用户名: 密码: 验证码:
植物内生细菌菌株Em7对油菜菌核病的防治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜(Brassica campestris L.)是我国重要的油料作物,由核盘菌(Sclerotinia sclerotiorum (Lib.) de Bary)引起的油菜菌核病是世界范围内的一种重要病害,在我国发生普遍且危害严重,一般年份发病率为10%-30%,严重年份或严重地块的发病率达80%以上,导致严重减产和品质下降。由于目前尚未发现免疫或高抗菌核病的油菜品种,生产上主要采用轮作及化学药剂结合的防治措施,然而连年大量使用化学药剂不仅造成了严重的环境污染,同时已经导致了病原菌抗药性的产生。因此寻找对环境友好的有益微生物进行菌核病的生物防治已经成为研究的热点,受到了越来越多的重视。植物内生细菌作为新挖掘的微生物资源,正在被广泛开发利用。本实验室前期分离纯化了大量植物内生菌,并从中筛选获得了一株对油菜菌核病菌菌丝生长和菌核形成具有强烈抑制作用的内生细菌Em7菌株。本研究在前期工作的基础上,进一步对内生细菌菌株Em7防治油菜菌核病的田间应用及机理进行了系统研究,取得了如下结果:
     1.通过温室和田间试验明确了内生细菌菌株Em7对油菜菌核病的防治效果。大量温室盆栽试验发现整株喷施菌株Em7的培养滤液和菌悬液在油菜苗期和成株期均可有效减轻菌核病的发生,其中喷施菌株Em7后接种病菌的防效明显高于接种病菌后喷施的防效,防病效果达到90%以上。在陕西汉中地区连续三年(2009-2011年)的田间防治试验结果表明,在油菜初花期连续喷施两次(间隔期7-10d)菌株Em7的培养液(109CFU mL-1)可有效降低菌核病的发病率和严重程度,防治效果分别达到53.8%、71.8%和70.5%,与对照药剂戊唑醇(Tebuconazole)和多菌灵(Carbendazim)防效相当,无显著性差异。
     2.通过培养特征和形态特点观察,生理生化特性、16S rDNA序列分析以及Biolog微生物自动鉴定系统将Em7菌株鉴定为枯草芽孢杆菌(?)(?)acillus subtilis (Ehrenberg) Cohn。
     3.采用利福平抗性标记方法揭示了B. subtilis菌株Em7在油菜体内的定殖和消长规律。在油菜幼苗期分别采用整株喷施和灌根的方法研究了Em7Rif标记菌株在油菜不同组织中的定殖规律。整株喷施Em7Rif菌株(1×109CFU mL-1)24h后,在油菜叶片和茎秆组织内检测到的菌量最大,分别达到4.0×105CFU g-1和9.6×105CFU g-1鲜组织;28d后仍然能够从茎秆及叶片组织内检测到,但在根组织内却未检测到标记菌株。灌根施用Em7Rif菌株(109CFU mL-1),24h即可从根和茎秆中检测到标记菌株,施用后3d后标记菌株在根部和茎杆中的数量最大,分别达到5.6×106CFU g-1和4.6×105CFU g-1,此后检测的菌量逐渐减少,但28d后仍可检测到标记菌株。
     4.利用Biolog代谢指纹方法分析了B. subtilis菌株Em7对油菜根际土壤微生物群落的影响。灌根法于苗期分别施用菌株Em7菌悬液和培养滤液后不同时间取根际土壤,用Biolog ECO板检测不同土样微生物群落的多样性,结果显示施用菌株Em7后的油菜根际土壤微生物群落的活性和多样性明显提高。菌株Em7处理后的土壤微生物群落碳源利用能力明显增强,各种碳源平均颜色变化率AWCD值和Shannon(?)数明显高于对照处理。
     5.初步明确了诱导抗性可能是B. subtilis菌株Em7对油菜菌核病的生防机制。在油菜苗期和成株期喷施菌株Em7菌悬液和培养滤液后不同时间(1、3、5、7、9、11和15d)接种菌核病菌,油菜植株均表现出良好的抗病效果;并且发现喷施菌株Em7后,油菜叶片内过氧化物酶(POD)、多酚氧化酶(PPO)和苯丙氨酸解氨酶(PAL)的活性在一定时期内有显著的升高,与对照组相比差异显著。
     6.利用显微镜技术揭示了B. subtilis菌株Em7对菌核病菌抑制的细胞学特征。光学和扫描电镜观察发现受到菌株Em7影响后,病菌菌落边缘的菌丝形态发生异常变化,受抑制菌丝粗细不均匀、皱缩、畸形,并有明显的细胞质外渗现象;进一步的透射电镜观察表明受抑制菌丝细胞的超微结构发生了明显的变化,主要表现为细胞内液泡数量增加,细胞器紊乱,细胞壁溶解和细胞质外渗等。对菌株Em7作用后菌核病菌入侵和扩展过程的观察结果表明:接种病菌前1d喷施菌株Em7可抑制病菌侵染结构(侵染垫)的形成,并可致使病菌菌丝出现膨大、顶端分支增多且分支不规则;接种病菌后1d喷施菌株Em7可导致病菌形成的侵染垫塌陷,菌丝出现皱缩及坏死等现象。此外,皿内试验结果发现菌株Em7不仅能够抑制病菌的菌丝生长,而且可有效抑制菌核萌发,菌核萌发的抑制效果与生防菌浓度和处理时间密切相关。
     7.在摇瓶条件下优化了B.subtilis菌株Em7产生抗菌物质的条件,并初步明确了其抗菌物质的特性和抑菌谱。采用单因素和正交试验,获得菌株Em7的最佳培养基配方为:麸皮2%,牛肉膏1%,MnS040.15%;当培养基初始pH7,接种量为1%,摇瓶装液量50ml/250ml时,在28℃,150rpm培养获得的培养液抑菌活性最强。进一步通过硫酸铵盐析、凝胶过滤等方法明确了菌株Em7的主要活性物质为蛋白类抗菌物质;硫酸铵饱和度30%提取的粗蛋白对热、酸碱及部分蛋白酶稳定,并且对常见的10余种植物病原菌的菌丝生长和分生孢子萌发具有广谱的抑制作用。
Oilseed rape(Brassica campestris L.) is the major oil crop in China, with a production area of approximately70×106ha. Sclerotinia stem rot, caused by Sclerotinia sclerotiorum, is one of the important diseases on oilseed rape in the world. In China, the disease incidences were10-20%in general, but reach over80%in serious land or serious year. Conventional methods for controlling Sclerotinia disease such as chemical and cultivating control measures have been applied in different countries for many years. However, conventional breeding programs to increase resistance in rape to Sclerotinia disease have been less effective because of the restricted gene pool; and because of the adverse effects on non-target organisms and environment, the use of fungicides have been limited. Therefore, the relatively unreliable control with traditional methods and concerns about fungicides residues has prompted interest in biological control as an alternative strategy for disease management. Endophytes, living asymptomatically within plant tissues, have beneficial effects on host plants. In recent years, endophytic bacteria have gained increasing scientific interest, but few studies were reported about biocontrol of oilseed rape Sclerotinia stem rot by endophytic bacteria. In preliminary studies, we detected that the endophytic bacterial strain Em7strongly inhibited S. sclerotiorum mycelium growth and sclerotia formation in vitro. Then, the biocontrol effect and mechanism were studied in this paper. The main results were as follows:
     1. Biocontrol efficacies of strain Em7to S. sclerotiorum were detected in greenhouse and in field trials. In the greenhouse, the culture filtrates and cell suspensions of strain Em7displayed effective biocontrol activities in the seedling and blossom stage. The biocontrol activities were influenced by the time and concentration of spraying strain Em7. The control efficacy was higher when strain Em7was applied prior to inoculation of the pathogen than after inoculation. Three-year field trials (2009-2011) showed that twice sprays of strain Em7cell suspension at blossom stage significantly reduced disease incidence and severity. The control efficacies were53.8%,71.8%and70.5%, respectively in2009,2010, and2011. There was no significant difference in control efficacy among treatments with strain Em7and the fungicides Carbendazim or Tebuconazole.
     2. Strain Em7was identified as Bacillus subtilis (Ehrenberg) Cohn on the basis of morphology, physiological and biochemical characteristics,16S rDNA sequence analysis and Biolog microbial automatic identification system.
     3. The strain Em7colonization in rape plant was detected by rifampicin-labeled Em7. The results showed that bacteria could colonize into stems, leaves and roots, but the colonization of mutant strain Em7could be determined by different treatment. Bacteria could largely colonize into stems and leaves after spraying1d, the number of mutant strain Em7were4.0×105CFU·g-1and9.6×105CFU·g-1, respectively, in leaves and stems. Then the quantity gradually decreased. The labelld-strain could be recovered from stems and leaves of plants even after28days, the quantity is up to3.1×102CFU·g-1in stems. The mutant strian could be detected in roots and stems after root drench treatment. The biomass of mutant strain Em7in roots and stems could be reached5.6×106CFU·g-1and4.6×105CFU·g-1after3d. Although the quantity gradually decreased, the labelled strain could be still detected in stems and roots after28d.
     4. The effects of applying biocontrol agent strain Em7on the oilseed rpae soil microbial communities was evaluated by Biolog metabolic fingerprinting method. The profiles derived from Biolog ECO plates indicated higer substrate richness, average well color development (AWCD, microbial activity) were influenced by strain Em7. The values of AWCD and Shannon functional diversity index were higher treated with strain Em7than untreated.
     5. It was concluded that the induced resistance is one of the biocontrol mechansim of endophytic bacteria Em7against S. sclerotiorum. The culture filtrate and cell suspensions of strain Em7was applied prior to inoculation of the pathogen in the seedling and blossom stage, the resistance of oilseed rape was induced to S. sclerotiorum. After the treatment of strain Em7, the activity of POD, PPO and PAL had obviously rised in certain period of time, which had significant difference to the contrast.
     6. Light and scanning electronic microscopy studies revealed that in the presence of strain Em7, morphology of mycelial cell of S. sclerotiorum showed leakage, deformation, and disintegration of hyphal cytoplasm. The ultrastructure of mycelial cell was investigated under transimission electronic microscopy. The results showed that strain Em7caused increasing of vacuole in the cytoplasm, disordered of the orgarelles, rupture of the cell wall, and leakage of the cytoplasma. The effects of strain Em7on the infection and extension of S. sclerotiorum in the rape leaves were observed under scanning and transmission electronic microscopy. Treated with strain Em71d before inoculation, the mycelia couldn't form the infection structure on the sueface of leaves, and the mycelia were irregularlly swollen and collapsed. Treated with strain Em71d after inoculation, the infected cushion was destroyed, and the hyphae were collapsed and coated by film, the cytoplasm exosmosis. In Petri dish, strain Em7could inhibit not only mycelial growth but also sclerotia germination. However sclerotia germination was obviously influenced by concentration of strain Em7cell suspension.
     7. The optimum fermentation culture medium of strain Em7was optimized at shake flask. The results of single-factor experiment and the orthogonal test showed that the optimum medium was bran2.0%, beef extract1.0%, and MnSO40.15%. The maximum antibiotic activity was achieved at the initial pH7.0, medium volume of50ml in250ml flasks, rotary speed of150rpm, temperature28℃and inoculation volume of1%. The antifungal substance was studied by ammonium sulfate precipitation and Gel filtration chromatography. The main active substance of strain Em7as protein antibacterial substance had been definited. Crude protein extracted by30%saturation ammonium sulfate was stable to thermal, acid and alkali. Furthermore, the antifungal protein also showed a broad antifungal spectrum on mycelium growth and conidia germination of numerous important plant pathogenic fungi. Light microscopic observations revealed that the antifungal protein caused morphological alterations including increased branching, swelling, and shriveling of hyphae as well as collapse of cytoplasm.
引文
蔡学清,何红,胡方平.2003.双抗标记法测定枯草芽孢杆菌BS-2和BS-1在辣椒体内的定殖动态.福建农林大学学报(自然科学版),32(1):41~45
    陈碧云,周乐聪,陆致平.2001.绿色木霉发酵配方与防治油菜菌核病的研究.中国生物防治,17(2):67~70
    陈坚,堵国成,李寅.2003.发酵工程实验技术.北京:化学工业出版社
    陈士云,杨宝玉,高梅影.2005.一株抑制油菜核盘菌菌核形成的解淀粉芽孢杆菌.应用与环境生物学报,11(3):373~376
    陈夕军,李娟,孙启利,童蕴慧,徐敬友.2010.水稻内生枯草芽孢杆菌G87抗菌蛋白的分离纯化及理化性质.微生物学报,50(10):1353~1357
    陈雁,饶勇强,孟金陵.2003.转双价广谱抗病基因创造甘蓝型油菜抗菌核病新品种的研究.分子植物育种,1(4):457-463
    陈云兰,姬广海,董坤.2010.抗生素溶杆菌13-1对魔芋土壤微生物群落的影响.云南农业大学学报,25(4):487~493
    陈中义,张杰,黄大昉.2003.植物病害生防芽孢杆菌抗菌机制与遗传改良研究.植物病理学报,33(2):97~103
    董春,曾宪铭,刘琼光.1999.利用无致病力青枯菌防治番茄青枯病的研究.华南农业大学学报,20(4):1~4
    董汉松.1999.植物诱导抗病性—原理和研究.北京:科学出版社:103~108
    杜立新,冯书亮,曹克强,王容燕,冉红凡.2004.枯草芽孢杆菌BS-208和BS-209菌株在番茄叶面及土壤中定殖能力的研究.河北农业大学学报,27(6):78~82
    傅晓方,韩红江,郝勇锋,李维平.2012.玉米内生固氮菌的分离鉴定及对小麦幼苗的促生效应.西北农业学报,21(1):66~71
    高俊明,王双双,刘慧平,韩巨才.2002.菌核重寄生菌盾壳霉生物学特性研究.山西农业大学学报,22(1):22~25
    高俊明,刘慧平,李新凤.2005.盾壳霉对核盘菌的重寄生机制研究.山西农业大学学报,22(3):21~24
    高小宁,陈金艳,黄丽丽,乔宏萍,韩青梅,康振生.2010.油菜菌核病内生拮抗细菌的筛选及防病作用研究.农药学学报,12(2):161~167
    葛青凤,刘惠勤.2002.江苏省农科院推出微生物复配农药“纹曲宁”.农药市场信息,16:23
    顾真荣,魏春妹,马承铸.2005.枯草芽孢杆菌G3菌株抑制立枯丝核菌菌核形成的影响因子分析.中国生物防治.,21(1):33~36
    顾真荣,马承铸,徐华.2003.枯草芽孢杆菌G3菌剂防治番茄叶霉病田间试验.中国生物防治,19(4):206~207
    韩艳霞,胡斌杰,王宫南.2008.蜡样芽孢杆菌JK14对小麦全蚀病的防治及其机理研究.安徽农业科学,36(18):7674~7675
    何红.2003.辣椒内生枯草芽孢杆菌(Bacillus subtilis)防病促生作用的研究.[博士学位论文].厦门:福建农林大学
    何红,邱思鑫,蔡雪清,关雄,胡方平.2004.辣椒内生细菌BS-1和BS-2在植物体内的定殖及鉴定.微生物学报,44(1):13~17
    胡燕梅,李国庆.2006.盾壳霉产生几丁质酶的条件研究.武汉生物工程学院学报,2(2):81~84
    黄海婵,裘娟萍.2005.枯草芽孢杆菌防治植物病害的研究进展.浙江农业科学,3:213~219
    黄丽丹,陈玉惠.2006.生防菌及相关生物技术在植物病害防治中的应用.西南林学院学报,26(1):85~89
    黄丽丽,乔宏萍,康振生.2006.植物内生细菌及其在农业方面的应用研究.临沂师范学院学报,28(6):63~68
    黄曦,许兰兰,黄荣韶,黄庶识.2010.枯草芽孢杆菌在抑制植物病原菌中的研究进展.生物技术通报,1:24~29
    黄云.2010.植物病害生物防治学.北京:科学出版社:103~104
    贾书娟,曾大兴,吴小丽,涂国全.2011.枯草芽孢杆菌C-D6抗菌蛋白对稻瘟病菌的抑菌作用.中国生物防治学报,27(3):362~367
    姜道宏,李国庆.1998.盾壳霉所产抗细菌物质的特性.植物病理学报,1:29~32
    姜道宏.1999.核盘菌Ep-1PN菌株毒力衰退及生防潜能的研究.[博士学位论文].武汉:华中农业大学
    姜道宏,李国庆,付艳平,易先宏,王道本.2000.盾壳霉控制油菜菌核病菌再侵染及其叶面存活动态的研究.植物病理学报,30(1):60~65
    江木兰,赵瑞,王国平.2006.油菜内生枯草芽孢杆菌BY-2抗油菜菌核病菌有效成分的鉴定和分离提纯.中国油料作物学报,28(4):453~456
    江木兰,赵瑞,胡小加,张银波,王国平.2007.油菜内生生防菌BY-2在油菜体内的定殖与对油菜菌核病的防治作用.植物病理学报,37(2):192~196
    江木兰.2007.油菜内生枯草芽孢杆菌BY-2的定殖生态、抗菌机制和防治菌核病的研究.[博士学位论文].武汉:华中农业大学
    康振生.1995.植物病原真菌的超微结构.北京:中国科学技术出版社
    李国庆,王道本.1991.拮抗细菌的筛选及其对油菜菌核病的防治效果.华中农业大学学报,10(1):30~35
    李国庆,王道本,黄鸿章,周启.1996.来源于佳木斯茄子上的核盘菌菌株多样性的研究.植物病理学报,26:237~242
    李华荣,肖建国.1993.蜡质芽孢杆菌防治水稻纹枯病研究.植物病理学报,23(2):101~105
    李丽丽.1994.世界油菜病害研究概述.中国油料,16(1):79~81
    李怀波,彭珺,包衍,肖明.2005.拮抗油菜菌核病菌的荧光假单胞杆菌的分离与筛选.中国农学通报,21(11):334~337
    李军.2009.新型微生物农药—百抗.农业知识,16:52
    李世东,刘杏忠.2000.食菌核甚抱霉—一种有潜力的菌核病生防菌.中国生物防治,16:177~182
    李术娜,马平,胡明,袁洪水,王世英,朱宝成.2008.棉花黄萎病拮抗细菌筛选与B-101菌株抗菌蛋白分离,38(4):445~448
    李伟,周益军,陈怀谷.2007.江苏省油菜菌核病菌对多菌灵的敏感性.中国油料作物学报,29(1):63~68
    李玉芳,官春云.2005.油菜菌核病菌侵染的组织细胞学、致病及抗病机制的研究.作物研究,5:327~331
    李志新,邢丹英,王晓玲,黄鹏,江木兰,胡小加.2005. PGPR菌剂对油菜的促生作用和菌核病防治效果.中国油料作物学报,27(2):51~54
    廖晓兰,罗宽.2000.油菜花上细菌的分离及其对油菜菌核病的拮抗作用.湖南农业大学学报,2(64):296~298
    刘冰,黄丽丽,康振生,乔宏萍.2007.小麦内生细菌对全蚀病的防治作用及其机制.植物保护学报.,34(2):221~222
    刘澄清,杜德志,黄有菊,王春华.1991.甘蓝型油菜的抗耐病性及其遗传效应研究.中国农业科学,24(3):43~49
    刘春林,官春云,李栒,阮颖,廖晓兰,熊兴华,周小云,王国槐,陈社员.2000.油菜分子标记图谱构建及抗菌核病性状的Q TL定位.遗传学报,27(10):918~924
    刘峰,代光辉,周熙荣,陈佳,李会.2010.合欢叶提取物对油菜菌核病菌的抑制作用及其苗期防治效果.植物病理学报,40(5):511~516
    刘福海.2002.25%咪鲜胺乳油防治油菜菌核病的效果.农药,41(12):34~35
    刘慧芹,邢鲲,王丽,刘慧平,韩巨才.2010.油菜内生细菌Yc8生防作用的初步研究.北方园艺,9:169~171
    刘胜毅.1999.油菜抗菌核病机制、遗传和单倍体突变研究.[博士学位论文].北京:中国农业科学院.
    刘胜毅.周必文.1994(增刊).油菜抗菌核病草酸鉴定方法.中国油料,75~76
    刘淑娟,文成敬.2005.防治油菜菌核病的木霉和粘帚霉菌株筛选及生防的初报.四川农业大学学报,23(1):33~38
    刘秀花.2007.芽孢杆菌生物学及其应用.郑州:河南大学出版社.
    刘振宇,柳韶华,赵春青,于月芹.2005.枯草芽孢杆菌对桑炭疽病的抑制作用.农业科学,31(4):409~412
    刘伊强,王雅平,潘乃穟,陈章良.1994.拮抗菌TG26的鉴定及其抗菌蛋白BI的纯化和部分特性.植物学报,36(3):197~203
    柳凤,陈振明,何红.2010. CIII-1菌株胞外抗菌蛋白诱导辣椒抗炭疽病作用研究—对防御酶体系的影响.中国农学通报,26(6):226~230
    罗宽,王庄.1983.利用拮抗的Psezdamonas sp和无致病力的P. solanacearzzm防治青枯病的研究.植物病理学报,13(1):51~56
    罗宽,任新国,周必文,陈道炎,杨建.1987.油菜菌核病菌菌核上寄生真菌的研究.中国油料,3:40~44
    马艳,赵江涛,常志州,黄红英,叶小梅,张建英.2006.西瓜内生枯草芽孢杆菌BS211的拮抗活性及盆栽防效.江苏农业学报,22(4):388~393
    缪礼鸿,黄爱荣,周俊初.2008.3株生防芽孢杆菌的筛选及对棉花枯萎病的防治研究.武汉工业学院学报.27(1):1~4
    潘以楼,汪智渊,昊汉章.1997.油菜菌核病(Sclerotinia sclerotiorum)对多菌灵的抗药性及其稳定性.江苏农业科学,13(1):32~35
    彭兵,张树斌,贾宇,王立安.2011.枯草芽孢杆菌菌株A抗菌蛋白的分离纯化及抗真菌机理.中国农业科学,44(1):67~74
    齐东梅,惠明,梁启梅,牛天贵.2005.枯草芽孢杆菌H110对苹果梨采后青霉病和黑斑病的抑制效果.应用与环境生物学报,11(2):171~174
    齐勇.2007.细胞分裂素和巨大芽孢杆菌B1301抑菌能力及其防治小麦纹枯病的关系.[硕士学位论文].山东农业大学
    乔宏萍,黄丽丽,康振生.2006.小麦内生细菌及其对根茎部主要病原真菌的抑制作用应用生态学报,17(4):690~694
    齐永霞,陈方新,苏贤岩,丁克坚,于杰,江茂盛.2006.安徽省油菜菌核病菌对多菌灵的抗药性监测.中国农学通报,9(22):371~373
    秦虎强,陈芳颖,付鼎程,高小宁,黄丽丽,韩青梅,康振生,熊鑫,张凤娇.2011.油菜菌核病菌对10种杀菌剂的敏感性及不同药剂田间防效.西北农林科技大学学报,39(7):117~122
    覃丽萍,黄思良,李杨.2005,植物内生固氮菌的研究进展.中国农学通报,21(2):150-153
    邱思鑫.2004.防病促生植物内生芽孢杆菌.[博士学位论文].厦门:福建农林大学
    冉国华,张志元.2004.柑桔内生拮抗细菌的发酵液对油菜菌核病的田间防治效果.长沙大学学报,18(4):26~28
    任欣正,张建华,方中达.1987.无致病力产细菌索拮抗E-104在番茄植株上定殖能力的研究.植物病理学报,17(3):45~49
    石强.2007.内生枯草芽孢杆菌TL2抗菌蛋白的分离及特性研究.[硕士学位论文].厦门:福建农林大学
    石志琦,周明国,叶钟音.2000.核盘菌对菌核净的抗药性机制初探.农药学学报,2(2):47~51
    石志琦,周明国,叶钟音.2000.油菜菌核病菌对多菌灵的抗药性监测.江苏农业学报,16(4):226~229
    双桑,阮颖,彭冬平,刘春林.2006.油菜菌核病及抗病育种研究进展.作物研究,5:552~556
    孙俊铭,韦刚,张启高,张向前,翟宗清,岳葆春.2007.油菜菌核病防治药剂筛选试验报告.安徽农学通报,13(7):80~81
    田涛,亓雪晨,王琦,梅汝鸿.2004.芽孢杆菌绿色荧光蛋白标记及其在小麦体表定殖的初探.植物病理学报,34(4):346~351
    邢鲲,韩巨才,刘慧平,郭振宇.2007.油菜内生细菌yc8促生作用及其机理研究.华北农学报,22(5):180~183
    熊宗贵.2000.发酵工艺原理.北京:中国医药出版社,
    王虹,胡先文,姜道宏,付艳萍,董元彦.2009.盾壳霉代谢抗白叶枯病菌活性物质的分离.华中农业大学学报,28(2):148-150
    王平,李慧,邱译萱,邢佳,肖明.2010.荧光假单胞菌株P13分泌铁载体抑制油菜菌核病.上海师范大学学报,39(2):200~203
    王婷,王金生.2007.草酸分解细菌U-1的鉴定及其分解草酸的生物学测定.微生物学杂志,27(6):45~47
    王婷,吴健胜,王金生.2001.草酸降解菌的筛选及其对油菜菌核病的生物防治作用.南京农业大学学报,24(4):29~32
    王帅.2009.芽孢杆菌及其脂肽类化合物防治植物病害和促进植物生长的研究.[博士学位论文].南京:南京农业大学
    王中银,姜春史,顾卫忠.2000.油菜菌核病发生特点及防治技术.湖北植保,(3):13~15
    汪道本译.1986.核盘菌论丛.北京:北京农业大学出版社
    魏鸿刚,李淑兰.2008.防治作物青枯病和枯萎病的微生物农药-0.1亿cfu/g多粘类芽孢杆菌细粒剂.世界农药,30(1):52
    魏松红,纪明山,李艳丽,王颖,刘志恒.2007.番茄叶霉病菌拮抗菌的筛选及其发酵条件.中国生物防治,23(1):60~63
    韦善君,李国庆,姜道宏,王道本.2004.草酸对重寄生真菌盾壳霉分生孢子萌发和菌丝生长的影响.植物病理学报,34(3):199~203
    吴纯仁,刘后利.1990.油菜菌核病菌致病机理的研究Ⅱ.病菌侵染过程的组织病理学.中国油料,(1):44~46
    吴纯仁,刘后利.1990.油菜菌核病致病机理的研究Ⅳ.病菌侵入途径和附着胞结构的观察.华中农业大学学报,9(1):56~58
    吴纯仁,刘后利.1991.油菜菌核病的致病机制:罹病组织内草酸毒素积累和分布的初步分析.植物病理学报,21(2):135~140
    吴健胜,王金生.2000.解毒菌株W-1对油菜菌核病的防病作用及初步鉴定.西南农业大学学报,22(6):487~489
    谢栋,彭憬,王津红,胡剑,王岳五.1998.枯草芽孢杆菌抗菌蛋白X98III的纯化与性质.微生物学报,38(1):13~19
    谢奉家.2005.植物病害的杀手明星——枯草杆菌.科学发展,391:18~21
    邢鲲,韩巨才,乔建,张丽.2010.油菜内生细菌yc8诱导植物抗病性机理研究.山西农业科学,38(10):37~40
    杨谦.1994.核盘菌侵入油菜超微结构及侵染机制的研究.植物病理学报,24(23):245~249
    杨海莲,孙晓璐,宋未,王云山,蔡妙英.1999.水稻内生联合固氮细菌的筛选、鉴定及其分布特性.植物学报,41(9):927~937
    杨丽萍.2007.拮抗菌PY-1菌株的鉴定及对油菜菌核病防治潜能的评估.[博士学位论文].武汉:华中农业大学
    杨水英,李振轮,青玲,孙现超,母婷婷,黎群英,江艳冰.2007.产几丁质酶内生细菌的筛选及对烟草赤星病菌的抑制作用.河南农业科学,6:66~69
    杨水英,张学昆,李加纳,马冠华.2003.土壤拮抗细菌对油菜菌核病菌的抑制作用研究.中国农学通报,19(1):13~15
    杨新美.1959.油菜菌核病(Sclerotinia sclerotiorum)在我国的寄主范围及生态特性研究.植物病理学报,5(2):110~121
    杨永华,姚健,华晓梅.2000.农药污染对土壤微生物群落功能多样性的影响.微生物学杂志,20(2):23~26
    姚汝华.1996.微生物工程工艺原理.广州:华南理工大学出版社
    晏立英,周乐聪,谈宇俊,单志慧.2005.油菜菌核病拮抗细菌的筛选和高效菌株的鉴定.中国油料作物学报,27(2):55~57
    尹恒,王文霞,卢航,赵小明,白雪芳,杜显光.2008.壳寡糖诱导油菜抗菌核病机理研究初探.西北农业学报,17(5):81-85
    赵建伟,陈爱武,孟金陵.1998.甘蓝型油菜远缘杂交新品系某些酶的活性与抗菌核病的关系.中国油料作物学报,20(1):38~41
    赵妍,邵兴锋,屠康,陈继昆.2007.枯草芽孢杆菌(Bacillus subtilis)B10对采后草莓果实病害的抑制效果.果树学报,24(3):339~343
    张洁夫,伍赔美,王永鹏.200l.速杀菌对油菜菌核病的防治效果.江苏农业科学,(6):33~35
    张淑梅,王玉霞,李晶,赵晓宇,张先成.2006.基因标记枯草芽孢杆菌BS-68A在黄瓜上定殖.生物技术,16(4):73~74
    张卫娟,谷洁,刘强,高华.2011.重金属Zn对猪粪堆肥过程中微生物群落的影响.环境科学学报,31(10):2260~2267.
    张夕林,张治,张建明,张谷丰,孙雪梅.1998.多菌灵防治油菜菌核病药效下降原因及防治对策.农药科学与管理,3:15~17.
    张耀文.2002.关于陕西省油菜产业发展问题探讨.陕西农业科学,(8):17~19,22
    张翼,白晨,冉国华,张志元,陈耀辉,吴刚.2009.柑橘内生细菌YS45的鉴定、抗菌物质分析及其对油菜菌核病的防治作用.植物病理学报,39(6):638~645
    张毅.2009.我国油菜及油料需求分析.农业技术与装备,7:14~16
    张玉勋,李光,张光明.2000.拮抗细菌在大棚温室番茄叶片定殖及对灰霉病病害的控制效果.植物病理学报,30(1):91
    邹文欣,谭仁祥.200l.植物内生菌研究新进展.植物学报,43(9):881~892
    中国农科院油料所.1979.油菜菌核病.北京:农业科技出版社
    钟军,李栒,官春云.2002.芸薹属植物抗菌核病的研究进展.中国油料作物学报,24(3):78~81
    郑雯,郭永霞,辛惠普,孙连军.2000.春油菜菌核病药剂防治试验.农药,39(10):29~30
    左叶信,秦虎强,聂峰杰,黄丽丽,高小宁,康振生,韩青梅.2011.陕西省油菜菌核病调查初报.植物保护,37(2):116~119
    Abawl G S.1975. Infection of bean by ascospores of whetzlinia Sclerotiorum. Phytopathol,65:673~678
    Adhilcari T B, Joseph C M.2001. Evaluation of bacteria isolated from rice for plant growth promotion andbiological control of seedling disease of rice. Can. J. Microbiol,47:916~924
    Aldrichj B R.1970. Biological control of Fusarium roseum f. sp. dianthi by Bacillus subtilis. PlantDisease Reporter,54:446~48
    Anderson A S, Guerra D.1985. Responses of bean to root colonization with Pseudomonas putida in ahydrophonic system. Phytopathol,75:992~995
    Arsac J F, Lamothe C, Mulard D, Fages J.1990. Growth enhancement of maize (Zea mays L) throughAzospirillum lipoferum inoculation: effect of plant genotype and bacterial concentration. Agromomie,10:640~654
    Asaka O, Shoda M.1996. Biocontrol of Rhizoctonia solani damping off of tomato with Bacillus subtilisRB14. Applied and Environmental Microbiology,62:4081~4085
    Audenaert K, Pattery T, Cornelis P, H fte M.2002. Induction of systemic resistance to Botrytis cinerea intomato by Pseudomonas aeruginosa7NSK2: role of Salicylic acid, pyochelin, and pyocyanin.Molecular Plant Microbe Interactions,15:1147~1156
    Azevedo J L, Walter M J, Jose Odair P, Welington L A.2000. Endophytic microorganisms: a review oninsect control and recent advances on tropical plants. EJB Electronic J. Biotechnol,3(1):40~65
    Baker C J.1985. Biocontrol of bean rust by Bacillus subtilis under field conditions. Plant Disease,69:770~775
    Baldani J I, Caruso L, Baldani, V, Goi, S R, Dobereiner, J.1997. Recent advances in BFN withnon-legume plants. Soil Biology and Biochemistry,29:911~922
    Berger F, Li H, White D, Frazer R, Leifert C.1996. Effect of pathogen inoculum, antagonist density, andplant species on biological control of Phytophthora and Pythium damping-off by Bacillus subtilisCot1in high-humidity fogging glasshouse. Phytopathology,86:428~433
    Bell C R, Dickie G A, Harvey WLG.1995. Endophytic bacteria in grapevine. Can. J. Microbiol,41:46~53
    Benhamou N, Kloepper J W, Quadt-Hallmann A, Tuzun S.1996. Induction of defense-related ltrastruturalmodifications in pea root tissues inoculated with endophytic bacteria. Plant Physiology,112(3):919~929
    Benhamou N, Kloepper J W, Tuzum S.1998. Induction of resistance against Fusarium wilt of tomato bycombination of chitosan with an endophytic bacterial strain: Ultrastructure and cytochemistry of thehost response. Planta,204:153~168
    Bensalim S, Nowak J, Asiedu S A.1998. Plant promoting rbizobacterium and temperature effects onperformance of clones of potato. Am. J. Potato Res,75:145~152
    Boland G J, Inglis G D.1989. Antagonism of white mold (Sclerotinia sclerotiorum) of bean by fungi frombean and rapeseed flowers. Canadian.Journal of Botanv,67:1775~1781
    Boland G J, Hall R.1994. Index of plant hosts of Sclerotinia sclerotiorum. Can J. Plant Pathol,16:93~108
    Bolton M D, Thomma B P H J, Nelson B D.2006. Sclerotinia sclerotiorum (Lib.) de Bary: biology andmolecular traits of a cosmopolitan pathogen. Molecular Plant Pathology,7:1~16.
    Boyetchko S. M.1999. Biological control agents of canola and rapeseed diseases status and praticalapproaches. In K. Mukerji, B. Chamola, and R. Upadhyay, eds. Biotechnological Approaches inBiocontrol of Plant Pathogens. New York: Kluwer Academic/Plenum Publishers:51~71
    Cal A, Pascual S, Melgarejo P.1997. Involvement of resistance induction by Penicillium oxalicum in thebiocontrol of tomato wilt. Plant Pathology,46(1):72~79
    Campbell W.A.1947. A new species of Coniothyrium parasitic on sclerotia. Mycologia,39:190~195
    Cavaglieri L, Orlandoa J, Rodriguez M.2005. Biocontrol of Bacillus subtilis against Fusariumverticillioides in vitro and at the maize root level.Res Microbiol,56(l):748~754
    Chan Y K, Mccormick W A, Seifert K A.2003. Characterization of an antifungal soil bacterium and itsantagonistic activities against Fusarium species. Canadian Journal of Microbiology,49:253~262
    Chitarra S G, Breeuwer P, Nout R J M, Van Aelst C A, Rombouts M F, Abee T.2002. An antifungalcompound produced by Bacillus subtilis YM10-20inhibits germination of Penicillium roqueforticonidiospores. Journal of Applied Microbiology,96:159~166
    Choudhary D K, Johri B N.2009. Interaction of Bacillus spp. and plants-with special reference to inducedsystemic resistance (ISR). Microbiological research,164:493~513
    DeBary A.1986. Uebereinige Sclerotinia and Sclerotin krankheiten. Bot Z,44:377~474
    Dong X B, Ji R Q, Guo X L.2008. Expressing a gene encoding wheat oxalate oxidase enhances resistanceto Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta,228(2):331~340
    Dunker S, von Tiedemann A.2004. Disease yield loss analysis for Sclerotinia stem rot in winter oilseedrape. IOBC27(19):59~65
    Ednar G, Cames M, Carmen N.2002. Biological control of black rot (Xanthomonas campestris pv.campestris) of brassicas with an antagonistic strain of Bacillus subtilis in Zimbabwe.Eur.J PlantPathol,108:317~325
    Etebarian H R, Sholberg P L, Eastwell K C, Sayler R J.2005. Biological control of apple blue mold withPseudomonas fluorescens. Canadian Journal of Microbiology,51(7):591~598
    Fernando W G D, Nakkeeran S, Zhang Y, Savchuk S.2007. Biological control of Sclerotinia sclerotiorum(Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Protection,26,100~107
    Fernando W G D, Pierson L S.1999. The effect of increased phenazine antibiotic production on theinhibition of economically important soil-borne plant pathogens by Pseudomonas aurefaciensArchives of Phytopathology and Plant Protection,32:491~502
    Fiddaman P J, Rossall S.1993. The production of antifungal volatiles by Bacillus subtilis. Journal ofapplied Microbiology,74(2):119~126
    Fu L L, Xu Z R, Li W F, Shuai J B, Lu P, Hu C X.2007. Protein secretion pathways in Bacillus subtilis:implication for optimization of heterologous protein secretion. Biotechnology Advances,25:1~12
    Giczey G, Kerenyi Z, Fulop L, Hornok L.2001. Expression of cmg1, an exo-beta-1,3–glucanase genefrom Coniothyrium minitans, increases during sclerotial parasitism. Applied EnvironmentalMicrobiology,67:865~871
    Gossen B D,Rimmer S R,Holley J D.2001. First report of resistance to benomyl fungicide in Sclerotiniasclerotiorum. Plant Disease,85:1206
    Grison R.1996. Field tolerance to fungal pathogens of Brassica napus constitutively expressing chinericchit chitinase gene. Nature Biotechnology,14(5):643~646
    Hallmann J,Quadt-Hallmann A,Mahaffee W F, Kloepper J. W.1997. Bacterial endophytes in agriculturalcrops. Canadian Journal of Microbiology,43(10):895~914
    Hammerschmidt R, Lamport D T A, Mu llon E P.1984. Cell wall hydroxypro line enhancement and lignindeposition as an ealyeventin the resistance of cucumber to Colletotrichum cucumerinum. PhysiolPlant Pathol,24:43~47
    Hoffland E, Hakulinen J, Pelt-JA-van, Van-Pelt-JA.1996. Comparison of systemic resistance induced byavirulent and nonpathogenic Pseudomonas species. Phytopathology,86:757~762
    Hoffman D D, Diers B W.2002. Selected Soybean Plant introductions with partial resistance to Sclerotiniasclerotiorum. Plant Disease,971~980
    Hollis J P.1951. Bacteria in the healthy potato tissue, Phytopathol,41:197~209
    Horst L.1994. Modern selective fungicides properties, applications, mechanisms of action. Jena: GustevFischer Verlag
    Hou X W, Susan M B, Myrtle B, Doug O, Andrew R, Dwayne H.2006. Characterization of the antifungalactivity of a Bacillus spp. associated with sclerotia from Sclerotinia sclerotiorum. AppliedMicrobiology and Biotechnology,72:644~653
    Hu X J, Roberts D P, Jiang M L, Zhang Y B.2005. Decreased incidence of disease caused by Sclerotiniasclerotiorum and improved plant vigor of oilseed rape with Bacillus subtilis Tu-100. Appl MicrobiolBiotechnol.68:802~807
    Huang H C, Hoes J A.1976. Penetration and infection of Sclerotinia sclerotiorum by Coniothyriumminitans. Canadian Journal of Botany,54:(5-6)406~410
    Huang H C, Kokko E G.1988. Penetration of Hyphae of Sclerotinia sclerotiorum by Coniothyriumminitans Without the Formation of Appressoria. Journal of Phytopathology,123:133~139
    Jacobson C B, Pasternak J J, Glick B R.1994. Partial purification and characterization of1-amino-cyclopropane-1-carboxylate deamunase from the plant growth promoting rhizobacteriumPseudomonas putida GR12-2. Can. J. Microbiol,40:1019~1025
    Johnson F H, and Campbell D H.1945. The retardation of protein denaturation by hydrostatic pressure.Journal of Cellular and Comparative Physiology,26:43~46
    Jones D, Gordon D.1969. Parasitism and lysis by soil fungi of Sclerotinia sclerotiorum (Lib.) de Bary, aphytopathogenic fungus. Nature.224:287~288
    Kelemu S, Badel J L.1994. In vitro inhibition of Colletotrichum gloeosporioides and otherphytopathogenic fungi by an Amazonian isolate of Bacillus subtilis and its cell-free culture filtrate.Australasian Plant Pathology,23(2):41~45
    Kim B S, Cho K C, Kim B S, Cho K Y.1995. Antifungal effects on plant pathogenic fungi andcharacteristics of antifungal substances produced by Bacillus subtilis isolated from sclerotia ofRhizoctonia solani. The korean Journal of Plant Pathology,11(2):165~172
    Kim P I, Chung K C.2004. Production of an antifungal protein for control of Colletotrichum lagenariumby Bacillus amyloliquefaciens MET0908. FEMS Microbiology Letters,234:177~183
    Kita N, Ohya T, Uekusa H, Nomura K, Manago M, Shoda M.2005. Biological control of damping-off oftomato seedlings and cucumber mopsis root rot by Bacillus subtilis RB14-C. Japan AgriculturalResearch Quarterly,39:109~114
    Kleopper J W, Schipper B, Bakker P A H M.1992. Proposed elimination of the term endorhizosphere.Phytopathology,82:726~727
    Lamb T G, Tonkyn D W, Kluepfel D A.1996. Movement of Pseudomonas aureofaciens from therhizosphere to aerial plant tissue. Can J. Microbiol,42:1112~1120
    Lazarovits G, Nowak J.1997. Rhizobateria for improvement of plant growth and establishment.Hortscience,32:188~192
    Li G Q, Huang H.C, Acharya S N.2003. Antagonism and biocontrol potential of Ulocladium strum onSclerotinia sclerotiorum. Biological Control,28:11~18
    Li, G Q, Huang, H C, Acharya, S N.2003. Importance of pollen and senescent petals in the suppression ofSclerotinia sclerotiorum by Coniothyrium minitans. Biocon. Sci. Technol,13:495~505
    Lin D, Qu L J, Gu H, Chen Z A.2001.3.1-kb genomic fragment of Bacillus subtilis encodes the proteininhibiting growth of Xanthomonas oryzae pv. oryzae. J Appl Microbiol,91:1044~1050
    Liu B, Qiao H P, Huang L L, Buchenauer H, Han Q M, Kang Z S. Gong Y F.2009. Biological control oftake-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. BiologicalControl,49:277~285
    Liu B, Huang L L, Buchenauer H, Kang Z S.2010. Isolation and partial characterization of an antifungalprotein from the endophytic Bacillus subtilis strain EDR4. Pesticide Biochemistry and Physiology,98:305~311
    Liu Y F, Chen Z Y, Ng T B, Zhang J, Zhou M G, Song F P, Lu F, Liu Y Z.2007. Bacisubin, an antifungalprotein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916.Peptides,28:553~559
    Loganathan P, Nair S.2004. Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixingand phosphate-solubilizing bacterium from wild rice (Porteresiacoarctata Tateoka). InternationalJournal of Systematic and Evolutionary Microbiology,54:1185~1190
    Lumsden R D, Dow RI.1973. Histopathology of Sclerotiorum infection of bean. Phytopathol,63:708~715
    Lumsden R D.1979. Enzymes of S.sclerotiorumand their location in infected bean. Phytopathol,69:890~895
    Mclaren D L, Huang H C, Rimmer S R.1986. Hyperparasitism of Sclerotinia sclerotiorum by Talaromycesflavus. Can Journal of Plant Pathol,8:43~48
    McLaren D L R, Irvine B.2006. Impact of oat plants, oat plant extracts and saponins on Sclerotiniasclerotiorum. Canadian Journal of Plant Science,86(1):191.
    Ma Y, Chen Z, Zeng Z.2007. Effects of enrofloxacin on functional diversity of soil microbialcommunities. Acta Ecologica Sinica,27(8):3400~3406
    Machide K, Trifonov L S, Ayer W A, Lu Z X, Laroche A, Huang H C, Cheng K J, Zantige J L.2001.3(2H)-Benzofuranones and chromanes from liquid cultures of the mycoparasitic fungusConiothyium minitans. Phytochemistry,58(1):173177
    McInroy J A, Kleopper J W.1994. Studies on indigenous endophytic bacteria of sweet corn and cotton.In:Molecular Ecology of Rhizosphere Microorganisms. Biotechnology and the Release of GMOs.O'Gara F. bowling D N. and Boesten B. Eds.VCH,Verlagesellshaft MBH,Germany,pp.19~28.
    McQuilken M P, Mitchell S J, Budge S P, Whipps, J. M, Fenlon, J S, Archer S A.1995. Effect ofConiothyrium minitans on sclerotial survival and apothecial production of Sclerotinia sclerotiorumin field-grown oilseed rape. Plant Pathology,44:883~896
    McQuilken M P, Gemmell J, Whipps J M.2002. Some nutrional factors affecting production of biomassand antifungal metabolites of Coniothyrium minitans. Biocon. Sci. Technol,12:443~454
    McQuilken M P, Gemmell J, Hill R A, Whipps J M.2003. Production of macrosphelide A by themycoparasite Coniothyrium minitans. FEMS Microbiology Letters,219:27~31.
    Moore-Landecker E, Stotzky G.1972. Inhibition of fungal growth and sporulation by volatile metabolitesfrom bacteria. Canadian Journal of Microbiology,18(7):957~962
    M′piga P, Belanger R R, Paulitz T C, Benhamou N.1997. Increased resistance to Fusarium oxysporum f.sp. radicis-lycopersici in tomoto plants treated with the endophytic bacterium Pseudomonasfluorescens stain63-28. Physiol. Mol. Plant Pathol,50:301~320
    Muhammad A, Xu J M, Liz J, Wang H.2005. Effects of lead and gadmium nitrate on biomass andsubstrate utilization pattern of soil microbial communities. Chemosphere,60(4):508~514
    Murty M G, Ladha J K.1988. Influence of Azospi rillum inoculation on the mineral uptake and growth ofrice under hytroponic conditions. Plant soil,108:281~285
    Nakano M M. Zuber P.1990. Molecular biology of antibiotic production in Bacillus. Cretical Reviews inBiotechnology,10(3):223~240
    Obagwu J, and korsten L.2003. Integrated contol of citrus green and blue molds using Bacillus subtilis incombination with sodium bicarbonate or hotwater. Postharvest Biology and Technology,28:187~194
    O'Neill G A, Radley R A, Cbaimvay C P.1992. Variable effects of emergence-promoting rbizobacteria onconifer seedling growth under nursery conditions. Biol. Ertil. Soils,11:111~115
    Papavizas G C, Lemsden R D.1980. Biological control of soilborne fungal propagules. Annual Review ofPhytopathology,18:389~413
    Petrini O.1991. Fungal endophytes of tree leaves. In: Andrews J H. Hirano S S. eds Microbial Ecology ofLeaves. New York: Springer-Verlag:179~197
    Phillips A T L.1986. Gliocladium virens: A Hyperpaeasite of Sclerotinia sclerotiorum. Phytophylactica,18:35~37
    Pope, S. J., Varney, P. L., and Sweet, J. B.1989. Susceptibility of cultivars of oilseed rape to Sclerotiniasclerotiorum and the effect of infection on yield. Asp. Appl. Biol.23:451~456.
    Purdy L H.1979. Sclerotinia sclerotiorum: history, disease and symptomatology, host range, geographicdistribution and impact. Phytopathology,69(88):75~880
    Quadt-Haihnan A., Benhamou N, Kloepper J W.1997. Bacterial endophytes in cotton: mechanisms ofentering the plant. Can. J. microbial,43:557~583
    Rollins J A, Dickman M B.2001, pH signaling in Sclerotinia sclerotiorum: identification of a pacC/RIMLhomolog. Appl. Envir. Microbiol,67:75~81
    Rollins J A.2003, The Sclerotinia sclerotiorum pacl gene is required for sclerotial development andvirulence. Mol Plant Microbe Interact,16(9):785~795
    Saikia M K, Rakesh K, Kalita M K.2000. In vitro antagonism of Trichoderma and Gliocladium speciesagainst two important fungal pathogens. Annals of Agri Bio Research,5(2):159~162
    Savchuk S, Fernando W G D,2004. Effect of timing of application and population dynamics on the degreeof biological control of Sclerotinia sclerotiorum by bacterial antagonists. FEMS MicrobiologyEcology,49:379~388
    Schisler D A, Khan N I, Boehm M J, Slininger P J.2002. Greenhouse and field evaluation of biologicalcontrol of Fusarium head blight on durum wheat. Plant Disease,86:1350~1356
    Shoda M.2000. Bacterial control of plant diseases. Journal of Bioscience and Bioengineering,89(6):515~521
    Singh U P, Bahadur A, Singh D P, B. Sarma K.2003. Non-pathogenic powdery mildews induce resistancein pea (Pisum sativum) against Erysiphe pisi. Journal of Phytopathology,151:7~8,419~424
    Souto G I, Correa O S, Montecchia M S, Kerber N L, Pucheu N L, Bachur M, García A F.2004. Geneticand functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolitespartially identified as iturin-like compounds. J Appl Microbiol,97:1247~1256
    Stein T.2005. Bacillus subtilis antibiotics: structures, synthesis and specific functions. Mol Microbiol,56:845~857
    St ver A G, Driks A. Section.1999. Localization, and antibacterial activity of TasA, a Bacillus subtilisspore-associated protein. Journal of Bacteriology,181(5):1664~1672
    Sturz A,Christie B,Nowak J.2000. Bacterial endophytes: potential role in developing sustainable systemsof crop production.Crit Rev Plant Scf,19(1):1~30
    Tamechiro N, Okamoto-Hosoya Y, Okamoto S, Ubukata M, Hamada M, Naganawa H, Ochi K.2002.Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis168. Antimicrobial Agentsand Chemotherapy,46(2):315~320
    Thomashow L S, Weller D M.1988. Role of a phenazine antibiotic from Pseudomonas fluorescensinbiological control of Gaeumannomyces graminis var. tritici. J Bacteriology,170:3499~3508
    Tjalsam H, Bolhuis A, Jongbloed J D H, Jongbloed, Sierd B, Jan M V D.2000. Signal peptide-dependentprotein transport in Bacillus subtilis: a genome-based survey of the secretome. Mocrobiol. Mol.Biol,Rev,64(3):515~547
    Toure Y, Ongena M, Jacques P, Guiro A, Thonart P.2004. Role of lipopeptides produced by Bacillussubtilis GAl in the reduction of grey mould disease caused by Botrytis cinerea on apple. Journal ofApplied Microbiology,96:1151~1160
    Tschen J, Kuo W L.1985. Antibiotic inhibition and control of Rhizoctonia solani by Bacillus subtilis. PlantPrntection Bulletin,27:95~103
    Tu J C.1984. Mycoparasitism by Coniothyrium minitans on Sclerotinia sclerotiorum and its effect onsclerotial germination. Journal of Phytopathology,109:261~268
    Utkhede R S.1984. Antagonism of isolates of Bacillus subtilis to Phytophthora cactorum. Canadianjournal of Botany,62:1032~1035
    Van loon L C, Baker P A, Pieterse C M.1998. Systemic resistance induced by rhizospere bacteria. AnnuRev Phytopathol,36:453~483
    Van Peer R, Punte H L M, De Weger L A, Schippers B.1990. Characterization of root surface andendorhizosphere pseudomonads in relation to their colonization of roots. App. Envfron. Microbiol,56:2462~2470
    Van Peer R, Niemann GJ, Schippers B.1991. Induced resistance and phytoalexin accumulation inbiological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417. Phytopathol,81:728~734
    Vidhyasekaran P, Kamala N, Ramanathan A, Rajappan K, Paranidharan V, Velazhahan R.2001.Induction of systemic resistance by Pseudomonas fluorescens Pf1against Xanthomonas oryzae pv.oryzae in rice leaves. Phytoparasitica,29(2):155~166
    Vrije T, Antoine N, Buitelaar R M, Bruckner S, Dissevelt M, Durand A, Gerlagh M, Jones E E, Luth P,Oostra J.2001. The fungal biocontrol agent Coniothyrium minitans: production by solid-statefermentation, application and marketing. Applied Microbiology and Biotechnology,56:58~68
    Whipps J M, Budge S P, Mitchell S J.1993. Observations on sclerotial mycoparasites of Sclerotiniasclerotlorum. Mycol. Res,97(6):697~700
    Wulff E Gvan Vuurde J W L,Hockenhull J.2003. The ability of the biological control agent Bacillussubtilis strain BB, to colonise vegetable brassicas endophytical ly following seed inoculation.Plantand Soil,255(2):463~474
    Xu H, Griffith M, Patten C L, Bernard R G.1998. Isolation of an antifreeze protein with ice nucleationactivity from the plant growth promoting rhizobacterium Pseudomonas putida GR1222. Can J.Microbiol,44:64~73
    Xue X L, Jarlfors U, Kuc J.1988. Ultrastructural changes associated with induced systemic resistance ofcucmber to disease: Hostresponse and development of Colletotrichum lagenarium in systemicallyprotected leaves. Can J Bot,66:1028~1038
    Yang D J, Wang B, Wang J X, Chen Y, Zhou M G.2009. Activity and efficacy of Bacillus subtilis strainNJ-18against rice sheath blight and Sclerotinia stem rot of rape. Biological Control51,61~65
    Yu G Y, Sinclair J B, Hartman G L, Bertagnolli B L.2002. Production of iturin A by Bacillusamyloliquefaciens suppressing Rhizoctonia solani. Soil Biology and Biochemistry,34:955~963
    Zdor R E, Anderson A J.1992. Influence of root colonizing bacteria on the defence responses in bean.Plant Soil,140:99~107
    Zhao J W, Meng J L.2003. Genetic analysis of loci associated w ith partial resistance to Sclerotiniasclerotiorum in rapeseed (B rassica napus L.). Theor Appl Genet,106:759~764
    Zheng G, Slavik M.1999. Isolation, partial purification and characterization of a bacteriocin produced by anewly isolated Bacillus subtilis strain. Letter Apllied Bacterial,28:363~367
    Zheng G, Yan L Z, Vederas J C, Peter Z.1999. Genes of the sboalb locus of Bacillus subtilis are requiredfor production of the antilisterial bacteriocin subtilosin. Bacteriology,181(23):7346~7355
    Zhou T, Reeleder R D.1990. Selection of Epicoccum purpurascens for tolerance to fungicides andimproved biocontrol of Sclerotirria sclerotiorum. Can. J. Microbiology,36:754~759
    Zuber P.1993. Peptide antibiotics. In: Bacillus subtilis and other Gram-Positive Bacteria: Biochemistry,Physiology, and Mocular Genetics.Washington, D.C: American Society for Microbiology:897~916

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700