用户名: 密码: 验证码:
钙对SA诱导番茄抗灰霉病的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番茄(Solanum lycopersicum Mill)是多发病的重要园艺作物。目前,生产者防治其病害的重要方法之一就是依赖农药,这对环境和农产品造成严重污染是不言而喻的。诱导抗性是植物自身所产生的一种更为主动的抗性反应方式,研究植物诱导抗性具有重要的理论意义和实际应用价值。
     钙(Ca~(2+))和水杨酸(SA)均被认为是重要的抗逆性物质(Sugimoto等,2005; Volpinand Elad,1991; Yoon CS等,2010; White,1979; Durrant2004; Mauch2001; Hayat andAhmad,2007),特别是SA被认为是重要的植物诱导抗病物质(White,1979; Durrant2004;Mauch2001; Hayat and Ahmad,2007)。然而,尽管多项研究已表明钙(Ca~(2+))在SA诱导的植物ROS爆发、耐热性、抗旱性、气孔开闭、采后生理等方面均有调控作用(Pei等,2000;刘悦萍等,2005;王利军等,2003;刘新等,2003;敖日嘎,2003),但钙(Ca~(2+))对SA诱导植物抗病的作用尚缺乏详细报道,更缺乏对其机制的探讨。
     本研究以番茄灰霉病敏感型品种“L402”为试材,从生理及分子水平上分析了Ca~(2+)对SA诱导番茄抗灰霉病的作用机制。以期为利用Ca~(2+)和SA增强番茄植株抗病性、提高番茄产量和品质奠定理论和应用基础。主要研究结果如下:
     1.明确了营养液中增施Ca~(2+)和叶面增施Ca~(2+)均显著降低了番茄灰霉病的病情指数,说明Ca~(2+)具有提高番茄植株抗灰霉病的能力,其中营养液中增施Ca~(2+)较对照病情指数降低63.61%,叶面增施Ca~(2+)较对照降低6.04%,说明根际增施Ca~(2+)效果更显著;但叶面增施Mg~(2+)则显著提高番茄灰霉病的病情指数,病情指数达78.25,比对照提高4.54%,表明镁(Mg~(2+))具有降低番茄抗灰霉病的作用。
     2.针对根际增施Ca~(2+)抗病效果显著做了进一步分析,明确了营养液Ca~(2+)浓度处理通过PAL合成途径提高番茄植株叶片内源SA含量。PAL合成途径CM,PAL基因表达水平和BA2H酶活性在营养液Ca~(2+)浓度处理条件下显著提高,但对增强PAD4和ICS1基因表达的作用不显著,因此认为Ca~(2+)通过调控PAL途径提高番茄植株叶片内源SA含量。
     3.明确了叶面增施SA显著降低了番茄灰霉病的病情指数;Mg~(2+)与SA配施显著降低了SA诱导番茄抗灰霉病的作用。而Ca~(2+)与SA不同顺序配施对番茄幼苗抗灰霉病的影响效果不同,先施Ca~(2+)再施SA显著降低了番茄灰霉病的病情指数,即Ca+SA处理的病情指数比SA降低17.93%,比SA+Ca降低13.34%,比单纯施Ca~(2+)降低45.22%;而SA+Ca处理的病情指数与SA处理无显著差异。说明先施Ca~(2+)再施SA,Ca~(2+)具有显著增强SA诱导番茄抗灰霉病的作用。
     4.明确了Ca~(2+)、Ca~(2+)抑制剂EGTA与SA单独或配合施用在诱导及接种条件下对番茄植株叶片ROS积累、PAL、几丁质酶和β-1,3-葡聚糖酶活性及基因表达的影响。其中SA处理诱导了番茄植株叶片的ROS爆发,Ca~(2+)促进了SA诱导的番茄植株叶片ROS爆发;EGTA抑制了ROS积累,而且抑制了SA诱导的ROS积累。Ca~(2+)及SA对植株抗病相关酶PAL、几丁质酶和β-1,3-葡聚糖酶活性及其基因表达的影响同ROS爆发具有相似的结果。说明SA可能通过调控植株抗病相关酶的基因表达及ROS爆发进而提高植株抗灰霉病能力的,而Ca~(2+)通过促进SA诱导植株抗病相关酶基因表达及ROS爆发而进一步提高植株抗灰霉病能力。
     5.明确了Ca~(2+)对SA诱导番茄抗灰霉病蛋白表达的调控作用。采用TCA/丙酮法提取各处理接种灰霉菌48h后番茄幼苗叶片的蛋白,并采用双向电泳技术及PD-Quest软件分析,发现每张图谱可检测到超过500个蛋白点,软件分析得出65个差异蛋白点,在两个处理中均表达上调的蛋白有19个;两个处理都表达下降的蛋白点有6个;两个处理均是新出现的蛋白点有9个;此外,在SA处理中,有2个蛋白点仅在该处理中呈上调表达,有3个蛋白点仅在该处理中呈下调表达,有2个蛋白点仅在该处理中是新出现的蛋白点;有2个蛋白点在该处理中是消失的蛋白点。在Ca+SA处理中,有8个蛋白点仅在该处理中呈上调表达,有1个蛋白点在该处理中呈下调表达,10个蛋白点仅在Ca+SA处理中是新出现的蛋白点,有3个蛋白点仅在该处理中表达消失。
     6.采用基质辅助激光解析电离飞行时间质谱技术(MODI-TOF-TOF)将稳定表达、丰度值变化1.5倍以上的蛋白点,并根据以往经验排除功能性蛋白,挑选出其中的50个进行鉴定,根据NCBI数据库搜索比对,鉴定成功了42个蛋白质点。它们分别参与了植物自身的防卫反应、能量代谢、蛋白质合成和转录调控等多个生理生化过程。明确了病程相关蛋白5和STH2、酸性内源几丁质酶等抗病相关物质以及SOD、APX等ROS相关酶在Ca~(2+)促进SA诱导番茄抗病性中起到了关键性的作用。
     7.营养液Ca~(2+)浓度处理配合施用SA对NahG及其野生型(Moneymaker)的病情指数调查表明,在SA存在条件下Ca~(2+)可显著提高番茄抗病性。分析了SA依赖的信号途径下游关键基因(NPR1、PR1、TGA1a、TGA2.2)及蛋白激酶基因(MPK2、MPK4)的表达情况。NPR1、PR1、TGA1a、TGA2.2在补Ca~(2+)处理中表达均明显上调,而MPK4则表达趋势与此相反,仅在0mM Ca~(2+)处理中表达才上调,而0mM Ca~(2+)处理番茄抗病性显著降低。证明了SA信号转导相关基因及MPK2基因表达上调是营养液Ca~(2+)浓度处理配合施用SA提高番茄抗病性的主要原因,且与MPK4无关。
     8.明确了营养液Ca~(2+)浓度处理再增施SA对Ca~(2+)受体相关基因表达的影响。与3mMCa~(2+)处理相比8mM Ca~(2+)处理明显提高了CDPK的表达水平,0mM Ca~(2+)处理中则明显下降;CaM的表达显示其对外源SA处理较为敏感;CBL的上调表达可能受Ca~(2+)和SA的共同作用。因此推测营养液Ca~(2+)配合SA处理提高番茄抗灰霉病可能部分通过Ca~(2+)受体调节SA信号途径相关基因表达。
     9.明确了营养液Ca~(2+)处理均可显著降低野生型‘Moneymaker’和SA缺失突变体‘NahG’品种的病情指数,但野生型‘Moneymaker’比SA缺失突变体‘NahG’的病情指数更低;Ca+SA处理进一步显著降低番茄野生型‘Moneymaker’和SA缺失突变体‘NahG’品种的病情指数,同样野生型‘Moneymaker’比SA缺失突变体‘NahG’的病情指数更低;说明Ca~(2+)既有与SA共同降低番茄病情指数的作用,Ca~(2+)也具有不依赖SA降低番茄病情指数的作用,详细机制有待进一步研究。
Tomao (Solanum lycopersicum Mill) is an important kind in horticulture production inthe world and China. However, tomato is also a frequently-occurring crop. Currently, theproducer mainly depended on the chemicals to prevent disease,which lead to environmentaland products pollution. The induced resistance is an action mode that comes from plantsthemselves with the characteristic of activity. And which was worth to be researching andapplication. We should carry on depth research on the mechanism of induced resistance if wewant to exploit the plant induce resistance in order to enhance plant defence.
     Ca~(2+)and Salicylic acid are considered that the important resistance substance (Sugimotoet al.,2005; Volpin and Elad,1991; Yoon CS et al.,2010; White,1979; Malamy et al.,1990;Gaffney et al.,1993; Durrant2004; Mauch2001). A growing number of detail reports indicatethat Ca~(2+)have strength role on SA induced effects, such as ROS, sub-high temperatureresistance, drought resistance, on-off of stomata and pos-harvest physiology of peach (Pei etal.,2000;Liu et al.,2005; Wang et al.,2003; Liu et al.,2003; Ao,2003). There is not detailreport on the mechanism of Ca~(2+)effect on SA induced resistance on Botrytis cinerea infectedtomato, and research of the mechanism is lack.
     The cultivated tomato ‘L402’ which was sensitive to Botrytis cinerea, was employed inthis experiment, the treatments of with or without Ca~(2+)was designed, base on the level ofphysiology and molecule analysised the Ca~(2+)effect on SA induced resistance on Botrytiscinerea inoculation. It is helpful to study the mechanism to achieve the finally objective toenhanced the SA resistance efficiency and the yield and qulity both in scientific and practicalfields. The main research results are as follows:
     1. It was clear that Ca~(2+)have the ablity to enhanced plants resistance through anaylisis thedisease index of different Ca~(2+)concentration of nutrient solution and foliar application Ca~(2+).Compare with control, the disease index declined63.61%in the treatment of supplementingCa~(2+)to nutrient solution; and the disease index reduced6.04%in treatment of foliarapplication Ca~(2+)compare to control; which illustrated that it was efficiency to apply Ca~(2+)tothizosphere. It was found that Magnesium (Mg~(2+)) did negative effect on tomato resistance onBotrytis cinerea, in alone Mg~(2+)treatment the disease index was78.25,which was increase4.54%compares with control.
     2. Aimed to analysis the detail reasons of effectively enhancing the tomato resistanceunder thizosphere Ca~(2+)supplementation. It was found that the effect of Ca~(2+)treatment on SAaccumulation and SA synthesis in tomato leaves. It was showed that the expression level ofCM、PAL and activity of BA2H increased significantly Ca~(2+)treated, however, the expressionlevel of PAD4and ICS1were not significantly. So SA accumulation in Ca~(2+)concentrationtreated, which was the results of PAL pathway related genes expression levels’ increase.
     3. It was clear that the disease index reduced significantly by foliar appling SA; andMg~(2+)did negative effect on SA induced resistance on Botrytis cinerea. The efficiency was difference that Ca~(2+)and SA in different order were applied to test the resistance on Botrytiscinerea. The Ca+SA treatment have the best effect on defense, the disease index decrease17.93%compare with alone SA treatment, and13.34%compare with SA+Ca, there was notdifference between SA+Ca and SA treated. The Mg~(2+)declined SA-induced resistance on graymold; the results of application of SA after Ca~(2+)indicated that Ca~(2+)enhanced SA-inducedresistance on gray mold in tomato.
     4. It was found that Ca~(2+), EGTA, SA alone and applied complex led to ROS, enzymesactivity and genes expression increase under induced treatments or inoculation with graymold after induced treatments. Among the different treatments, the results showed SA caninduce ROS and Ca~(2+)enhanced the SA-induced ROS. In contrast,pretreatment with Ca~(2+)chelator EGTA, weakened the ROS and weakened the SA-induced ROS. The similar resultswere found in PAL, chintase, β-1,3-glucancse activity and genes expressions (PR1、 PR2aand PR3b). It indicated that SA enhanced tomato resistance by regulation of ROS andpathogensis related protein activity and expression, and Ca~(2+)promoted SA-induced resistanceto tomato gray mold by further increase these index.
     5. It was clear that the function of proteins expression of Ca~(2+)regulating SA-inducedresistance to gray mold. The tomato leaves protein was extracted with TCA/acetone under theCK、SA、Ca+SA treatments inoculation with gray mold after48h. There were more than500protein spots in gel image through2-DE technical and the software of PD-Quest. We totallyfound out65differentially expressed protein spots. In detail, there were19spots wup-regulated,6spots down-regulated,9new spots in SA and Ca+SA treatemts; in addition,2spots up-regulated,3spots down-regulated,2new spots and2spots disappeared only in SAtreatment; and8spots up-regulated,1spots down-regulated,10new spots and3spotsdisappeared only in Ca+SA treatemts.
     6.50differentially expressed protein spots with stable expression and higher than1.5-fold spot density were analysed by MODI-TOF-TOF. The42protein spots were obtainedby NCBI database searehing and intereomparison preliminary identifieation. These proteinswere associated with a variety of functions, including photosynthesis, energy metabolism,metabolism, ROS, protein synthesis and degradation, cell growth/division, signal transduction,and transcriptional. The key protein and enzyme of Ca~(2+)enhanced SA-induced resistance ontomato Botrytis cinerea were pathogenesis-related protein5, PR STH-2, acidic endochitinase,SOD and APX.
     8. It was found that the disease index of treatments of Ca~(2+)concentration of nutrientsolution with SA application reduced significantly in ‘NahG’ and WT, which proved that Ca~(2+)enhanced tomato resistance at the condition of SA presence. Effects of Ca~(2+)on SA signalingtransduction in tomato was observed in this paper. The SA-dependent signaling related keygene (NPR1、PR1、TGA1a、TGA2.2) and two mitogen-activated protein kinase (MPK2、MPK4)expression level were analysised. An obvious increase of NPR1、PR1、TGA1a、TGA2.2、MPK2transcript was observed in8mM Ca~(2+)treated tomato seedlings. In contrary, the MPK4 expression level was up-regulation only in0mM Ca~(2+)treated, and the resistance declinedsignificantly in the treatment of0mM Ca~(2+). Looking From the rule of changes, Ca~(2+)concentration of nutrient solution with SA application enhanced tomato resistance, which wasresults of up-regulation expression of SA signaling pathway related genes and MPK2, not theMPK4.
     9. The gene expression of Ca~(2+)related receptor had a great change after treatment ofCa~(2+)concentration of nutrient solution with SA application. The transcription of CDPKenhanced obviously in8mM Ca~(2+)comparation with3mM Ca~(2+), which expression level waslower in0mM Ca~(2+)than3mM Ca~(2+)treatment. From the analysis of relationship betweenCa~(2+)concentration and CaM expression level, it was indicated that the CaM transcription waspositively correlated to SA simulation. The most probably of CBL transcription situation wasCa~(2+)and SA co-regulation. So we speculated that Ca~(2+)related receptor partly participated inthe process of Ca~(2+)concentration with SA application treatment to enhance tomato resistance.
     7. It was clear that Ca~(2+)have the ablity to enhanced plants resistance through treated‘Moneymaker’ and’NahG’ with different Ca~(2+)concentration of nutrient solution andanaylisis the disease index. The disease was lower in ‘Moneymaker’comparation to ‘NahG’.Further more, the disease index was lower in ‘Moneymaker’ and’NahG’ treated with2mMSA after appling with different Ca~(2+)concentration of nutrient solution comparation totreatments of different Ca~(2+)concentration of nutrient solution, it showed that Ca~(2+)not onlyhad the ablity to reduce tomato disease index combined with SA, but also had the function toinclined tomato disease index by the mode of SA-independent. The detail mechanism need tofurther research.
引文
1.敖日嘎.2003.水杨酸和钙处理对桃采后生理及品质的影响.硕士学位论文.内蒙古农业大学
    2.蔡新忠,郑重.1999.植物系统获得抗病性的产生机理和途径.植物保护学报,26(1):83-89.
    3.蔡新忠,郑重.1997.水杨酸诱导水稻幼苗抗瘟性的生化机制.植物病理学报,27(3):231-235.
    4.陈贵华.2009.甜菜抗根丛冰信号转导机制的研究-着重与SA、Ca2+信号分子的研究.内蒙古农业大学博士学位论文.
    5.程玉豆,韩书云,赵军峰,高英杰,孙大业,崔素娟.2011.钙调素参与拟南芥根细胞增殖及幼苗对外源脱落酸的敏感性反应过程.生物化学与生物物理进展,38(1):36-45.
    6.杜妍妍,李天来,余朝阁,张丹.2007.钙对水杨酸调控番茄生长及光合的效应的影响.沈阳农业大学学报,39(3):285-288.
    7.范海延,陈捷,邵美妮等.2009.应答白粉病菌胁迫的黄瓜S17叶片功能蛋白质组学初步分析.植物病理学报,39(6):650-652.
    8.郭秀林,李孟军,关军锋,李广敏.2001. ABA与Ca2+/CaM信使系统关系.西北植物学报,21(6):1283-1287.
    9.李宝聚,范海延,孙艳秋,石延霞.2005.葡聚六糖诱导黄瓜体内水杨酸的积累及其与抗霜霉病关系的初步研究.园艺学报,32(1):115-117.
    10.李青云,葛会波,胡淑明,陶秀娟,黄瑞虹.2008.盐胁迫下外源钙对草莓内源激素含量的影响.西北植物学报,28(3):0517-0525.
    11.李天来,李淼,孙周平.2009.钙和水杨酸对亚高温胁迫下番茄叶片保护酶活性的调控作用.应用生态学报,20(3):586-590.
    12.李鑫.2009.矿质元素调控烟草抗PVYN生理生化及分子机制研究.沈阳农业大学博士学位论文.
    13.李忠光,杜朝昆,龚明.2005. Ca2+和钙调素对H2O2诱导的玉米幼苗耐热性的调控.植物生理与分子生物学学,31(5):515-519.
    14.刘凤权,王金生.2000.水杨酸诱导水稻幼苗抗白叶枯病研究.植物保护学报,27(1):47-52.
    15.刘太国,李永镐,陈万权.2005.水杨酸对感染TMV烟草叶片PAL活性的影响.西北农林科技大学学报,33增刊:111-114.
    16.刘文文.2008.水稻经烯丙异噻唑诱导后抗病相关蛋白的研究.东北农业大学硕士论文.
    17.刘新,孟繁霞,张蜀秋,娄成后.2003. Ca2+参与水杨酸诱导蚕豆气孔运动时的信号转导.植物生理与分子生物学学报,29(1):59-64.
    18.刘悦萍,黄卫东,张俊环.2005.钙-钙调素对水杨酸诱导葡萄幼苗耐热性的影响及与抗氧化的关系.园艺学报,32(3):381-386.
    19.吕均良,陈昆松,陈青俊.1996.采后钙处理对称猴桃软化、内源ABA和乙烯的影响.应用基础与工程科学学报,(4):391-394.
    20.吕双双.2010.钙对乙烯诱导网纹甜瓜果实软化效果及其作用机制研究.沈阳农业大学博士论文.
    21.潘瑞炽.2004.植物生理学(第五版).高等教育出版社.
    22.任丽萍.2011.黄瓜白粉病菌胁迫下近等位基因系B21-a-2-2-2和B21-a-2-1-2叶片的差异蛋白质组分析.沈阳农业大学硕士学位论文.
    23.王芳,刘鹏,史锋,朱靖文.2006.镁对大豆叶片抗氧化代谢的影响.中国油料作物学报.28(1):32-40.
    24.王立安.2008.稻瘟病菌钙/钙调素依赖蛋白激酶基因的克隆及表达研究.河北师范大学硕士学位论文.
    25.王利军,李家承,刘允芬,刘琪瑾,黄卫东,石玉林.2003.高温干旱胁迫下水杨酸和钙对柑橘光合作用和叶绿素荧光的影响.中国农学通报,19(6):185-189.
    26.王雪.2009.大豆抗胞囊线虫机制及与抗性相关的差异蛋白质组学研究.沈阳农业大学博士学位论文.
    27.王文雅,吕静,朱本忠等.2005.钙与钙调素对番茄果实乙烯生物合成和信号转导基因达的调控.华北农学报,20(21):1-5.
    28.王新卫,章镇,朱月林,高志红,乔玉山.2010.神秘果素基因合成及其液泡积累表达载体DC-miraculin的构建.南京农业大学学报,2010,33(6):38-42.
    29.武春飞.2010.葡聚六糖诱导黄瓜抗病性的差异蛋白质组学研究.沈阳农业大学硕士学位论文.
    30.冉隆贤,谷文众,吴光金.2004.水杨酸诱导桉树抗青枯病的作用及相关酶活性变化.林业科学研究,17(1):12-18.
    31.时焦.2003.几丁质酶基因在烟草中表达及对真菌病害的抗性研究.河南农业大学博士学位论文.
    32.孙大业,郭艳林,马力耕等.1997.细胞信号转导.北京:科学出版社.
    33.孙大业,郭艳林,马力耕.2001.细胞信号转导(第三版).北京:科学出版社.
    34.申燕,肖家欣,杨慧,张绍铃.2011.镁胁迫对‘春见’橘橙生长和矿质元素分布及叶片超微结构的影响.园艺学报,38(5):849-858.
    35.孙艳,王鹏.2003.水杨酸对黄瓜幼苗抗高温胁迫能力的影响.西北植物学报,23(11):2011-2013.
    36.谢志霞,张一,田晓莉等.2006.钙和生长素对棉花幼苗侧根发生的协同调控效应.棉花学报,18(2):99-103.
    37.许涛,李天来,齐明芳.2007.钙处理对乙烯诱导的番茄离体花柄脱落的抑制作用.园艺学报,34(2):366-370.
    38.余迪求,岑川,杨明兰,李宝健.1999.玉米不同组织过氧化氢酶水杨酸敏感性的差异和外源水杨酸处理提高玉米抗病性的研究.植物学报,41(12):1293-1298.
    39.岳东霞,张要武.2003.水杨酸对黄瓜植株抗病酶系和白粉病抗性的诱导作用.河北农业大学学报,26(4):14-17.
    40.袁小丽,傅家瑞,李卓杰.1990. CaC12和多胺对萌发种子乙烯释放和提高种子活力的影响.中山大学学报(自然科学版),29(4):92-99.
    41.张蓓,阎爱华,刘刚,刘猛,侯春燕,王冬梅.2010.胞内钙库对小麦叶锈菌侵染之过敏反应的影响.作物学报,36(5):833-839.
    42.朱玉贤,李毅.2002.现代分子生物学.第2版.北京:高等教育出版社,7:281-283.
    43.张志刚,尚庆茂,董涛.2007.水杨酸与CaCl2复配诱导黄瓜幼苗抗复合逆境效果研究.内蒙古农业大学学报,28(3):125-130.
    44.张智慧,聂燕芳,何磊,李云锋,王振中.2009.外源水杨酸诱导水稻相关防御酶活性及内源水杨酸含量的变化华中农业大学学报,29(5):541-545.
    45. Abeysinghe S.2007. Biological control of Fusarium solani f. sp. phaseoli the causal agent of root rot ofbean using Bacillus subtilis CA32and Trichoderma harzianum RU01. Ruhuna J Sci,2:82-88.
    46. Achuo E.A., Audenaert K., Meziane H., Hofte M.2004. The salicylic acid-dependent defence pathwayis effective against different pathogens in tomato and tobacco. Plant Pathol,53:65-72.
    47. Agarwal S., Sairam R.K., Srivastava G.C., Tyagi A., Meena R.C.2005. Role of ABA, salicylic acid,calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Science,169:559-570.
    48. Aliverti A., Pandini V., Pennati A., de Rosa M., Zanetti G.2008. Structural and functional diversity offerredoxin-NADP(+) reductases. Arch Biochem Biophys,474(2):283-291. doi:10.1016/j.abb.
    49. Allan A.C., Fluhr R.1997. Two distinct sources of elicited reactive oxygen species in tobacco epidermalcells. Plant Cell,9:1559-1572.
    50. Alvarez M.E., Pennell R.I., Meijer P.J., Ishikawa A., Dixon R.A. and Lamb C.J.1998. Reactive oxygenintermediates mediate a systemic signal network in the establishment of plant immunity. Cell,92:773-784.
    51. Anthony J., Trewavas and Rui Malhó.1998. Ca2+signalling in plant cells: the big network! CurrentOpinion in Plant Biology,1:428-433.
    52. Andreasson E., Jenkins T., Brodersen P., Thorgrimsen S., Petersen N.H.T., et al.2005. The MAP kinasesubstrate MKS1is a regulator of plant defense responses. EMBO J,24:2579-89.
    53. Ausubel F.M.2005. Are innate immune signaling pathways in plants and animals conserved? NatureImmunol,6:973-979.
    54. Asselbergh B., De vleesschauwer D., H ften M.2008. Global switches and fine-tuning-ABA modulatesplant pathogen defense. Mol. Plant-Microbe Interact,21:709-719.
    55. Balconi E., Pennati A., Crobu D., Pandini V., Cerutti R., Zanetti G., Aliverti A.2009. Theferredoxin-NADP+reductase/ferredoxin electron transfer system of Plasmodium falciparum. FEBS J,276(14):3825-3836. doi:10.1111/j.1742-4658.
    56. Bartsch M., Gobbato E., Bednarek P., Debey S., Schultze J.L., et al.2006. Salicylic acid-independENHANCED DISEASE SUSCEPTIBILITY1signaling in Arabidopsis immunity and cell death isregulated by the monooxygenase FMO1and the nudix hydrolase NUDT7. Plant Cell,18:1038-51.
    57. Beckers G.J.M., Jaskiewicz M., Liu Y., Zhang S., Conrath U.2009. MAP kinases3and6are requiredfor full priming of stress responses in Arabidopsis. Plant Cell,21(3):944-53.
    58. Blanco F., Garreton V., Frey N., Dominguez C., Perez-Acle T., et al.2005. Identification ofNPR1-dependent and independent genes early induced by salicylic acid treatment in Arabidopsis. PlantMol. Biol,59:927-44.
    59. Blanco F., Salinas P., Cecchini N.M., Jordana X., Van Hummelen P., et al.2009. Early genomicresponses to salicylic acid in Arabidopsis. Plant Mol. Biol, DOI:10.1007/s11103-009-9458-1.
    60. Blume B., Nurnberger T., Nass N., et al.2000. Receptor mediated increase in cytoplasmic free calciumrequired for activation of pathogen defense in parsley. Plant Cell,12:1425-1440.
    61. Boller T., Gehria A., Mauch F.1983. Chitinase in bean leaves: induction by ethylene, purification,properties, and possible function. Planta,157:22-31.
    62. Boudsocq M., Willmann M.R., McCormac M., Lee Horim., Shan L,B., He P., Bush J., Cheng S.H. andSheen J.2010. Differential innate immune signaling via Ca2+sensor protein kinases. Nature.464:418-422.
    63. Burnett E.C., Desikan R., Moser R.C., Neill S.J.2000. ABA activation of an MAP kinase in Pisumsativum epidermal peels correlates with stomatal responses to ABA. J. Exp. Bot,51:197-205.
    64. Bradford M.M.1976. A dye binding assay for protein. Anal. Biochem,72:248-254.
    65. Bradley D.J., Kjellborm P., Lamb C.1992. Elicit or-and wound-induced oxidative cross-link of a prolinerich plant cell wal l protein: a novel, rapid defense response. Cell,70:21-30.
    66. Brission F.L., Tenhaken R., Lamb C.1994. Function of oxidative cross-linking of cell wall structuralprotein in plant disease resistance. Plant Cell.6:1703-1712.
    67. Brodersen P., Petersen M., Nielsen H.B., Zhu S., Newman M.A., et al.2006. Arabidopsis MAP kinase4regulates salicylic acid-and jasmonic acid/ethylene-dependent responses via EDS1and PAD4. Plant J,47:532-46.
    68. Burns J.K., Evensen K.B.1986. Ca2+effects on ethylene, carbondioxide and1-aminocyclopropane-1-carboxylic acid synthase activity. Physiol Plant,66:609-614.
    69. Catinot J., Buchala A., Abou-Mansour E., Metraux J.P.2008. Salicylic acid production in response tobiotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett,582:473–78.
    70. Chakrabarty P KTanejia N K,et al.1990. Effect of nutrients on curdrot of cauliflower (Brassicaoleracea convar botrytis var. botrytis). India J Agri Sci,60(1):74-76.
    71. Chandran D, Tai Y C, Hather G, Dewdney J, Denoux C, et al.2009. Temporal global expression datareveals known and novel salicylate-impacted processes and regulators mediating powdery mildewgrowth and reproduction on Arabidopsis. Plant Physiol, DOI:10.1104/pp.108.132985.
    72. Chardonnet C.O., Sams C.E. and Conway W.S.1999. Calcium effects on the mycelia cell walls ofBotrytis cinerea. Phytochem,52:967-973.
    73. Chen C.Q., Blanger R.R., Benhamou N., et al.1999. Role of salicylic acid in systemic resistanceinduced by Pseudomonas spp. Against Pythium aphanidermatum in cucumber roots. European Journalof Plant Pathology,105(5):477-486.
    74. Chen H.J., Hou W.C.H., Kuc Joseph. and Lin Y.H.2001. Ca2+-dependent and Ca2+-independentexcretion modes of salicylic acid in tobacco cell suspension culture. Journal of Experimental Botany,52(359):1219-1226.
    75. Chen Z., Malamy J., Henning J., Conrath U., Sanchez-Casas P. and Silva H.1995. Induction,modification, and transduction of the salicylic acid signal in plant defense responses. Proceedings ofthe National Academy of Sciences,92:4134-4137.
    76. Chen Z.X., Silva H., Klessig D.F.1993. Active oxygen species in the induction of plant systemicacquired resistance by salicylic acid. Science,262:1883-86.
    77. Chen Z.X.and Klessing D.F.1991. Identification of a soluble salicylic acid binding protein that mayfunction in signal transduction in the plant dIsease resistance response.Proc Natl Acad Sci USA,88:8179-8183.
    78. Cheng Y.T., Germain H., Wiermer M., Bi D., Xu F., Garcia A.V., Wirthmueller L., Despres C., ParkerJ.E., Zhang Y., Li X.2009. Nuclear pore complex component MOS7/Nup88is required for innateimmunity and nuclear accumulation of defense regulators in Arabidopsis. Plant Cell,21:2503-2516.
    79. Cheverry J.L.,Pouliquen J.,Guyader H.L.E.,et al.1988. Calcium regulation of exogenous andEndogenousl-aminocyclopropane-1-carboxylic acid bioconversion to ethylene. Physiol Plant,74:53-57.
    80. Chisholm S.T., Coaker G., Day B., Stakawicz B.J.2006. Host-microbe interactions: shaping theevolution of the plant immune response. Cell,124:803-14.
    81. Clarke S.M., Mur L.A.J., Wood J.E., Scott I.M.2004. Salicylic acid dependent signaling promotes basalthermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J,38:432-47
    82. Colcombet J., Hirt H.2008. Arabidopsis MAPKs: a complex signaling network involved in multiplebiological processes. Biochem. J,413:217-26.
    83. Conrath U., Beckers G.J.M., Flors V., Garcia-Agustin P., Jakab G., et al.2006. Priming: getting readyfor battle. Mol. Plant-Microbe Interact,19:1062-71.
    84. Conway W.S., Sams C.E., Kelman A., et al.1994. Enhancing the natural resistance of plant tissues topost-harvest diseases through calcium application. Hort Sci,29(7):751-753.
    85. Cui J., Bahrami A.K., Pringle E.G.., Hernandex G., Bender C.L., Pierce N.E. and Auxubel F.M.2005.Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. ProcNatl Acad Sci. USA,102:1791-1796.
    86. Dangl J.L., Jones J.D.G..2001. Plant pathogens and integrated defence responses to infection. Nature.411:826-833.
    87. Dean J.V., Delaney S.P.2008. Metabolism of salicylic acid in wild-type, ugt74f1and ugt74f2glucosyl-transferase mutants of Arabidopsis thaliana. Physiol. Plant.132:417–25
    88. Dean J.V. and Mills J.D.2004. Uptake of salicylic acid2-O-β-D-glucose into soybean tonoplastvesicles by an ATP-binding cassette transporter-type mechanism. Physiol Plant,120:603-12.
    89. Dean J.V., Mohammed L.A., Fitzpatrick T.2005. The formation, vacuolar localization, and tonoplasttransport of salicylic acid glucose conjugates in tobacco cell suspension cultures. Planta,221:287-96.
    90. Dean J.V., Shah R.P., Mohammed L.A.2003. Formation and vacuolar localization of salicylic acidglucose conjugates in soybean cell suspension cultures. Physiol Plant,118:328-36.
    91. DebRoy S., Thilmony R., Kwack Y.B., Nomura K., He S.Y.2004. A family of conserved bacterialeffectors inhibits salicylicacid-mediated basal immunity and promotes disease necrosisin plants. Proc.Natl. Acad. Sci. USA,101:9927-9932.
    92. De Fraia C.T., Schmelz E.A. and Mou Z.L.2008. A rapid biosensor-based method for quantification offree and glucose-conjugated salicylic acid. Plant Methods,4:28. doi:10.1186/1746-4811-4-28.
    93. Delaney T.P., Ukness S. and Vernoolj B.1994. A central role of salicylic acid in plant disease resistance.Science,266:1247-1250.
    94. Dempscy D.A. and, Klessig D.F.1995. Signals in plant disease resistance. Bull de I’Institut Pasteur,93:167-186.
    95. Dempscy D.A., Shah J., Klessig D.F.1999. Salicylic acid and disease resistance in plants. Crit. Rev.Plant Sci,18:547-75.
    96. Dong X.2004. NPR1, all things considered. Curr. Opin. Plant Biol,7:547-52.
    97. Durrant W.E., Dong X.2004. Systemic acquired resistance. Annu. Rev. Phytopathol,42:185-209.
    98. Durner J., Shah J., Klessig D.F.1997. Salicylic acid and disease resistance in plants. Trends Plant Sci,2:266-74.
    99. Dypbukt J.M., Ankarcrona M., Burkitt M., Sj holm A., Str m K., Orrenius S. and Nicotera P.1994.Different perooxidant levels stimulate growth, trigger apoptosis or produce necrosis of insulinsecreting RINm5F cells. The Journal of Biollgical Chemistry,369:30553-30560.
    100. Du L., Ali G.S., Simons K.A., Hou J., Yang T., et al.2009. Ca2+/calmodulin regulatesalicylic-acid-mediated plant immunity. Nature, DOI:10.1038/nature07612.
    101. Ekengren S.K., Liu Y., Schiff M., Dinesh-Kumar S.P. and Martin G.B.2003. Two MAPK cascades,NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J,36:905-917.
    102. Elad Y., Yunis H. and Volpin H.1993. Effect of nutriation on susceptibility of cucumber, eggplant andpepper crops to Botrytis cinerea. Can. J. Botany,71:602-608.
    103. Elliott D.C., Batchelor S.M., Cassar R.A., et al.1983. Calmodulin-binding drugs affect responsestocytokinin, auxin and gibberellic acid. Plant Physiol,72:219-224.
    104. Enyedi A.J. and Raskin I.1993. Induction of UDP-glucose: salicylic acid glucosyltransferase activityin tobacco mosaic virus-inoculated tobacco (Nicotiana tabacum) leaves. Plant Physiol,101:1375-1380.
    105. Eulgem T.2005. Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci,10:71-78.
    106. Fan W., Dong X.2002. In vivo interaction between NPR1and transcription factor TGA2leads tosalicylic acid-mediated gene activation in Arabidopsis. Plant Cell,14:1377-89.
    107. Fan G.Z., Li X.C., Wang X.D., Zhai Q.L. and Zhan Y.G.2010. Chitosan activates defense responsesand triterpenoid production in cell suspension cultures of Betula platyphylla Suk. Afri. J. of Biotechnol,9(19):2816-2820.
    108. Ferguson I.B.1983. Calcium stimulation of ethylene production induced by1-aminocyclopropane-1-carboxylic acid and indole-3-acetic acid. J.Plant Growth Regul,2:205-211.
    109. Foyer C.H., Lopez-Del gado H., Ferrer M.A., et al.1997. Hydrogen peroxide and glutathi oneassociated mechanisms of acclimat or ystress tolerance and signaling. Physiol Plant,100:241-254.
    110. Frye C.A., Tang D., Innes R.W.2001. Negative regulation of defense responses in plants by aconserved MAPKK kinase. Proc. Natl. Acad. Sci,98:373-78.
    111. Gaffney T., Friedrich L., Vernooij B.1993. Requirement of salicylic acid for the induce on of systemicacquired resistance. Science,261:754-756.
    112. Gao G., Jin L.P., Xie K.Y., et al.2009. The potato StLTPa7gene displays a complex Ca-associatedpattern of expression during the early stage of potato-Ralstonia solanacearum interaction. Mol PlantPathol,10(1):15-27.
    113. Garcion C., Lohman A., Lamodiere`E., Catinot J., Buchala A., et al.2008. Characterization andbiological function of the ISOCHORISMATESYNTHASE2gene of Arabidopsisthaliana. PlantPhysiol,147:1279-1287.
    114. Garcion C., Metraux J.P.2006. Salicylic acid. In Plant Hormone Signaling,24:229-255. Oxford:Blackwell Publishing Ltd.
    115. Girous E.L., Henkin R.I.1974. Purification and some properties of miraculin,a glycoprotein fromSynsepalum dulificum which provokes sweetness and blocks sourness. J. Agr. Food Chem,224):595-601.
    116. Glazebrook J., Chen W., Estes B., Chang H.S., Nawrath C., et al.2003. Topology of the networkintegrating salicylate and jasmonate signal transduction derived from global expression phenotyping.Plant J,34:217-28.
    117. Goritschnig S., Zhang Y., Li X.2007. The ubiquitin pathway is required for innate immunity inArabidopsis. Plant J,49:540-51.
    118. Guo X., Li M.J., Guan J.F., et al.2002. The Relationship between ABA and Ca2+/CaM in WinterWheat Seedlings under PEG Stress.Acta Agronomica Sinica,28(4):537-540.
    119. Grant M., Adams S., Knight M., et al.2000. The RPM1plant disease resistance gene facilitates a rapidand sustained increase in cytosolic calcium that is necessary for the oxidative burst andhypersensitive cell death. Plant J,23:441-450.
    120. Griebel T. and Zeier J.2008. Light regulation and daytime dependency of inducible plant defenses inArabidopsis: Phytochrome signaling controls systemic acquired resistance rather than local defense.Plant Physioloy,147:790-801.
    121. Gupta V., Willits M.G.and Glazebrook J.2000. Arabidopsis thaliana EDS4contributes to salicylicacid (SA)-dependent expression of defense responses: evidence for inhibition of jasmonic acidsignaling by SA. Mol Plant Microbe Interact,13:503-511.
    122. Harper J.F. and Harmon A.2005. Plants symbiosis and parasites: a calcium signalling connection. Nat.Rev. Mol. Cell Biol,6(7):555-566.
    123. Hayat S. and Ahmad A.2007. Salicylic Acid-A Plant Hormone. Netherlands: Springer,8:197246.
    124. Hennig J., Malamy J., Grynkiewicz G., Indulski J. and Klessig D.F.1993. Interconversion of thesalicylic acid signal and its glucoside in tobacco. Plant J,4:593-600.
    125. Hepler P.K., Wayne R.O.1985. Calcium and plant development. Ann. Rev. Plant Physiol,36:391-439.
    126. Hu X.L., Jiang M.Y., Zhang J.H. and Zhang A.Y.2006. Calcium/calmodulin is required for abscisicacid-induced antioxidant defense and functions both upstream and downstream of H2O2production inleaves of maize plants. New Phytologist,173(1):27-38.
    127. Horvath D.M., Huang D.J., Chua N.H.1998. Four classes of salicylate-induced tobacco genes. Mol.Plant-Microbe Interact,11:895-905.
    128. Ikura M., Osawa M., Ames J.B.2002. The role of calcium binding proteins in the control oftranscription: and functon. Bioessays,24:625-636.
    129. Ito K., Tsutsumi K.1999. A cold-induced bZIP protein gene in radish root regulated by calcium-andcycloheximide-mediated. signals. Plant Sci,142:57-65.
    130. Ishikawa A., Kimura Y., Yasuda M., Nakashita H. and Yoshida S.2006. Salicylic acid-mediated celldeath in the Arabidopsis len3mutant. Biosci Biotechnol Biochem,70:1447-1453.
    131. Jain M., Kaur N., Tyagi A.K., Khurana J.P.2006. The auxin responsive GH3gene family in rice(Oryza sativa). Functional and Integrative Genomics,6:36-46.
    132. Jiang M.Y. and Zhang J.H.2003, Cross-talk between calcium and reactive oxygen species originatedfrom NADPH oxidase in abscisic acid induced antioxidant in leaves of maize seedlings. Plant Cell andEnvironment,26(6):929-939.
    133. Johnson C., Mhatre A., Arias J.2008. NPR1preferentially binds to the DNA-inactive form ofArabidopsis TGA2. Biochim. Biophys. Acta,1779:583-89.
    134. Jonak C., Kiegerl S., Ligterink W., Barker P.J., Huskisson N.S., Hirt H.1996. Stress signaling in plants:a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA,93:11274-11279.
    135. Jonak C., Ligterink W., Hirt H.1999. MAP kinases in plant signal transduction. Cell Mol Life Sci,55:204-213.
    136. Jones J.D.G and Dangl J.L.2006. The plant immune system. Nature,444:323-29.
    137. Jones R.L., Jacobsen J.V.1983. Calcium regulation of the secretion of α-amylase izoenzymes andother proteins from barley aleurone layers. Planta,158:1-9.
    138. Kandoth P.K., Ranf S., Pancholi S.S., Jayanty S., Walla M.D., Miller W., Howe G.A., Lincoln D.E.and Stratmann J.W.2007. Tomato MAPKs LeMPK1, LeMPK2, and LeMPK3function in thesystemin-mediated defense response against herbivorous insects. PNAS,104(29):12205-12210.
    139. Kawano T., Sahashi N., Takahashi K., Uozumi N. and Muto S.1998. Salicylic acid inducesextracellular superoxide generation followed by an increase in cytosolic calcium ion in tobacco cellsuspension culture: The earliest events in salicylic acid signal transduction. Plant and CellPhysioology,36:721-730.
    140. Kesarwani M., Yoo J., Dong X.2007. Genetic interactions of TGA transcription factors in theregulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol,144:336-46.
    141. Khan S.Z., Dyer J..L, Michelangeli F.2001. Inhibitor of the type1inositol1,4,5-trisphosphatesensitive Ca2+channel by camodulin antagonists. Cell Signal,13:57-63.
    142. Kim Min-chul., Chung Woo-sik., Yun Dae-jin and Cho Moo-je.2009. Calcium andCalmodulin-mediated regulation of gene expression in plants. Molecular Plant,2(1):12-21.
    143. Kim S.T., Kang Y.H., Wang Y et al.2009. Secretome analysis of differentially induced proteins in ricesuspension-cultured cells triggered by rice blast fungus and elicitor. Proteomics,9(5):1302-1313.
    144. Kinkema M., Fan W. and Dong X.2000. Nuclear localization of NPR1is required for activation of PRgene expression. Plant Cell,12:2339-2350.
    145. Klessig D.F and Malamy J.1994. The salicylic acid signal in plants. Plant Molecular Biology,26:1439-1458.
    146. Kolukisaoglu U., Weinl S., Blazevic D., Batistic O. and Kudla J.2004. Calcium sensors and theirinteracting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. PlantPhysiol,134:43-58.
    147. Kovtun Y., Chiu W.L., Zeng W. and Sheen J.1998. Suppression of auxin signal transduction by aMAPK cascade in higher plants. Nature,395:716-720.
    148. Kudla J., Xu Q., Harter K., Gruissem W. and Luan S.1999. Genes for calcineurin B-like proteins inArabidopsis are differentially regulated by stress signals. Proc. Natl. Acad. Sci. USA,96(8):4718-4723.
    149. Kumar D., Klessig D.F.2000. Differential induction of tobacco MAP kinases by the defense signalsnitricoxide Salicylic acid, ethylene, and jasmonic acid. Mol Plant Microbe Interact,13:347-351
    150. Kurihara Y. and Beidler L.M.1968. Taste-modifying protein from miracle fruit. Science,161:1241-1243.
    151. Kurosaki F.1994. Regulation of biosynthesis of carrot phytoalexin6-methoxymellein. Phytochemistry,37:727-730.
    152. Kwak J.M., Mori I.C., Pei Z.M., Leonhardt N., Torres M.A. and Dangl J.L.2003. NADPH oxidaseAtrbohD and AtrbohF genes function in ROS-dependent SA signaling in Arabidopsis. The EMBOJournal,22:2623-2633.
    153. Lamb C and Dixon R.A.1997. The oxidative burst in plant disease resistance. Annual Review of PlantPhysiology and Plant Molecular Biology,48:251-275.
    154. Lau O.L., Yang S.F.1976. Inhibition of ethylene produetion by cobaltous ion. Plant Physiol,58:114-117.
    155. Lau O.L., Yang S.F.1974. Synergistic effect of calcium and kinetin on ethylenep roduction by mungbean hypocotyl. Planta,118:1-6.
    156. Lebel E., Heifetz P., Thorne L., Uknes S., Ryals J., et al.1998. Function alanalysis of regulatorysequences controlling PR-1gene expression in Arabidopsis. Plant J,16:223-33.
    157. Lee J., Nam J., Park H.C., Na G., Miura K., etal.2006. Salicylic acid-mediated innate immunity inArabidopsis is regulated by SIZ1SUMO E3ligase. Plant J,49:79-90.
    158. Lee H.I., Raskin I.1998. Glucosylation of salicylic acid in Nicotiana tabacum cv. Xanthinc. Phytopathology,88:692-97.
    159. Lee H.I. and Raskin I.1999. Purification, cloning, and expression of a pathogen inducibleUDP-glucose: salicylic acid glucosyltransferase from tobacco. J. Biol. Chem,274:36637-36642.
    160. Lee J., Nam J., Park H.C., Na G., Miura K., Jin J.B., Yoo C.Y., Baek D., Kim D.H. and Jeong J.C.2007. Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1SUMO E3ligase.Plant J,49:79-90.
    161. Lee T., Nellis M.2009. Evidence that the BONZAI1/COPINE1protein is a calcium andpathogen-responsive defense suppressor. Plant Mol Biol,69(12):155-66.
    162. Leon J., Yalpani N., Raskin I. and A.1993. Lawton M. induction of benzoic acid2-hydroxylase invirus-inoculated tobacco. Plant Physiol,103:323-328.163.Levine A., Pennell R.I., Alvarez M., et al.1994. Calcium-mediated apoptosis in a plant hypersensitivedisease resistance response. Curr Biol,6:427-437.
    164. Li B.J., Fan H.Y.2005. Accumulation of salicylic acid in cucumder treated with glucohexaose and itsrelation to systemic acquired resistance against cucumber downy mildew. Acta Horticult Sin,32(1):115-117.
    165. Liu J. and Zhu J.K,1998. A calcium sensor homolog required for plant salt tolerance. Science,280(5371):1943-1945
    166. Li Y.Z., Zheng X.H., Tang H.L., Zhu J.W., Yang J.M.2003. Increase of-1,3-Glucanase andChitinase Activities in Cotton Callus Cells Treated by Salicylic Acid and Toxin of Verticilliumdahliae. Acta Botanica Sinica,45(7):802-808.
    167. Loake G., Grant M.2007. Salicylic acid in plant defense--the players and protagonists.Curr.Opin.Plant Biol,10:466-72.
    168. López M.A., Bannenbery G and Castresana C.2008. Controlling hormone signaling is a plant andpathogen challenge for growth and survival. Curr.Opin.Plant Biol,11:420-27.
    169. Mahajan S., Sopory S.K. and Tuteja N.2006. Cloning and characterization of CBL-CIPK signalingcomponents from a legume (Pisum sativum L.). FEBS J,273(5):907-925.
    170. Malamy J., Carr J.P., Klessig D.F. and Raskin I.1990. Salicylic acid: a likely endogenous signal in theresistance response of tobacco to viral infection. Science,250:1002-1004.
    171. Mar′a J.P.L., Van Loon L.C. and Pieterse C.M.J.2005. Jasmonates-signals in plant-microbeinteractions. Journal of Plant Growth Regulation,23:211-222.
    172. Marianne C.V., Nynker B., Federica D., Huub J.M.L., John F.B. and Robert V.2002. Method for theextraction of the volatile compound salicylic acid from tobacco leaf material. Phytochem. Anal,13:45-50.
    173. Masuda Y., Nirasawa S., Nakaya K., et al.1995. Cloning and sequencing of a cDNA encoding ataste-modifying protein,miraculin. Gene,161:175-177.
    174. Martinez C., Pons E., Prats G., Leon J.2004. Salicylic acid regulates flowering time and links defenceresponses and reproductive development. Plant J,37:209-17.
    175. Mateo A., Funck D., Muhlenbock P., Kular B., Mullineaux P.M., et al.2006. Controlled levels ofsalicylic acid are required for optimal photosynthesis and redox homeostasis. J. Exp. Bot,57:1795-807
    176. Mateo A., Muhlenbock P., Resterucci C., Chang C.C.C., Miszalski Z., et al.2004. Lesion SimulatingDisease1is required for acclimation to conditions that promote excess excitation energy. Plant Physiol,136:2818-30.
    177. Matsuoka M. and Ohashi Y.1986. Induction of pathogenesis related protein in tobacco leaves.PlantPhysiol,80:505-510.
    178. Mauch-Mani B. and Slusarenko A.J.1996. Production of salicylic acid precursors is a major functionof phenylalanine ammonia-lyase in the resistance of Arabidopsis to Perenospora parasitica. Plant Cell,8:203-212.
    179. Mccormack E., Braam J.2003. Calmodulins and related potential calcium sensors in Arabidopsis.Plant Cell Physiol,44:975-981.
    180. Medvedev S.S.2005. Calcium signaling system in plants. Plant Physiol,52(2):249-270.
    181. Merillon J.M., Liu D., Hu Guet F., et al.1991. Effects of calcium entry blockers and calmodulininhibitors on cytokine-enhanced alkaloid accumulation in Catharanthus roseus cell cultures.PlantPhysiology Biochemistry,29:289-296.
    182. Metraux J.P., Raskin I.1993. Role of phenolics in plant disease resistance. In Biotechnology in PlantDisease Control, ed. I Chet,11:191-209. New York: John Wiley&Sons.
    183. Metraux J.P.2001. Systemic acquired resist ance and salicylic acid: current state of knowledge.European Journal of Plant Pathology,107(1):13-18.
    184. Meuwly P. and Métraux J.P.1993. Ortho-Anisic acid as internal standard for the simultaneousquantitation of salicylic acid and its putative biosynthetic precursors in cucumber leaves. Ana1Bio-chem,214:500-505.
    185. Migliacio F., Galston A.W.1989. The role of calcium and in calcium in indole-3-acetic acid movementand graviresponse in etiolated pea epitolys. Plant Growth regulation,8:335-347.
    186. Morita-Yamamuro C., Tsutsui T., Sato M., Yoshioka H., Tamaoki M., Ogawa D., Matsuura H.,Yoshihara T., Ikeda A., Uyeda I. and Yamaguchi J.2005. The Arabidopsis gene CAD1controlsprogrammed cell death in the plant immune system and encodes a protein containing a MACPFdomain. Plant Cell Physiol,46:902-912.
    187. Morris K., Mackerness S.A.H., Page T., John C.F., Murphy A.M., et al.2000. Salicylic acid has a rolein regulating gene expression during leaf senescence. Plant J,23:677-85.
    188. Mou Z., Fan W., Dong X.2003. Inducers of plant systemic acquired resistance regulate NPR1functionthrough redox changes. Cell,113:935-44.
    189. Muller S. and Kurosaki F.2004. Role of salicylic acid and intracellular Ca2+in the induction ofchintinase activity in carrot suspension culture. Physiol Mol Plant Pahtol,45:101-109.
    190. Nandi A., Krothapalli K., Buseman C.M., Li M., Welti R., et al.2003. Arabidopsis sfd mutants affectplastidic lipid composition and suppress dwarfing, cell death, and the enhanced disease resistancephenotypes resulting from the deficiency of a fatty acid desaturase. Plant Cell,15:2383-98.
    191. Nandi A., Moeder W., Kachroo P., Klessig D.F., Shah J.2005. Arabidopsis ssi2-conferredsusceptibility to Botrytis cinerea is dependent on EDS5and PAD4. Mol. Plant-Microbe Interact,18:363-70.
    192. Narusaka Y., Narusaka M., Horio T., et al.1999. Comparison of local and systemic induction ofacquired disease resistance in cucumber plants trea ed with benzothiadiazoles or salicylic acid. Plantand Cell Physiology,40(4):388-395.
    193. Norman C., Howell K.A., Millar A.H., Whelan J.M., Day D.A.2004. Salicylic acid is an uncouplerand inhibitor of mitochondrial electron transport. Plant Physiol,134:492-501.
    194. Nürnberger T., Brunner F., Kermmerling B. and Piater L.2004. Innate immunity in plants and animals:striking similarities and obvious differences. Immunological Review,198:249-266.
    195. Nuanovi G., Neskovie M.1991. Differential effects of calmodulin anatgondits on idolyl-3-acctic acidand gibberellic acid-induced biphasic growth responses. Biological Plant,31:75-80.
    196. Ogasawara Y., Hiraoka G., Yumoto F., et al.2008. Synergistic activation of the Arabidopsis NADPHoxidase AtrbohD by Ca2+and phosphorylation. J Biol Chem,283:8885-8892.
    197. Pallas J.A., Paiva N.L., Lamb C. and Dixon R.A.1996. Tobacco plants epigenetically suppressed inphenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response toinfection by tobacco mosaic virus. Plant J,10:281-293.
    198. Patharkar O.R. and Cushman J.C.2000. A stress-induced calcium-dependent protein kinase frommesombryanthemum crystallinum phosphorylates a two-component pesudo-response regulator. Plant J,24(5):679-691.
    199. Patterson B.D., Mackae E.A. and Ferguson I.B.1984. Estimation of hydrogen peroxide in plantextracts using titanium (IV). Analytical Biochemistry,139(2):487-492.
    200. Pedley K.F. and Martin G.B.2003. Molecular basis of Pto-mediated resistance to bacterial speckdisease in tomato. Annu. Rev. Phytopathol,41:215-243.
    201. Pedley K.F. and Martin G.B.2004. Identification of MAPKs and their possible MAPK kinaseactivators involved in the Pto-mediated defense response of tomato. J. Biol. Chem,279:49229-49235.
    202. Pedley K.F. and Martin G.B.2005. Role of mitogen-activated protein kinases in plant immunity. Curr.Opin. Plant Biol,8:541-547.
    203. Pei Z.M., Murata Y., Bnning G., Thomine S., Klusener B. and Allen G.J.2000. Calcium channelsactivated by hydrogen peroxide mediate abscisic acid signaling in guard cell. Nature,406:731-734.
    204. Peng J.Y., Deng X.J., Huang J.H., Jia S.H., Miao X.X. and Huang Y.P.2004. Role of salicylic acid intomato defense against cotton bollworm, Helicoverpa armigera Hubner. Zetschrift Fur Naturforschung C-A. Journal of Biosciences,59(11-12):856-862.
    205. Petersen M., Brodersen P., Naested H., Andreasson E., Lindhart U.J., et al.2000. Arabidopsis MAPkinase4negatively regulates systemic acquired resistance. Cell,103:1111-20.
    206. Pieterse C.M.J., Leon-Reyes A., Van der Ent S and Van Wees S.C.M.2009Networking bysmall-molecule hormones in plant immunity. Nature Chem. Biol,5(5):308-316.
    207. Pieterse C.M.J., Van Loon L.C.2004. NPR1: the spider in the web of induced resistance signalingpathways. Curr. Opin. Plant Biol,7:456-464.
    208. Pontier D., Miao Z.H., Lam E.2001. Trans-dominant suppression of plant TGA factors reveals theirnegative and positive roles in plant defense responses. Plant J,27:529-38.
    209. Qiu J.L., Fiil B.K., Petersen K., Nielsen H.B., Botanga C.J., et al.2008. Arabidopsis MAP kinase4regulates gene expression through transcription factor release in the nucleus. EMBO J,27:2214-21.
    210. Raese J.1991. Calcium sprays fertilizers effective against disorders. Good Fruit Grower,42(6):30-33.signals in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol,43(2):375-414.
    211. Radman R., Saez T., Bucke C., Keshavarz T.2003. Elicitation of plants and microbial cellsystems. Biotechnol Appl Biochem,37:91-102.
    212. Rajou L., Belghazi M., Huguet R., Robin C., Moreau A., et al.2006. Proteomic investigation of theeffect of salicylic acid on Arabidopsis seed germination and establishment of early defensemechanisms. Plant Physiol,141:910-923.
    213. Rao M.V., Paliyath G., Ormrod D.P., Murr D.P and Watkins C.B.1997. Influence of salicylic acid onH2O2production, oxidative stress, and H2O2-metabolizing enzymes. Plant Physiology,115:137-149.
    214. Raskin I.1992. Role of salicylic acid in plants. Annu. Rev. Plant Physiol,43:439-63.
    215. Rasmussen J.B., Hammerschmidt R., Zook M.N.1991. Systemic induction of salicylic acidaccumulation in cucumber after inoculation with Pseudomonas syringae. Plant Physiol,97:1342-1347.
    216. Rate D.N., Cuenca J.V., Bowman G.R., Guttman D.S., Greenberg J.T.1999. The gain-of-functionArabidopsis acd6mutant reveals novel regulation and function of the salicylic acid signaling pathwayin controlling cell death, defenses, and cell growth. Plant Cell,11:1695-708.
    217. Raymond E., Zielinski.1998. Calmodulin and calmodulin-binding proteins in plants. Annu Rev PlantPhysiol Plant Mol.Biol,49(3):697-725.
    218. Raz V. and Fluhr R.1992. Calcium requirement for ethylene-dependent responses. Plant Cell,4:1123-1130.
    219. Reymond P., Weber H., Damond M., et al.2000. Differential gene expression in response tomechanical wounding and insect feeding in Arabidopsis.Plant Cell,12:707-7.
    220. Rudd J.J., Franklin Tong V.E.2000. Unravelling response specificity in Ca2+signaling pathways inplant cells. New Phytol,151:7-33.
    221. Roberts D.M., and Harmon A.C.1992. Calcium-modulated proteins: targets of intracellular calcium
    222. Rochon A., Boyle P., Wignes T., Fobert P.R., Despresi C.2006. The coactivator function ofArabidopsis NPR1requires the core of its BTB/POZ domain and the oxidation of C-terminalcysteines. Plant Cell,18:3670-85.
    223. Saftner R.A., Conway W.S., Sams C.E.1999. Postharvest calcium infiltration alone and combinedwith surface coating treatments influence volatile levels, respiration, ethylene production, andinternal atmospheres of‘Golden delicious’apples. J Amer Soc Hort Sci,124(5):553-558.
    224. Santner A. and Estellen M.2009. Recent advances and emerging trends in plant hormone signaling.Nature,459:1071-1078.
    225. Saunders M.J., Helper P.K.1981. Localization of membrane associated calcium following cytokinintreatment in Funaria using chlorotetracycline. Planta,152,272-281.
    226. Saunders M.J., Hepler P.K.1982. Ca2+ionophore A23187stimulates cytokinin-like mitosis inFunaria. Science,217:943-945.
    227. Saunders M.J., Hepler P.K.1983. Calcium antagonists and calmodulin inhibitors blockcytokinin-induced bud formation in Funaria. Dev. Biol,99,41-49.
    228. Sawada H., Shin I.S. and Usui K.2006. Induction of benzoic acid2-hydroxylase and salicylic acidbiosynthesis-modulation by salt stress in rice seedlings. Plant Sci,171:263-270.
    229. Scheel D.1998. Resistance response physiology and signal transduction. Current Opinion in PlantBiology,1:305-310.
    230. Schwacke R. and Hager A.1992. Fungal elieilors induee a transient relea.se of aetive oxygen speciesfrom cultured spruee cells that is dependent on Ca2+and protein-kinase activity. Planta,187:136-141.
    231. Seeber F., Aliverti A., Zanetti G.2005. The plant-type ferredoxin-NADP+reductase/ferredoxin redoxsystem as a possible drug target against apicomplexan human parasites. Curr Pharm Des,11(24):3159-72.
    232. Sindha G.S.1989. Effect of macro and micro nutrients on the development of powdery mildewof pea.Indian J Myco Plant Patho,19(2):219-221.
    233. Smith C.J., Newton R.P.1989. Plant host pathogen interaction elicitation of phenylalanineammonialyase activity and its mediaction by Ca2+. Biochem Soc Transac,16:1069-1070.
    234. Snedden W.A., Fromm H.2001. Calmodulin as a versatile calcium signal transducer in plants. NewPhutol,151:35-66.
    235. Song J.T., Lu H., Greenberg J.T.2004. Divergent roles in Arabidopsis thaliana development anddefense of two homologous genes, ABERRANT GROWTH AND DEATH2and AGD2-LIKEDEFENSE RESPONSE PROTEIN1, encoding novel aminotransferases. Plant Cell,16:353-66.
    236. Song J.T.2006. Induction of a salicylic acid glucosyltransferase, AtSGT1, is an early disease responsein Arabidopsis thaliana. Mol. Cells,22:233-38.
    237. Staswick P.E., Serban B., Rowe M.,Tiryaki I., Maldonado M.T., et al.2005. Characterization of anArabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell,17:616–27.
    238. Stacey G., McAlvin C.B., Kim S.Y., Olivares J., Soto M.J.2006. Effects of endogenous salicylic acidon nodulation in the model legumes Lotus japonicas and Medicago truncatula. Plant Physiol,141:1473-481.
    239. Steb M.R. and Ebel J.1987. Effects of Ca2+on phytoalexin induction by fungal elicitor in soybeancells. Arch Biochen Biophysi,257:416-423.
    240. Sticher L., Mauch-Mani B., Metraux J.P.1997. Systemic acquired resistance. Annual Review of Phytopathology,35:235-270.
    241. Strawn M.A., Marr S.K., Inoue K., Inada N., Zubieta C., et al.2007. Arabidopsis isochorismatesynthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with arole in diverse stress responses. J. Biol. Chem,282:5919-5933.
    242. Sugimoto T., M. Anio M., Sugimoto and K Watanabe.2005. Reduction of phytophthora stem rotdisease spybeans by the application of CaCl2and Ca(NO3)2. J. Phytopathol,153:536-543.
    243. Sun H.J., Kataoka H.,Yano M., et al.2007. Genetically stable expression of functional miraculin, anew type of alternative sweetener,in transgenic tomato plants. Plant Biotechnol J,5:768-777.
    244. Sun F.2009. The mutual regulations between ABA and calcium signal transduction pathways underabiotia stress. Genomics and Applied Biology (China),28(2):391-397.
    245. Tada Y., Spoel S.H., Pajerowska-Muhktar K., Mou Z., Song J., et al.2008. Plant immunity requiresconfor-mational changes of NPR1via S-nitrosylation and thioredoxins. Science,321:952-956.
    246. Talts E., Oja V., R mma H., Rasulov B., Anijalg A., Laisk A.2007. Dark inactivation offerredoxin-NADP reductase and cyclic electron flow under far-red light in sunflower leaves.Photosynth Res,94(1):109-20. doi:10.1007/s11120-007-9224-7.
    247. Theerasilp S. and Kurihara Y.1988. Complete purification and characterization of the taste-modifyingprotein, miraculin,from miracle fruit. J Biol Chem,263:11536-11539.
    248. Thordal-Christensen H., Zhang Z., Wei Y., Collinge D.B.1997. Subcellular localization of H2O2inplants. H2O2accumulation in papillae and hypersensitive response during the barley-powdery mildewinteraction. Plant J,11:1187-1194.
    249. Trewavas A.J., Malho R.1998. Ca2+signaling in plant cells: the big network! Curr. Opin. Plant Biol,1:428-433.
    250. Uppalapati S.R., Ishiga Y., Wangdi T., Kunkel B.N., Anand A., et al.2007. The phytotoxin coronatinecontributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomatoinoculated with Pseudomonas syringae pv. tomato DC3000. Mol. Plant-Microbe Interact,20:955–65.
    251. Van Camp W., Van Montagu M. and Inze D.1998. H2O2and NO: redox signals in disease resistance.Trends in Plant Science,3:330-334.
    252. Van Loon L.C.1997. Induced resistance in plants and the role of pathogenesis related proteins. Euro JPlant Pathol,103:753-765.
    253. Van Loon L.C., Geraats B.P.J. and Linthorst H.J.M.2006. Ethylene as a modulator of diseaseresistance in plants. Trends in Plant Science,11:184-191.
    254. Van Loon L.C. and Van Strien E.A.1999. The families of pathogenesis-related proteins, their activities,and comparative analysis of PR-1type proteins. Physiological and Molecular Plant Pathology,55:85-97.
    255. Verberne M.C., Verpoorte R., Bol J.F., Mercado-Blanco J., Linthorst H.J.M.2000. Over production ofsalicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nat. Biotech,18:779-783.
    256. Vlot A.C., Dempsey D.A. and Klessig D.F.2009. Salicylic acid, a multifaceted hormone to combatdisease. Annual Review of Physiopathology,47:177-206.
    257. Vlot A.C., Klessig D.F., Park S.W.2008. Systemic acquired resistance: the elusive signal(s). Curr.Opin.Plant Biol,11:436-42.
    258. Vogeli U., Vogeli-Lange R., Chappell J.1992. Inhibition of phytoalexin biosynthesis inelicitor-treated tobacco cell-suspension cultures by calcium/calmodulin antagonists. Plant Physiol,100:1369-1373.
    259. Volpin G. and Y Elad.1991. Influence of calzium nutrition on susceptibility of rose flowers to Botrytisblight. Phytophthol,82:1390-1394.
    260. Walla G.S.1992. Influence of nutrients on pathogenic behavior of Rhizoctonia solani on coepea.Indian J Myco Plantpatho,22(2):170-177.
    261. Wang L., Tsuda K., Sato M., Cohen J.D., Katagiri F., Glazebrook J.2009. Arabidopsis CaM bindingprotein CBP60g contributes to MAMP-induced SA accumulation and is involved in diseaseresistance against Pseudomonas syringae. PLoS Pathog,5:e1000301
    262. Wang W.Y.2004. The regulation mechanism of calcium on ethylene biosynthesis and signaltransduction and its effect on fruit softening in tomato. Ph.D. Thesis, University of China Agriculture,Beijing, China.
    263. Weigel R.R., Bauscher¨ C., Pfitzner A.J.P., Pfitzner U.M.2001. NIMIN-1, NIMIN-2and NIMIN-3,members of a novel family of proteins from Arabidopsis that interact with NPR1/NIM1, a keyregulator of systemic acquired resistance in plants. Plant Mol. Biol,46:143-60.
    264. Weigel R.R., Pfitzner U.M., Gatz C.2005. Interaction of NIMIN1with NPR1modulates PR geneexpression in Arabidopsis. Plant Cell,17:1279-91.
    265. White R.F.1979. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco.Virology,99:410-412.
    266. Wildermuth M.C.2006. Variations on a theme: synthesis and modification of plant benzoic acids.Curr.Opin. Plant Biol,9:288-96.
    267. Wildermuth M.C., Dewdney J., Wu G., Ausubel F.M.2001. Isochorismate synthase is required tosynthesize salicylic acid for plant defence. Nature,414:562-71.
    268. Wisniewski M., Droby S. and Chalutz E.1995. Effects of Ca2+and Mg2+on Botrytis cinerea andPenicillium expansum in vitro and on the biocontrol activity of Candidaoleophila. Plant Patho,44:1016-1024.
    269. Wojtaszek P.1997. Oxidative burst: an early plant response to pathogen infection. Biochem J,322:681-692.
    270. Wojcik P. and Lewandowski M.2003. Effect of calcium and boron sprays on yield and quality of‘Elsanta’ strawberry. J. Plant Nutr,26:671-682.
    271. Wong C.E., Carson R.A., Carr J.P.2002. Chemically induced virus resistance in Arabidopsis thalianais independent of pathogenesis related protein expression and the PR1gene.Mol Plant MicrobeInteract,14:75-81.
    272. Yalpani N., Leon J., Lawton M.A. and Raskin I.1993. Pathway of salicylic acid biosynthesis inhealthy and virus-inoculated tobacco. Plant Physiol,103:315-321.
    273. Yamakawa H., Mitsuhara I., Ito N., Seo S., Kamada H. and Ohashi Y.2001. Transcriptionally andpost-transcriptionally regulated response of13calmodulin genes to tobacco mosaic virus-induced celldeath and wounding in tobacco plant. Eur. J. Biochem,268(14):3916-3929.
    274. Yang G.X. and Komatsu S.2000. Involvement of calcium-dependent protein kinase in rice (Oryzasativa L.) lamina inclination caused by brassinolide. Plant Cell Physiology,41(11):1243-1250.
    275. Yang T.B., Poovaiah B.W.2000. Molecular and biochemical evidence for the involvement ofcalcium/calmodulin in auxin action.Journal of Biological Chemistry,275(5):3137-3143.
    276. Yang T.B. and Poovaiah B.W.2002. Hydrogen peroxide homeostasis activation of plant catalase bycalcium/calmodulin. Plant Biology,99(6):4097-4102.
    277. Yang T.B. and Poovaiah B.W.2003. Calcium/calmodulin-mediated signal network in plants. Trends inPlant Science,8(10):505-512.
    278. Yano M., Hirai T., Kato K., et al.2010. Tomato is a suitable material for producing recombinantmiraculin protein in genetically stable manner. Plant Sci,178(5):469-473.
    279. Yoon C.S., Yeoung Y.R., Kim B.S.2010. The suppressives effects of calcium compounds againstBotrytis cinerea in paprika. Kor. J. Hort. Sci. Technol,28(6):1072-1077.
    280. Yu Y.B., Yang S.F.1980. Biosynthesis of wound ethylene. Plant Physiol,66:281-285.
    281. Zhang S., Klessig D.F.1997. Salicylic acid activates a48-kD MAP kinase in tobacco. Plant Cell.9:809-24.
    282. Zhang S., Klessig D.F.2001. MAPK cascades in plant defense signaling. Trends Plant Sci,6:520-27.
    283. Zhang Y.P., Zhu B.Z., Luo Y.B.2002. Relationship between Ca2+and plant ethylene response. ActaBota Sinica,44:422-423.
    284. Zhao J., Hu Q., Guo Y.Q., Zhu W.H.2001b. Elicitor-induced indole alkaloid biosynthesis inCatharanthus roseus cell cultures is related to Ca2+-influx and the oxidative burst. Plant Science,161:423-431.
    285. Zheng Z., Mosher S.L., Fan B., Klessig D.F. and Chen Z.2007. Functional analysis of ArabidopsisWRKY25transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biology,7:2-10.
    286. Zhou J.M., Trifa Y., Silva H., Pontier D., Lam E., Shah J., Klessig D.F.2000. NPR1differentiallyinteracts with members of the TGA/OBF family of transcription factors that bind an element of thePR-1gene required for induction by salicylic acid. Mol Plant Microbe Interact,13:191-202.
    287. Zielinski R.E.1998. Calmodulin and calmodulin-binding proteins in plants, Annual Rev. Plant Physiol.Plant Mol. Biol,49(3):697-725.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700