用户名: 密码: 验证码:
机制砂特性对混凝土性能的影响及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着基础设施建设的快速发展和环境保护的加强,天然砂资源越来越匮乏,使用机制砂已成为必然趋势。但机制砂在粒形、级配、表面质构以及0.075mm以下颗粒含量等方面与天然砂存在显著差异。因此,开展机制砂的上述特性对混凝土性能的影响及作用机理研究具有重要的实用价值和理论意义。
     首先研究了石英岩、片麻岩、花岗岩、玄武岩、石灰岩、大理岩等六种具有代表性岩性的石粉对化学外加剂作用效果的影响及对混凝土性能的影响。结果显示,石粉岩性的变化对化学外加剂特别是聚羧酸系减水剂的选择适应性表现显著,而石粉岩性对矿物掺和料的作用效果没有显著影响;石粉岩性变化对混凝土工作性、强度与体积稳定性略有影响,但影响差异并不显著,而石粉岩性变化对混凝土耐久性基本没有影响。
     其后,以石灰岩石粉为研究对象,研究了机制砂中石粉含量对混凝土性能的影响。结果显示,适量的石粉可以起到完善机制砂的级配、增加浆体数量和填充颗粒空隙的作用,改善机制砂混凝土的工作性,提高机制砂混凝土的强度,但对于不同强度等级混凝土而言,机制砂中石粉的最佳含量不同。同时,适量的石粉有利于机制砂混凝土抗氯离子渗透、抗冻融、抗硫酸盐侵蚀和抗磨等耐久性能的提高,但机制砂中石粉含量超过7%~10%不利于混凝土塑性收缩与干燥收缩的控制。综合研究成果提出,可将国标《建筑用砂》中机制砂中石粉含量限值适当放宽到5%,7%,10%,甚至更高。
     接着,研究了机制砂的粒形、级配、压碎值等机制砂特性指数对混凝土性能的影响。研究发现,受机制砂级配与石粉含量的影响,常规测试机制砂粗糙度的试验方法不能准确反映出机制砂的颗粒形貌特征。研究还发现,机制砂的多棱角的特性,一方面增加了混凝土的屈服应力而降低了混凝土的工作性,另一方面则有利于提高混凝土的强度与体积稳定性,但机制砂的压碎值与混凝土强度之间没有明显的相关性。通过砂浆流变性试验发现,适当提高机制砂中0.15~0.3mm与0.3~0.6mm的颗粒更有利于提高机制砂混凝土的工作性。
     还采用外加泥粉的方式研究了机制砂MB值变化对混凝土性能的影响。研究结果证实了机制砂MB值与机制砂岩性和石粉含量无关,而与泥粉含量成正比,同时还发现机制砂MB值也受泥粉液限指数的影响。机制砂MB值的提高,增加了混凝土的塑性粘度,增大了对化学外加剂特别是对聚羧酸系减水剂的吸附,对混凝土的工作性与体积稳定性劣化最为显著,但对于机制砂混凝土力学性能与耐久性的影响规律则与混凝土的强度等级有关,对于低强度等级混凝土而言,适当的MB值有利于机制砂混凝土强度与耐久性的提高,但对于高强度等级混凝土而言,MB值的提高则会导致机制砂混凝土强度与耐久性的劣化。
     最后,论文还采用XRD、SEM、MIP以及微区硬度、水化微量热等微观测试方法,研究了石粉对水泥水化的促进作用以及对混凝土孔隙填充作用的机制。研究发现,石粉具有晶核效应,且石粉中的CaCO_3微粒参与了C_3A的水化反应,从而促进了水泥初期水化放热,石粉中碳酸盐矿物颗粒含量越高,对水化促进越显著。机制砂中适量的石粉使混凝土过渡区密实化,改善硬化混凝土的孔结构,从而增强混凝土的性能,但当石粉含量过高时,水泥石中或界面过渡区出现游离态的石粉,则将不利于集料与水泥石的粘结,降低混凝土性能。
With the rapid development of infrastructure construction and increasing attention being paid to environmental protection, there is a lack of the natural sand used to meet the requirements for engineering construction, so the use of manufactured sand (MS) to prepare concrete has become a trend. However, compared with natural sand, manufactured sand has remarkable differences on its shape, gradation, surface texture and the content of particles whose size is less than 0.075mm. Therefore, it has a practical and theoretical significance to research the influence of these characteristics of manufactured sand on performances of Portland cement concrete and its mechanism.
     Firstly, the influence of six stone dusts with representative lithologic characters on the action effect of chemical admixtures and the concrete performances were researched, which include quartzite, gneiss, granite, basalt, limestone and marble. The results showed that the change of lithologic characters of stone dust had an obvious effect on the adaptation of chemical admixtures, especially the polycarboxylate superplasticizer, while had no significant effect on the action of mineral admixtures. The change of lithologic characters of stone dust had a slight influence on concrete workability, strength and volume stability, and had little effect on the durability of MS concrete.
     Secondly, the effect of limestone dust content in the manufactured sand on concrete properties was studied. The results showed that the proper amount of stone dust could improve the gradation of MS, increase the paste volume and fill the void among particles, which could improve the workability and strength of MS concrete. However, the optimum content of stone dust in MS was different for MS concretes of different strength grade. The proper amount of stone dust could improve the durability of concrete, including the resistance to chloride ion permeation, the frost resistance, the sulfate resistance and abrasion resistance. But it was harmful to control the drying and plastic shrinkage that the stone dust content was more than 7%~10%. So, it is provided that the limited value of stone dust in MS in the national standard "Sand for Building" can be raised to 5 %, 7 %, and 10% or even higher.
     Thirdly, the effect of characteristic indexs of MS on the concrete performance was studied, such as particle shape, graduation, crushing value, et al. It was found that the routine test method of the sand roughness could not reflect the particle shape of MS accurately influenced by its graduation and stone dust content. It was also found that the angular MS could reduce the workability of MS concrete due to the increase of yield stress, and improve its strength and volumetric stability. However, there is no obvious correlation between the strength of MS concrete and its crushing value. The mortar rheological test results showed that the proper increase of particle content of 0.15~0.3mm and 0.3~0.6mm was helpful to improve the workability of MS concrete.
     Fourthly, influence of the change of MS MB value on the concrete properties was studied by adding clay powder into MS. The results showed that MB value had no correlation with the lithologic character and stone dust content of MS, while was in direct proportion to clay powder content. It was also found that MB value was influenced by liquid limit index of clay powder. With the increase of MS MB value, the plastic viscosity of concrete and its adsorption of the chemical admixtures, especially polycarboxylate superplasticizer, were increased. Due to the increase of MS MB value, the workability and volumetric stability of MS concrete was deteriorated significantly. But the mechanical properties and durability of MS concrete were also influenced by its strength grade. The proper MB value could improve the strength and durability of MS concrete for low-strength concrete, while for high-strength concrete, the increase of MB value could lead to the deterioration of strength and durability of MS concrete.
     Finally, the promotion of stone rust on cement hydration and its filling effect on concrete void were studied by using XRD, SEM, MIP, micro-hardness, micro-calorimeter, et al. The results showed that stone dust had crystal effect, and its CaCO_3 particulate participates the hydration of C_3A, promoting the early hydration of cement. With the higher CaCO_3 content in stone dust, the hydration promotion could be more notable. Proper amount of stone dust in MS densified the interfacial transition zone (ITZ) and improved pore structure of MS concrete, which enhanced the properties of MS concrete. However, if the quantity of stone dust was too high, the free stone dust could exist in ITZ, which was harmful to the bond between aggregate and hardened cement paste, and decreased the performance of MS concrete.
引文
[1]马昭淼,罗金星.采用破碎机全干法生产人工砂若干问题的研究[J].水利科技,2001,(1):40-41.
    [2]唐祥正.关于云南省人工砂应用及生产中的几个问题[J].云南建材,2001,(4):35-37.
    [3]朱俊利,郎学刚,贾希娥.机制砂生产现状与发展[J].矿冶,2001,10(4):38-42.
    [4]李亚铃.再论混凝土机制砂[J].建筑技术开发,2003,30(12):95-96.
    [5]李北星,周明凯,田建平,胡晓曼.石粉与粉煤灰对C60机制砂高性能混凝土性能的影响[J].建筑材料学报,2006,(9):381-388.
    [6]陈家珑.合理利用人工砂中的石粉[J].新型建筑材料,2004,(5):48-50.
    [7]徐健,蔡基伟,王稷良,周明凯.人工砂与人工砂混凝土的研究现状[J].国外建材科技,2004,(3):20-24.
    [8]C.R.Marek.Importance of Fine Aggregate Shape and Grading on Properties of Concrete[A].International Center for Aggregates Research,3rd annual svmposium,1995.
    [9]蔡基伟,李北星,周明凯,胡晓曼.石粉对中低强度机制砂混凝土性能的影响[J].武汉理工大学学报,2006,28(4):27-30.
    [10]李北星,周明凯.石灰岩机制砂中石粉作掺和料对混凝土工作性和强度的影响[J].公路,2007,(12):141-145.
    [11]J.P.Goncalves,L.M.Tavares,R.D.Toledo Filho,et al.Comparison of natural and manufactured fine aggregates in cement mortars[J].Cement and Concrete Research,2007,1(12):1-9.
    [12]Violeta Bokan Bosiljkov.SCC mixes with poorly graded aggregate and high volume of limestone filler[J].Cement and Concrete Research,2003,33(3):1279-1286.
    [13]吴明威,付兆岗,李铁翔,等.机制砂中石粉含量对混凝土性能影响的试验研究[J].铁道建筑技术,2000,(4):46-49.
    [14]徐健,蔡基伟,王稷良,等.人工砂与人工砂混凝土的研究现状[J].国外建材科技,2004,25(3):20-24.
    [15]李兴贵.高石粉含量人工砂在混凝土中的应用研究[J].建筑材料学报,2004,7f1):66-71.
    [16]R.B.Mckeagney.Trend To Use More Stone Sand.Conference on Crushed Stone for Road and Street Construction and Reconstruction,National Crushed Stone Association,1984:14-15.
    [17]V.V.Tepordei.Crushed Stone.Minerals Information,U.S.Geological Survey,1996.
    [18]美国内务部垦务局.混凝土手册[M].王圣培等译.北京:水利电力出版社,1990.
    [19]胡宏敏,王碧桃.水利水电工程人工制砂技术的发展和趋势[J].人民长江,2002,(3):15-29.
    [20]王碧桃,孔繁忠.干法制砂工艺在水利工程中的应用[J].人民长江,2001,(10):49-51.
    [21]罗金星.B9000型破碎机的特性及在人工砂生产中的应用[J].建筑机械,2001,(5):58-59.
    [22]周中贵.高石粉人工砂在黄丹电站工程中的应用[J].四川水力发电.1997,12(增刊):93-96.
    [23]彭勇.花滩水电站碾压混凝土坝砂石骨料的制备探讨[J].四川水力发电,1998,17(3):23-25.
    [24]谭克忠,黄丹.水电站人工石粉砂限值探讨及使用总结[J].四川水利水电,1998,9(3):44-46.
    [25]李家正,句广东.三峡工程古树岭石屑砂混凝土性能研究[J].长江科学院院报,2001,18(3):53-56.
    [26]车公义.三峡工程人工砂生产工艺与质量控制[J].广东建材,2005,(11):16-18.
    [27]杨志帆,汪大彬.三峡工程人工砂系统投产后有关问题探讨[J].中国三峡建设,1996,(8):15-17.
    [28]车公义,赵明华,陈绪贵.三峡工程人工砂质量控制[J].中国三峡建设,2000,(9):51-53.
    [29]P.K.Mehta.混凝土的结构、性能与材料[M].祝永年,沈威,陈志源.上海:同济大学出版社,1991.
    [30][英]尼明德斯,[美]弗朗西斯-扬著,方秋清,杜如楼,吴科如等译.混凝土[M].北京:中国建筑工业出版社,1989.
    [31]维诺格拉多夫.周新益译.集料对混凝土性能的影响.北京:中国建筑工业出版社,1985.
    [32]W.Gutteridge,J.Dalziel.Filler cement.The effect of the secondary component on the hydration of portland cement:Part 1.A fine non-hydraulic filler[J].cement and concrete research,1990,20(5):778-782.
    [33]I.Soroka,N.Stern.Calcareous fillers and the compressive strength of portland cement[J].cement and concrete research,1976,6(3):367-376.
    [34]V.Bonavetti,H.Donza,G.Menendez,et al.Limestone filler cement in low w/c concrete:A rational use of energy[J].Cement and Concrete Research,2003,33:865-871.
    [35]V.L.Bonavetti,E.F.lrassar.The Effect of Stone Dust Content in Sand[J].Cement and Concrete Research,1994,24(3):580-590.
    [36]V.L.Bonavetti,V.F.Rahhal,E.F.Irassar.Studies on the carboaluminate formation in limestone filler-blended cements[J].Cement and Concrete Research,2001,31:853-859.
    [37]Anne-Mieke Poppe,Geert De Schutter.Cement hydration in the presence of high filler contents[J].Cement and Concrete Research,2005,35:2290-2299.
    [38]G.Kakali,S.Tsivilis,E.Aggeli,M.Bati,Hydration products of C3A,C3S and Portland cement in the presence of CaCO_3[J].cement and concrete research,2000,(30):1073-1077.
    [39]Zhou Mingkai,Peng Shaoming,Xu Jian,et al.Effect of Stone Powder on Stone Chippings Concrete[J].Journal of Wuhan University of Technology(Materials Sciences Edition),1996,11(4):29-34.
    [40]J.Pera,S.Husson and B.Guilhot.Influence of Finely Ground Limestone on Cement Hydration [J].Cement and Concrete Composite,1999,(21):99-105.
    [41]杨松玲,田育功,林洁.辉绿岩人工砂石粉的研究与利用.人民长江,2007,38(1):113-116.
    [42]Steven H.Kosmatka,Beatrix Kerkhoff,William C.Panarese 著.钱觉时等译.混凝土设计与控制[M](第十四版).重庆:重庆大学出版社,2005.
    [43]许锡业,韦建设,邓日南.乐滩砂石系统人工砂细度模数的控制[J].红水河,2004,23(4):36-38.
    [44]Anna-Lena Persson.Image analysis of shape and size of fine aggregates[J].Engineering Geology,1998,50:177-186.
    [45]Sr.J.M.Shilstone.Changes in Concrete Mixture Optimization[J].Concrete International:Design-and Construction,1990,12(6):33-39.
    [46]S.W.Forster.Soundness,deleterious substance and coating.ASTM Special Technical Publication No.169C,Philadelphia,1994.411-420.
    [47]Ahn,N.An Experimental Study on the Guidelines for Using Higher Contents of Aggregate Microfines in Portland Cement Concrete[D].Austin,University of Texas,2000.
    [48]Dolar Mantuani,Ludmila.Handbook of Concrete Aggregates[M].New Jersey:Noyes Publications,1983.
    [49]C.R.Marek.Importance of Fine Aggregate Shape and Grading on Properties of Concrete.InternatiOnal Center for Aggregates Research,3rd annual symposium,1995.
    [50]Jarvenpaa H.Quality Characteristics of Fine Aggregate and Controlling their Effects on Concrete[D].Helsinki:Helsinki University of Technology,2001.
    [51]Johansson L.The Effect of Aggregate Grading and Mix Proportions on the Workability for Concrete Made with Entirely Crushed Aggregate.Studies on Concrete Technology[J],Swedish Cement and Concrete Research Institute,1979:147-160.
    [52]Golterman P,Johansen V,Palbfl L.Packing of Aggregates:An Alternative Tool to Determine the Optimal Aggregate Mix[J].ACI Material Journal,1997,94(5):435-440.
    [53]J.E.Jr.Galloway.Grading,Shape,and Surface Properties.ASTM Special Technical Publication.No.169C,Philadelphia,1994:401-410.
    [54]Sr.J.E.Galloway.Grading,Shape,and Surface Properties.ASTM Special Technical Publication.No.169C,Philadelphia,1994:401-410.
    [55]J.Clelland.Sand for Concrete,a new test method.New Zealand Standards Bulletin,1980.
    [56]S.M.Cramer,J.Parry.Effect of Optimized Total Aggregate Grading on Portland Cement Concrete for Wisconsin Pavements.National Research Council:Transportation Research Record,No.1478,1995:100-106.
    [57]Ming-Kai Zhou,Ji-Wei Cai,Ji-Liang Wang,Bei-Xing Li.Research on Properties of Concrete Prepared with Artificial Sand Containing Stone Powder at High Content.In:Nai-Qian Feng,Gai-Fei Peng,eds.,Proceedings of Environmental Ecology and Technology of Concrete.Uetikon-Zuerich,Switzerland:Trans Tech Publications Ltd,2005:263-268
    [58]Aictin P.C.High Performance Concrete[M].London:E&FN Spon,1998
    [59]M.Galetakis,S.Raka.Utilization of limestone dust for artificial stone production:an experimental approach[J].Minerals Engineering,2004,(17):355-357
    [60]Burak Felekoglu.Utilisation of high volumes of limestone quarry wastes in concrete industry (self-compacting concrete case)[J].Resources,Conservation and Recycling,2007,(10):1-22.
    [61]国家建委四局建筑科学所.山砂混凝土[M].北京:中国建筑工业出版社,1979.
    [62]吴明威,付兆岗,李铁翔,等.机制砂中石粉含量对混凝土性能影响的试验研究[J].铁道建筑技术,2000,(4):46--49.
    [63]郑金炎,吴跃群.人工砂在商品混凝土中的应用[J].建材技术与应用,2004,(6):32-33.
    [64]李亚杰,方坤河.建筑材料[M].北京,中国水利水电出版社,2007.
    [65]陈家珑.人工砂-新型建筑用砂[J].新型建筑材料,2002,(6):32-34.
    [66]Tahir Celik,Khaled Marar.Effects of Crushed Stone Dust on Some Properties of Concrete[J].Cement and Concrete Research,1996,26(7):1121-1130.
    [67]A.E.Ahmed,A.A.El-Kourd.Properties of Concrete incorporating Natural and Crushed Stone Very Fine Sand[J].ACI Materials Journal,1989,86(4):417-424.
    [68]Tahir.C,Knaled M.Effects of Crushed Stone Dust on Some Properties of Concrete[J].Cement and Concrete Rearch,1996,26(7):1121-1130.
    [69]Nam-Shik Ahn.An Experimental Study on the Guidelines for Using Higher Contents of Aggregate Micro Fines in Portland Cement Concrete[D].The Univisity of Texas,August,2000.
    [70]A.K.Sahu.Sunil Kumar and A.K.Sachan.Crushed Stone Waste as Fine Aggregate for Concrete[J].The Indian Concrete Journal,2003,(1):845-848.
    [71]E.L.Dukatz,C.R.Marek.Evaluation of Manufactured Stone Sand for Use in Virginia.Construction Materials Research and Development,Project 11-3.68,Vulcan Materials Company,March,1985.
    [72]V.M.Malhotra,G.G.Carette.Performance of Concrete Incorporating Limestone Dust as Partial Replacement for Sand[J].ACI Journal,Proceedings,1985,82(3):363-371.
    [73]A.E.Ahmed,A.A.El-Kourd.Properties of Concrete incorporating Natural and Crushed Stone Very Fine Sand[J].ACI Materials Journal,1989,86(4):417-424.
    [74]Ramirez.J.L..Estudio Sobre la Nocividady Correction de los Finos de las Arenas Calizas de Machaqueo Para Hormigones.en el Pais Vascok.LabienBilbao,Spain,1986.
    [75]Mohamed.N.AZ.and Maged.M.F.Short-Term Impact of High-Aggregate Fines Content on Concrete Incorporating Water-Reducing Admixtures[J].ACI Materials Journal,2003,(2):280-285.
    [76]安文汉.石屑混凝土强度及微观结构实验研究[J].山西建筑,1989,(2):19-26.
    [77]李美利,王立霞等.机制砂中石粉含量对混凝土抗压强度及收缩的影响[J].河南建材,2001,(3):43.
    [78]D.S.Prakash Rao and Giridhar Kumar.Investigations on Concrete with Stone Crushed Dust as Fine Aggregate[J].The Indian Concrete Journal,2004,(6):45-50.
    [79]J.-K.Kim,C.-S.Lee et al.The Fracture Characteristics of Crushed Limestone Sand Concrete [J].Cement and Concrete Research,1997,27(11):1719-1729.
    [80]李建,谢友均,刘宝举.石屑代砂混凝土力学性能研究[J].混凝土,2001,(7):23-25.
    [8l]李建,谢友均,刘宝举,等.石灰石石屑代砂混凝土配制技术研究[J].建筑材料学报,2001,4(1):89-92.
    [82]杨德斌,徐家保.石灰石石屑在混凝土及建筑砂浆中的应用[J].混凝土,1991,(2):22-26.
    [83]洪锦祥,蒋林华,肖玉明,等.石灰石石屑混凝土力学性能研究[J].混凝土与水泥制品,2002,(4):7-9.
    [84]洪锦祥,王嘉琪,蒋林华.石屑代砂在混凝土中的研究与应用[J].混凝土,2002,r6):56-58.
    [85]蒋林华,洪锦祥,肖玉明.白云石石屑混凝土试验研究[J].工业建筑,2003,3(4):46-48.
    [86]曹伟宏,苏庆国,游汉桂.远距离高泵程机制砂混凝土泵送施工技术[J].铁道标准设计,2000,20(11):16-19.
    [87]Hiroshi Uchikawa,Shunsuke Hanehara,Hiroshi Hirao.Influence of Microstructure on the Physical Properties of Concrete Prepared by Substituting Mineral Powder for Part of Fine Aggregate[J].Cement and Concrete Research,1996,26(1):101-111.
    [88]陈兆文.棉花滩水电站高石粉人工砂混凝土性能试验研究[J].水力发电,2001,(7):32-35.
    [89]郭伟,孙树勤,魏兰珂.石屑混凝土的研究与应用[J].辽宁建材,2003,(2):17-18.
    [90]陈家珑.机制石屑砂及其在普通混凝土中的应用研究[J].建筑技术开发,1999,26(1):40-42.
    [91]胡海琳,梁松,杨医博,等.石屑混凝土的研究与应用[J].广东建材,2005,(5):28-30.
    [92]李兴贵,严栋兴,章恒全.高石粉人工砂原级配混凝土力学性能试验研究[J].红水河.2003,22(1):65-68.
    [93]谭克忠,黄丹.水电站人工石粉砂限值探讨及使用总结[J].四川水利水电,1998,9(3):44-46.
    [94]B.P.Hudson.Manufactured Sand for Concrete.5th ICAR Symposium,E2-2-1.Austin,Texas.1997.
    [95]Violeta Bokan Bosiljkov.SCC mixes with poorly graded aggregate and high volume of limestone filler[J].Cement and Concrete Research,2003,33:1279-1286.
    [96]Hiroshi Uchikawa,Shunsuke Hanehara,Hiroshi Hirao.Influence of Microstructure on the Physical Properties of Concrete Prepared by Substituting Mineral Powder for Part of Fine Aggregate[J].Cement and Concrete Research,1996,26(1):101-111.
    [97]张铂,蒋元海,胡玉柱,等.石灰石质人工砂的试验应用研究[J].商品混凝土,2005,(2):43-45.
    [98]常江,蒋元海,柳刚,等.人工砂是配制优质混凝土和砂浆的理想材料[J].混凝土与水泥制品,2005,(3):14-17.
    [99]张映全.在混凝土中掺石屑提高抗渗抗冻性能的方法[J].建筑技术,1995,(10):16-17.
    [100]张桂梅,张桂珍.人工砂的应用研究[J].山西水利,2001,(s):43-44.
    [101]宋少民,耿雷.人工砂高性能混凝土抗渗性与抗冻性研究[J].工业建筑,2006,36(7):68-70.
    [102]张瑞芳.含泥量对混凝土强度的影响[J].建材技术与应用,2007,(8):8-9.
    [103]李晓.含泥量-变不利为有利的探讨[J].混凝土,1999,(4):44-47.
    [104]赵尚传,邱晖,贡金鑫,王保存.粗集料含泥量对混凝土力学性能及抗冻耐久性的影响[J].公路交通科技(应用技术版),2007,(1):111-115.
    [105]李晓.高含泥量特细山砂混凝土的配制[J].混凝土,1994,(4)::35-40.
    [106]张承志.商品混凝土[M].北京:化学工业出版社,2006.
    [107]袁杰,范永德,葛勇,等.含泥量对商性能混凝土耐久性能的影响[J].混凝土,2003,8:31-33.
    [108]Nam-Shik Ahn.An Experimental Study on the Guidelines for Using Higher Contents of Aggregate Micro Fines in Portland Cement Concrete[D].The Univisity of Texas,August,2000.
    [109]刘崇熙等.混凝土骨料性能和制造工艺[M].广州:华南理工大学出版社,1999.
    [110]高英力,周士琼.粉煤灰对水泥浆体化学收缩的影响[J].混凝土,2002,(6):37-39.
    [111]Y.Kasai,S.Hiraishi.Mixture Proportion,Flowability,Crack Propagation,Strength and Durability of Flowing Concrete[J].Journal of Shadong institute of building materials,1998,12(S1):25-40.
    [112]中国工程院土木水利与建筑学部工程结构安全性与耐久性研究咨询项目组.混凝土结构耐久性设计与施工指南[M].北京:中国建筑工业出版社,2004.
    [113]Z HE,X M Zhou,Z J Li.New Experimental Method for Studying Early-age Cracking of Cement-based Materials[J].ACI Materials Journal,2004,101(1):50-56.
    [114]何真,李宗津,李文莱.一种椭圆环约束开裂自动监测试验装置[P].中国实用新型专利,专利号:ZL 02 2 84045.1.
    [115]Lu Xinying.Application of the Nernst-Einstein Equation to Concrete[J].Cement an Concrete Research,1997,27(2):293-302.
    [116]王栋民,左彦峰,欧阳世翕.氯离子在掺不同矿物质掺和料高性能混凝土中的扩散性能[J].硅酸盐学报,2004,32(7):858-861.
    [l17]LI Zongjin,LI Weilai.Contactless,Transformer-based Measuement of the Resistive of Materials[P].US patent,6639401.2003-10-28.
    [118]魏小胜,肖莲珍,李宗津.采用电阻率法研究水泥水化过程[J].硅酸盐学报,2004,(1):34-38.
    [119]LI Zongjin,WE1 Xiaosheng,LI Wenlai.Preliminary Interpretation of Hydration Process of Portland Cement Using Resistivity Measurement[J].ACI Materials Journal,2003,100(3):253-257.
    [120]MoncefNehdi.Why some Carbonate Fillers Cause Rapid Increases of Viscosity in Dispersed Cement-based Materials[J].Cement and Concrete Research.2000,(30):1663-1669.
    [121]舒传谦.贵州山砂高强混凝土的物理性能[J].贵州工业大学学报,1997,26(2):93-97.
    [122]舒传谦.贵州山砂高强混凝土的力学特性[J].贵州工学院学报,1996,25(3):48-53.
    [123]石云兴.微细粉体在新拌混凝土中的表面物理化学作用[J].混凝土,1999,(05):15-19.
    [124]唐明述.从国外碱-集料反应的现状建议我国应采取的对策和研究方向[J].硅酸盐通报,1992,(1):29-34.
    [125]邓敏,唐明述.岩石中的硅质矿物与碱-硅酸反应[J].混凝土,1994,5:34-39.
    [126]唐明述,邓敏.碱集料反应研究的新进展[J].建筑材料学报,2003,6(1):1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700