用户名: 密码: 验证码:
基于CFD的船用离心泵叶轮抗汽蚀优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离心泵广泛地应用于现代船舶之中,在船舶的制造和能耗中都占有很大的比例,而船用离心泵叶轮的汽蚀现象一直以来是影响离心泵性能的重要原因之一本文采用基于CFD的研究方法对离心泵内部流场进行分析计算,提出了提高离心泵叶轮抗汽蚀性能的优化设计方案,对离心泵的研究具有重要的意义。
     本文选取了离心泵叶轮的叶片数目、进口宽度和进口形状三个参数进行分析计算,主要的研究工作为:
     1、研究船用离心泵的结构特点,分析离心泵产生汽蚀的原因及其危害,了解目前国内外关于船用离心泵抗汽蚀性能的研究进展及研究现状;
     2、掌握三维设计软件SolidWorks的使用方法及相关的建模方法,运用该软件对叶轮和蜗壳流道进行三维建模;
     3、运用面向CFD的专业前处理器软件GAMBIT软件对叶轮和蜗壳流道模型进行网格化处理,包括进出口设定以及交界面的设定;
     4、将网格化的流道模型实体导入Fluent软件进行内部流场分析,包括对所输送介质的物理性质设定、边界条件设定以及计算方法设定等;
     5、分析数值模拟得到的叶轮和蜗壳流道压力、速度分布图,结合离心泵的扬程及效率参数的变化,提出离心泵叶轮的优化设计方案。
     本文得出的主要结论:由CFD的分析结果可知,适当增加叶轮叶片数目;适当增加离心泵叶轮流道的进口宽度;采用合适的叶轮流道进口形状都可以提高离心泵叶轮的抗汽蚀性能,并且使离心泵的其他工作性能不受太大影响甚至还有所提高。在对离心泵进行机械结构设计时,对所设计的模型使用CFD的方法进行流场性能计算弥补了传统设计方法的不足,能够有效地缩短设计周期,降低设计成本。
Centrifugal pump is widely used in modern ships, it accounts for a large prop-ortion of the ship's manufacturing and energy consumption.The centrifugal pump im-peller cavitation has been one of the important reasons that affect the performanc-e of the centrifugal pump. In this paper, the CFD method is used to analysis and c-alcula the internal flow field of the centrifugal pump, an optimized design to impr-ove the cavitation resistance of the centrifugal pump impeller is proposed, which is of great significance in the study of the centrifugal pump.
     In this paper, three parameters are selected for our analyzation and calculatio-n:the number of blades of the centrifugal pump impeller, width of imports and the s-hape of import, the main work is as follows:
     1. Studying the structural characteristics of the centrifugal pump, analyzing the causes and hazards of the centrifugal pump cavitation, know about the present statu-s of research on the cavitation resistance of the centrifugal pump both home and a-broad;
     2. To master the three-dimensional mechanical design software Solid Works and related modeling methods, modeling the impeller and volute flow using SolidWorks;
     3. Gridding the impeller and volute flow model with using preprocessor for CF D software GAMBIT, including import and export settings and interface settings;
     4. Import gridding flow model entities into the fluent software for internal flo-w field analysis, including setting the phy-sicalproperties of the medium, the bound-ary conditions and calculation methods;
     5. By analyzing the pressure and velocity maps of the impeller and volute flo-w by numerical simulation, combined with the analysis of the centrifugal pump hea-d and efficiency, an optimal design of the centrifugal pump impeller is proposed.
     The main conclusions drawn in this paper are as follows:the CFD analysis sho-ws that, increase the number of impeller blades appropriately; increase the width o-f imports properly in centrifugal pump; suitable impeller imported shape can improv-e the cavitation resistance of the centrifugal pump impeller, while keep other perfor-mance unaffected, even improved. When we design the mechanical structure of t-he centrifugal pump, using the CFD method to calculate the flow field performa -nce could compensate the defects of traditiona-1 design methods, shorten the resear-ch and design cycle effectively and reduce the design costs.
引文
[1]衣拥军,张玉梅,苏苗印等,叶轮背叶片对离心泵性能影响的研究与探讨.通用机械,2011,6:88-91.
    [2]宁波.基于LabVIEW的船用离心泵状态监测与分析系统的研究:(硕士学位论文).大连:大连海事大学,2010.
    [3]王长悦,李亮.船用离心泵的汽蚀现象与解决措施[J].安徽电子信息职业技术学院学报,2010,5(9):24-25.
    [4]张金凤.带分流叶片离心泵全流场数值预报和设计方法研究:(博士学位论文).江苏:江苏大学,2007.
    [5]Dazhuan Wu, Leqin Wang, Zongrui Hao, Zhifeng Li and Zhiren Bao, Experimental study on hydrodynamic performance of a cavitating centrifugal pump during transient operation[J]. Journal of Mechanical Science and Technology,2010,24(2):575-582.
    [6]EMILV. PARYSHEV. Approximate mathematical models in high—speed hydrodynamics. Journal of Engineering Mathematics,2006,55:41-64.
    [7]Christopher E. Brennen. A multifrequency instability of caviating inducers. Sixth International Symposium on Cavitation (CAV2006), Wageningen, The Netherlands, September 2006.
    [8]Philippe Dupont, Tomoyoshi Okamura. Cavitating Flow Calculations in Industry [J].International Journal of Rotating Machinery,9(3):163-170,2003.
    [9]Franklyn J., Kato H., and Yamaguchi, H., A New Modelling of Cavitating Flows: A Numerical Study of Unsteady Cavitation on a Hydrofoil Section, Journal of Fluid Mechanics,1992,240:59—96.
    [10]Pedersen N., Larsen.P. S, Jacobsen. C. B.Flow in a Centrifugal Pump Impeller at Design and Off-Design Condition—Part I:Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) Measurements Journal of Fluids Engineering,2003(125): 61—72.
    [11]R. Spenee. Investigation into pressure pulsations in a centrifugal pump using numerical methods supported by industrial tests[J]. Computers &Fluids,2008,37(6): 690-704.
    [12]Adnan Ozturk. Effect of impeller-diffuser radial gap ratio in a centrifugal pump[J]. Journal of Scientific & Industrial Research,2009,68(3):33-34.
    [13]陈庆光,吴墒锋,吴玉林等.轴流式水轮机内部空化流动的数值预测[J].工程热物理学报,2006,27(5):769-771.
    [14]徐洁,谷传纲.长短叶片离心泵叶轮内部流动的数值计算.化工学报,2004,55(4):541-544.
    [15]李文广.特低比速离心泵叶轮内部流动分析.水泵技术,2005(1):1-6.
    [16]赵万勇,张亮等.双吸离心泵径向力数值分析[J].排灌机械,2009,27(4):205-209.
    [17]王洋,何文俊.基于FLUENT的无过载离心泵改型及性能预测[J].排灌机械,2009,27(2):115-118.
    [18]周玉丰.基于ANSYS的离心泵叶轮结构有限元分析[J].自动化与仪器仪表,2011,4:136-137.
    [19]Zhou Wei dong, Zhao Zhi mei, Lee T S, et al. Investigation of flow through centrifugal pump impellers using computational flu id dynamics[J].International Journal of Rotating Machinery,2003,9 (1):49-61
    [20]舒信伟,基于CFD流场分析的多工况多约束条件的叶片优化设计方法与实验研究:(博士学位论文).上海:上海交通大学,2009.
    [21]朱荣生,王秀礼.船用离心泵叶轮失效分析及改进设计[J],水泵,2011,2:15-19.
    [22]陈飞.一种新型船用离心泵设计:(硕士学位论文).天津:天津大学,2005.
    [23]张靖.改善离心泵汽蚀性能措施及进展[J].科技创新导报,2007,35:109.
    [24]杨桂杰,刘华威.离心泵叶轮的汽蚀破坏及设计优化[J].河南科技,2010,11(上):68-69.
    [25]郑仲金.船用离心泵的事故树分析[J].中国水运,2008,08(6):145-146.
    [26]李海权.长短叶片设计对改善离心泵汽蚀性能的作用[J].通用机械,2004,5:44-46.
    [27]于天明,仲剑锋.离心泵的汽蚀及提高汽蚀能力的措施[J].设备管理与维修保养,2010,11:51-53.
    [28]A. I. Golubev, E. I. Pyatigorskaya. Efficiency Coefficients of a Labyrinth Pump[J]. Chemical and Petroleum Engineering,2005,41 (5-6)
    [29]康立新.离心泵叶轮汽蚀原因分析及解决[J].石油和化工设备,2011,7(14):67-69.
    [30]张启寿.离心泵的汽蚀现象[J].安徽化工,2010,35(1):64-66.
    [31]王兰程.离心泵的汽蚀[J].济南纺织化纤科技,2001,2:36-37.
    [32]范海峰,范琪,虞丹萍等.离心泵气蚀问题研究及抗汽蚀性能改进[J].化工技术与开发,2011,40(1):49-52.
    [33]李世伟.离心泵发生汽蚀的现象及防止措施[J].科学之友,2010,03:99-100.[34]张文军.离心泵全流道内空化流场的数值模拟及预测:(硕士学位论文).兰州:兰州理工大学,2008.
    [35]宋洪秋.离心泵叶轮参数对泵性能的影响[J].山东煤炭科技,2011,2:169-170.
    [36]YUAN J ian-ping, HE Zhi2xia, YUAN Shou2qi, et al. Effect of inlet condition on pump performance with a combined impeller [J]. Journal of Jiangsu University:Natural Science Edition,2002,23 (3):63-66.
    [37]Bishop, Jr., Roland, J., Totten. Effect of pump inlet conditions on hydraulic pump cavitation:A review. ASTM Special Technical Publication,1999,13(39):318-332.
    [38]叶晓琰,丁亚娜,胡敬宁等.离心泵汽蚀性能改善与基于CFD的汽蚀性能预测研究[J].流体机械,2010,38(12):9-12.
    [39]Cui Baoling, Zhu Zuchao, Zhang Jianci, et al. The flow simulation and experimental study of low-specific-speed high-speed complex centrifugal impellers[J].Chinese Journal of Chemical Engineering,2006,14 (4):435-441
    [40]黄建德,邓强,黄炜.离心泵叶轮形状对汽蚀损伤的影响[J].核动力工程,2002,23(4):45-49.
    [41]胡家昕.超低比转速高速离心泵复合式叶轮内部流动及其性能研究:(硕士学位论文).兰州:兰州理工大学,2010.
    [42]Xiewei Song. Computational Fluid Dynamics(CFD) study of the 4th Generation Prototype of a Continuous Flow Ventricular Assist Device(VAD)[J]. Journal of Biomechanical Engineering,2004,126(2):180-187.
    [43]高江永.离心泵叶轮与蜗壳参数优化设计的研究:(硕士学位论文).河北:河北工程大学,2008.
    [44]吕斌.HGK型离心泵汽蚀原因分析及解决方案研究:(硕士学位论文).大连:大连交通大学,2007.
    [45]牟介刚.离心泵现代设计方法研究和工程实现:(博士学位论文).浙江:浙江大学,2005.
    [46]Craig Hornsby. CFD-driving pump design forward. World Pump,2002,8:25-36.
    [47]Kergourlay G, Younsi M, Bakir Fetal. Influence of splitter blades on the flow field of a centrifugal pump:test-analysis comparison International Journal of Rotating Machinery,2007, ArticleID:85024.
    [48]吕斌,葛宰林.基于计算流体力学的离心泵汽蚀原因分析[J].大连交通学报,2009,30(3):40-42.
    [49]齐学义.流体机械设计理论与方法.北京:中国水利水电出版社,2008.
    [50]付强.基于CFD技术改善低比速疏水泵汽蚀性能的研究:(硕士学位论文).江苏:江苏大学,2006.
    [51]李思.离心泵直锥形吸水室的内流特性分析及其结构研究:(硕士学位论文).浙江:浙江工业大学,2010.
    [52]赵伟国.基于CFD的离心泵口环间隙流动研究:(硕士学位论文).武汉:华中科技大学,2006.
    [53]张鸣远,景思睿,李国君.高等工程流体力学.西安:西安交通大学出版社,2006.
    [54]张圣.离心泵参数化设计和分析:(硕士学位论文).四川:西华大学,2011.
    [55]杨方飞.离心泵叶轮叶片CAD/CAM的集成:(硕士学位论文).江苏:江苏大学,2002.
    [56]吴小丽.离心泵叶轮CAD系统开发:(硕士学位论文).甘肃:甘肃工业大学,2001.
    [57]韩绿霞,武旭增,宋怀俊等.应用Solidworks进行离心泵叶轮的设计[J].2007,28(4):31-33.
    [58]Goto A. Hydrodynamics Design System for Pumps based on 3-D CAD and Inverse Design Method. Proceedings of the ASME. FDESM2001-18068,2001.
    [59]http://fans.solidworks.com.cn/thread-28320-1-1.html
    [60]陈松松,阮越广,阮晓东等.半开式叶轮离心泵的效率优化与分析[J].机电工程,2011,28(7):806-808.
    [61]黄道见.离心泵叶轮内汽蚀发生的理论探讨[J].农机化研究,2006,6:88-89.
    [62]吕培文.基于CFD离心泵数值模拟及性能优化:(硕士学位论文).上海:华东理工大学,2010.
    [63]冯新粮.一种低比转速离心水泵叶轮的改进设计:(硕士学位论文).天津:天津理工大学,2010.
    [64]刘胜柱,郭鹏程,罗兴铸.离心泵叶轮内的网格生成与计算流体力学分析.农业工程学报,2004,20(5):78-81.
    [65]CRA IG HORNSBY. CFD-driving pump design forward [J]. World pump,2002, (8):25-36.
    [66]赵希枫.基于CFD技术改善离心泵内部空化性能的研究:(硕士学位论文).兰州:兰州理工大学,2009.
    [67]Fluent Inc., GAMBIT Modeling Guide. Fluent Inc.,2003.
    [68]http://blog.sina.com.cn/s/blog_62b12e6a0100q0r3.html
    [69]朱荣生,付强,李维斌等.基于混合模型的离心泵叶轮内汽蚀两相流的CFD分析[J].2006,8:51-53.
    [70]WU Jin-chun, PADEN B E, BORVENTZ H S. Computational dluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device [J]. Artificial Organs,2009,34(5):402-411.
    [71]Gonzalez, J., Jorge Parrondo, Carlos Santolaria, and Eduardo Blanco. Steady and Unsteady Radial Forces for a Centrifugal Pump With Impeller to Tongue Gap Variation [Jl.ASME Fluids Eng.2006(128):454-462.
    [72]蒋云国.离心泵叶片参数化设计及其试验研究:(硕士学位论文).兰州:兰州理工大学,2010.
    [73]靳李平.离心泵的CFD分析与改型设计:(工程硕士学位论文).西安:西安理工大学,2003.
    [74]KITANO M. Numerical study of unsteady flow in a centrifugal pump[J]. Journal of Turbo machinery,2005,127 (4):363-371
    [75]J. D. H. Keller, R. J. H. Di jkers, N. P Kruyt. Experimental and theoretical study of the flow in the volute of a low specific pump. Fluid Dynamics Research[J],2001, 28(4):267-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700