重、体尺估测山西黑猪胴体瘦肉方法初探[J].山西农业大学学报,1990专刊:49-52.
    [68]刘丑生.猪的形状相关与非线性回归估测瘦肉率的研究[J].甘肃畜牧兽医,1997,133(2):5-8.
    [69]张慧生,刘小林.多元回归估计关中黑猪胴体瘦肉量的研究[J].西北农林科技大学学报,2001,29(2):47-50.
    [70] A.J. Kempster,D.W. Jones,A. Cuthberson.A comparison of the Danish MFA,Ulster and optical probes for use in pig carcass classification and grading[J].Meat-Science,1979,3(2):109-120.
    [71] A.J. Kempster,J.P. Chadwick,D.W. Jones,A. Cuthberson.An evaluation of the Hennessy and Chong Fat Depth Indicator,and the Ulster Probe,for use in pig carcass classificationand grading[J].Anim-Prod,1981,33(3):319-324.
    [72] A.P. Sather et al.The prediction of pork carcass composition using the Hennessy Grading Probe and the Aloka SSD-210DXII Echo Camera[J].Canadian Journal of Animal Science.1991,71(6):993-1000.
    [73] A.P. Sather,S.D. Jones,W.M. Robertson.The effect of genotype on predicted lean yieldin heavy pig carcasses using the Hennessy grading probe,the DESTRON PG-100 andFat-O-Meat'er electronic grading probes[J].Canadian Journal of Animal Science.1995,69(4):93-101.
    [74] A.J. Kempster,J.P. Chadwick,D.W. Jones.An evaluation of the Hennessy grading probe and the SFK Fat-O-Meat'er for use in pig carcass classification and grading[J].Animal Production,1985,40(2):323-329.
    [75]B. Wand,E. Sack.Comparison of objective grading devices among extremely different breeds[J].Pig News and Information.1988,9(2):129-135.
    [76] M. Gispert,P. Gou,A. Diestre et al.Bias and future trends of pig carcass classification methods.Special issue:New developments in guaranteeing the optimal sensory qualityof meat[J].Food-Chemistry.2000,69(4):457-460.
    [77] A.Fortin , et al . Evaluation of different ruler and ultrasonic backfat measurements asindices of commercial and lean yield of hot carcasses for commercial grading purpose[J].Canadian Journal of Animal Science.1981,61(2):893-905.
    [78] A. Diestre . The estimation of pig carcass composition from different measurements with special reference to classification and grading[J].Animal Production.1985,41(3):383-391.
    [79] A.J. Kempster,D.G. Evans.A comparison of different predictors of the lean content of pig carcasses.1.Predictors for use in commercial classification and grading[J].Anim. Prod.1979,28(1):87-96.
    [80] H.J. Swatland et al.Real-time ultrasound image analysis for the estimation of carcass yield and pork quality[J].Canadian Journal of Animal Science.1996,76(5):55-62.
    [81] A.A.Goldenberg,S.P.Ananthanarayanan.An approach to automation of pork grading[J].Food Res.Int.1994,27(2):191-193.
    [82]王重龙,陶立,张勤等.B超活体测定猪背膘厚和眼肌面积的研究[J].安徽农业科学,2005,33(3):451-452,495.
    [83]倪德斌,熊远著,雷明刚等.猪胴体瘦肉率活体估测的研究[J].华中农业大学学报,1999,18(5):466-468.
    [84] A.H. Kirton.Current methods of on-line carcass evaluation.Journal of Animal Science,1989,67(8):2155-5163.
    [85]李强.猪胴体分级技术的研究[D].四川:四川农业大学,2002.
    [86] P.B. Newman , J.D. Wood . New techniques for assessment of pig carcasses-video and ultrasonic systems.New techniques in pig carcass evaluation.Proceedings of the EAAP Symposium of the Commission on Pig Production.Helsinki,Finland,1 July 1988.1989:37-51.17 ref,EAAPPublication No.41. Wageningen,Netherlands,PUDOC.
    [87]石素玲.国外牛胴体产量级评定方法及仪器分级现状[J].肉类工业.1998,(11):46-47.
    [88] C.E. Murphey,D.K. Hallet,W. E. Tyler,et al.Estimating yields of retail cuts from beef carcasses[J] .Chicago:Presented at the 62nd Meet of the Amer Soc of Anim Prod,1960,26.
    [89] J.D. Crouse,M.E. Dikeman.Determinates of retail product of carcass beef[J].J Anim Sci,1976,42(2):584-591.
    [90] R.J. Epley,H.B. Hedrick,Stringer W C,et al.Prediction of weight and percentretail cuts of beef using five carcass measurements[J].J Anim Sci,1970,30(5):872- 879.
    [91] H.C. Abraham,C. E. Murphey,H.R. Cross,et al.Factors affecting beef carcass cutability:an evaluation of the USDA Yield Grades for beef[J].J Anim Sci,1980,50(5):841 - 851.
    [92]陈银基,周光宏等.国外牛肉产量级发展及我国产量级制度建立问题探讨[J].畜牧与兽医,2005,37(7):51-52.
    [93]石素玲.鲁西黄牛背截面指标为参数的胴体产肉率回归分析[J].黄牛杂志.1999,25(2):30-35.
    [94]陈银基,周光宏,李春保,高峰.中国黄牛及其杂交牛产肉量和产肉率预测[J].安徽农业科学,2005,3(37):1234-1237.
    [95]李里特,乔发东.畜产食品安全标准化生产.北京:中国农业大学出版社,2006.
    [96]马长伟,孔保华,韩剑众.肉与肉制品工艺学[M].北京:中国轻工业出版社,2002.
    [97]曾志宏.肉的品质与pH值的相关性[J].肉类工业,2001,(1):31-32.
    [98]周光宏.畜产品加工学[M].北京:中国农业出版社,2002.
    [99]刘振华.猪肉肉质特性生物化学研究进展[J].国外畜牧科技,1996,23(6):37-40.
    [100]岑宁,葛正广.猪产品加工新技术[M].北京:中国农业出版社,2002.
    [101]岳永生,曾勇庆,王慧等.猪肉品质综合评定方法的研究.山东农业大学报,1994,25(4):429-434.
    [102]郭建凤,武英,魏述东等.莱芜猪胴体品质肉质特性极强随体重变化规律的研究[M].山东畜牧兽医学会养猪专业委员会第一届学术研讨会论文集,163-166.
    [103]谭毓平,吴买生,易建军等.沙子岭猪肉质性状与肉的成分测定[J].家畜生态,2004,25(1):17-19.
    [104]陈友亮.牛产品加工新技术[M].北京:中国农业出版社,2002.
    [105]黄伟坤.食品检验与分析[M].北京:中国轻工业出版社,1989.
    [106]赵杰文.现代食品检测技术[M].北京:中国轻工业出版社,2005.
    [107]杨祖英.食品检验[M].北京:化学工业出版社,2001.
    [108]吴谋成.食品分析与感官评定[M].北京:中国农业出版社,2002.
    [109]L. Faucitano,P. Huff,F. Teuscher,C. Gariepy,J. Wegner.Application of computer image analysis to measure pork marbling characteristics [J].Meat Science,2005,69(3):537-543.
    [110]孙兆林.MATLAB6.x图像处理[M].北京:清华大学出版社,2002.
    [111]容观澳.计算机图像处理[M].北京:清华大学出版社,2000.
    [112]张国文,邱萍,倪永年.主成分分析法用于食品样品分类研究[J].食品科技,2003,(12):72-75.
    [113]C. Epifanim.Monitoring of rancidity of milk by means of electronic nose and dynamic PCA analysis[J].Sensors and Actuators B.2001,78(1-3):174-179.
    [114]苏金明,阮沈勇.MATLAB工程数学[M].北京:电子工业出版社,2005.
    [115]于秀林,仁雪松.多元统计分析[M].北京:中国统计出版社,2004.
    [116]范金城,梅长林.数据分析[M].北京:科学出版社,2002.
    [117]郑德如.回归分析和相关分析[M].上海:上海人民出版社,1984.
    [118]刘魁英等.食品研究与数据分析[M].无锡:中国轻工业出版社,1998.
    [119]楼顺天,施阳.基于MATLAB的系统分析与设计——神经网络[M].西安电子科技大学出版社,2001.
    [120]闻新,周露,王丹力,熊晓英.MATLAB神经网络应用设计[M].北京:科学出版社,2000.
    [121]王伟.人工神经网络原理——入门与应用[M].北京:北京航空航天大学出版社,1995.
    [122]姜静清.RBF神经网络的训练方法及分析[J].内蒙古民族大学学报(自然科学版),2003,4(18):301~303.
    [123]贾君.优质牛肉组织结构及其仿生研究[D].长春:吉林大学吉林大学生物与农业工程学院,2006.
    [124]戴瑞彤,吴国强.肉嫩度的研究进展[J].肉类工业,2000,232(10):32-35.
    [125]J. Li,J. Tan, F.A. Martz,H. Heymann.Image texture features as indicators of beef tenderness[J].Meat Science,1999,53(1):17-22.
    [126]E. Kress-Rogers.In handbook of biosensors and electronic noses,medicine,food,and the environment[M].New york:CRC Press Inc,Frankfurt,1997.
    [127]C.L. Baird , D.G. Myszka . Current and emerging commercial optical biosensors[J].Journal of Molecular Recognition,2001,14(1):261-268.
    [128]马戎,周王民,陈明.气体传感器的研究及发展方向[J].航空计测术,2004,24(4):1-4.
    [129]C.D. Natale , A. Macagnano , et al . An electrnic nose for food analysis[J].Sensors and Actuators B,1997,44(3):521-526.
    [130]M.Gabriela , A. Carlos . Warmed-over flavour analysis in low temperature-long time processed meat by an‘electronic nose’[J].Meat Science,2000,56(3):221-228.
    [131]赵继文.传感器与应用电路设计[M].北京:科学出版社,2002.
    [132]吕俊芳编著.传感器接口与检测仪器电路[M].北京:航空航天大学出版社,1994.
    [133]杨志民,刘广利.不确定性支持向量机原理及应用[M].北京:科学出版社,2007.
    [134]李国正,王猛,曾华军译.支持向量机导论[M].北京:电子工业出版社,2004.
    [135]B. Ribeiro.Kernelized Based Functions with Minkovsky’s Norm for SVM Regression [C].Proceedings of the 2002 Inter-national Joint Conference on Neural Networks.IEE.2002,3 (2):2198-2203.
    [136]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
    [137]V. Vapnik,S. Golowich.et al.Support vector method for function approximation, regression estimation, and signal processing [J]. Neural Information Processing Systems,1997,9:52-54.
    [138]G.F. Smits,E.M. Jordaan.Improved SVM Regression Using Mixtures of Kernel[C].Proceedings of the 2002 International Joint Conference on Neural Networks.Hawai:i IEE,2002,3 (2):2785-2790.
    [139]荣海娜,张葛祥,金炜东.系统辨识中支持向量机核函数及其参数的研究[J].系统仿真学报,2006,18 (11):3204-3226.
    [140]董春曦,饶鲜,杨绍全,徐松涛.支持向量机参数选择方法研究[J].系统工程与电子技术,2004,26 (8):1117-1120.
    [141]陈金凤,杨慧中.混合核支持向量机在化工软测量中的应用研究[J].化工自动化及仪表,2008, 35 (2):36-38.
    [142]齐志泉,田英杰.徐志杰.支持向量机中的核参数选择问题[J].控制工程,2005,12(4):79-81.
    [143]朱建平.应用多元统计分析[M].北京:科学出版社,2006.
    [144]赵芳林,牛雅莉.应用逐步回归分析的方法建立教学评估模型[J].科技信息,2007,(3):141,123.
    [145]N.R. Draper,H.Smith.Applied Regression Analysis(third edition) [M].USA:John Wiley&Sons,Inc.1998.
    [146]何小群,刘文卿.应用回归分析[M].北京:中国人民大学出版社,2007.
    [147]杨成,申丽然,李雪耀.Matlab引擎的VC++6.0接口调用及其面向对象编程[J].应用科技,2001,28(11):41-44.
    [148]牛小兵,牛子吉.Matlab与VC++6.0混合编程技巧[J].现代计算机,2001,107:94-95.
    [149]姚鑫浩.Matlab与VC结合方法的分析[J].电脑编程技巧与维护,2003,(1):71-73.
    [150]程卫国,冯峰.Matlab5.3经要编程与高级应用[M].北京:机械工业出版社,2000.
    [151]Bjanes.The C++ ProgrammingLanguage [M].USA:Addison WesleyLangman Inc. 1997.
    [152]H. Duane,L. Bruce.Mastering Matlab 5:A comprehen-sive tutorial and reference[M]. USA:Prentice Hall,1998.
    [153]陈桂芳,李旭辉,夏爱军.VC调用MATLAB的方法研究[J].宇航计测技术,2005,25(3):55-58.
    [154]范晖.VC与MATLAB的混合编程[J].现代电子, 2001,(1):21-25.
    [155]潘孝勇,姜伟,杨继隆.Visual C++与Matlab的混合编程[J].计算机仿真,2004,21(3):140-143.
    [156]陈显利,田继理,等.Matlab的引擎函数库及其应用[J].青岛化工学院学报,2003,23(4):79-82.
    [157]陈磊.VC下利用MATLAB引擎的程序设计[J] .电脑编程技巧与维护,1999,(2):11-12.
    [158]江鹢,汤丽萍,边信黔,施小成.利用Matlab引擎实现VC和Matlab的混合编程[J].电脑学习,2000,(3):30-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700