用户名: 密码: 验证码:
离心泵叶片前缘空化非定常流动机理及动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究工作在国家自然科学基金重点项目“水力机械的空化特性及对策”(51239005)、国家科技支撑计划项目“百万千瓦级核电离心泵关键技术研究”(2011BAF14B04)和江苏省研究生创新基金“离心泵空化不稳定流动机理及动力特性研究”(CXZZ11_0564)的资助下展开。
     对于目前常用的低比速离心泵来说,效率低是造成该类泵运行成本过高的一个重要原因,因此对低比速离心泵进行技术改进具有显著的经济效益和社会效益。提高泵效率一个非常有效的方法就是通过增加泵的转速以提高泵的比转速,而高速化对离心泵的运行稳定性和空化性能均提出更高的要求。本文以离心泵叶片前缘空化的非定常流动特性为研究对象,采用理论分析、试验研究和数值模拟相结合的方法,对离心泵的空化状态监测、空化流数值模拟、空化导致扬程下降现象以及泵下游几何参数对空化不稳定性的影响等内容进行了系统的研究,并初步分析了离心泵非设计工况下的空化和驼峰特性。本文的主要工作和创新成果如下:
     (1)定量研究了网格质量对离心泵数值模拟计算精度的影响,系统探讨了边界层网格密度和湍流模型之间的关系,并初步建立了边界层网格和湍流模型之间的评价方式。从流体流动角度分析了全流道模型在离心泵数值求解中的优势并研究了区域交界面对非设计工况模拟结果的影响,针对计算区域的拓扑块生成和结构化网格划分方法中存在的问题,建立并优化了基于泵腔一体化的离心泵全流道结构化网格。
     (2)搭建了可用于离心泵空化不稳定性测试的闭式试验系统,实现了泵性能参数和离心泵内部水力噪声、进出口压力波动、振动以及电机的定子电流等动态信号的同步采集。采用4种数理统计方法,包括概率密度分布(PDF)、方差、均方差和均方根等,分析了叶轮外径D2=174mm离心泵进口压力波动的时域信息,研究结果表明4种数理统计方法都可以预测泵的扬程断裂工况。同时引入电机的定子电流分析法,通过对比分析时域和频域条件下定子电流的结果,发现定子电流对电机的运行状态非常敏感,能有效地监测泵内的空化状态。定子电流的时域结果能够表征离心泵的空化不稳定工况和扬程断裂工况,定子电流的频域结果能够捕捉泵的空化初生工况。
     (3)揭示了离心泵扬程下降的原因,并初步掌握了空化诱导扬程下降的机理,即空化的出现导致泵产生附加水力损失。将空化引起的水力损失分为两类并对它们进行详细的阐述:第一类是空化引起流动流态的变化,即空化对泵性能的直接作用,这种直接作用会引起叶轮流道内附加的水力损失;第二类是空化引起叶片表面的压力变化间接作用于泵的性能,空化影响叶片表面的压力分布会造成叶片载荷分布的变化,这种叶片载荷分布的变化也会引起附加的水力损失。在空化发展的不同阶段,两类损失对泵性能的影响不同。对泵的扬程来说,扬程下降初始阶段和叶轮进口的流动状态相关,而扬程迅速下降段和叶轮出口流动状态相关。
     (4)空化发展到一定程度时,叶轮内的空化体积随装置净正吸头的降低而迅速增加,极低装置净正吸头条件下叶轮进口靠近口环处会出现空化区。叶片工作面上空化区的面积在靠近前盖板的位置最大,工作面的空化同时也不稳定,较易影响泵的空化性能;叶片背面上空化区末端水汽混合区的回缩导致的反向速度是空化不稳定产生的原因。同时揭示了空化流态与泵扬程不稳定之间的关系:叶轮内空化体积的增加会排挤叶轮流道,并导致流道进口相对速度的增大;空化团体积增大到一定程度会突然溃灭,造成流道过流断面的突然增加;这种突然的过流断面变化会造成较大的能量波动,并引起泵扬程曲线的不稳定。
     (5)通过分析蜗壳内能量损失随空化的变化趋势,揭示了蜗壳的存在既影响泵的空化性能又会增加泵运行的不稳定。为了验证动静干涉与泵空化性能的关系,测试了4组不同外径的叶轮并获得了叶轮外径的改变对泵空化性能及运行稳定性的影响。在此基础上研究了离心泵下游几何参数和泵空化不稳定性之间的关系,发现叶轮与蜗壳隔舌的动静干涉强度是造成泵空化不稳定性的主要原因之一。
     (6)总结和分析了离心泵在非设计工况运行时,由空化导致的漩涡和由流量造成的失速之间的关系,指出了探索空化不稳定和流动不稳定联合作用下离心泵运行状态的必要性。以离心泵的扬程驼峰曲线为例,探索了流动不稳定条件下离心泵的运行状态,寻求驼峰曲线产生的原因并提出了可能的消除和改善驼峰曲线的办法。初步分析了流量变化对离心泵空化不稳定性的影响,叶轮叶片进口冲角和流道内的大尺度涡的相互作用决定了非设计工况下的空化性能。这些结论为后续研究空化不稳定和流动不稳定联合作用下离心泵的运行状态奠定基础。
This work was supported by the State Key Program of National Natural Science Funds of China (Grant No.51239005), National Science&Technology Pillar Program (Grant No.2011BAF14B04) and Jiangsu Provincial Project for Innovative Postgraduate of China (Grant No. CXZZ11_0564).
     The running cost of low specific-speed centrifugal pumps are higher compared with those of high specific-speed ones, due to their comparatively lower efficiency. Therefore any small improvement in the low specific-speed centrifugal pump's efficiency will make significant savings to the running cost. One effective way to improve pump efficiency is to increase the speed and thereafter to increase the specific speed, while that will cause the negative effect on pump reliability and cavitation performance. Cavitation is a common fault in centrifugal pumps and, if a pump operates under cavitating conditions, the following situations will always be observed:reduction in pump capacity, head degradation, high noise level and high levels of vibration. Based on numerical and experimental methods, the leading edge cavitation attached on the radial impeller, which is known as the most erosive type and the origin of the head drop phenomenon, was studied in the aspects of cavitation detection, numerical simulation of cavitation characteristics, head drop caused by cavitation and unsteadiness behaviors with rotor-stator interaction (RSI) effects. The cavitation instabilities and flow instabilities under part flow rates were also discussed in the paper. The main work and creative achievements of the dissertation include:
     (1) To investigate effects of grid quality on the calculation accuracy for flow field simulation in centrifugal pumps, taking structured grid as research objects, the near-wall mesh of pumps were constructed and evaluated in three aspects from the number of grid, subdivision of near-wall mesh and blocking strategies. The relationship between the near-wall mesh and the turbulence models were also analyzed to find a reliable and feasibility numerical method for the centrifugal pumps. Numerical simulation of whole flow field model and simple model in CFX for the pump were also carried out and the reason of the difference between two models was compared. A significant improvement for the numerical results of cavitating flows has been obtained with the whole flow field model. The whole flow field model shows a high accuracy than the simple model, and the flow pattern of two models were also different.
     (2) A closed loop was established to investigate the pump cavitation phenomenon. Different kinds of methods were used to detect the cavitation performance, including vibration signal obtained from four accelerometers on the pump casing, the pressure fluctuation signal from two pressure transducers close to the inlet and outlet of the pump, the waterborne acoustic signal from four hydrophones in the suction and discharge pipe close to the pump. The stator current of the motor driving the pump was also described in the thesis. The statistical parameters for PDF (Probability Density Function), Variance, Standard Deviation and RMS (Root Mean Square) were used to analyze the time domain signal to determine whether they could be used to detect cavitation. The results show that different statistical parameters used in this thesis are able to detect cavitation breakdown condition. Both time and frequency domain analysis on stator current were conducted with respect to the cavitation phenomenon, and it was found that it is sensitive to the cavitation incipience and therefore can be used to identify the cavitation incipience condition.
     (3) The origin of the cavitation head drop was discussed and an analysis of its mechanism in the pump was proposed. The hydraulic losses caused by cavitating flow can be divided into two types:One type is cavitating flow that modifies the flow pattern strongly inside the blade-to-blade channel, which increases the kinetic energy at the trailing edge of the suction blade and directly induces the head drop. The other is the pressure distributions around the blade modified by the sheet cavity attached on the blade suction side. This clearly reduces the blade load, which influences the energy transfer and causes an increase of the losses. For a centrifugal pump, a small decrease of the head drop can be associated with the flow pattern near the blade leading edge, while head breakdown is clearly associated with the vortex structure near the blade trailing edge.
     (4) The cavity volume increases rapidly when the NPSHA reducing to a certain value, the cavitation zone appears at the inlet of impeller near the wear ring under serious cavitation condition. As for the cavitation region located at the pressure surface of the blade, the cavity is unstable and prone to induce head drop, the largest area is near the shroud. For the suction surface, the recirculation and the re-entrant jet in the cavity wake are responsible for the cavitation instabilities. The relationship between the transient cavitating flows and pump head instability was discussed in the thesis. With the pressure decreasing at the pump inlet, vapor will gradually fill the spaces inside the inter-blade passage along the impeller blades and causes the relative velocity to increase. The collapse of the cavity due to the local higher pressure leads to an increasing in turbulent velocity fluctuations, the amplitude of the pump head fluctuation increases for unsteady cavitating flow, which is absent in cavitation-free case.
     (5) The cavitation performance is deterioration and the cavitation instabilities are increasing due to the existence of volute. In order to verify the relationship between the cavitation performance and the intensity of rotor-stator interaction (RSI), four impellers with different diameters were measured and the experimental results show that the changes of impeller diameter affect the impeller's ability to control the fluid. The results confirm that the intensity of RSI is one of the main reasons that account for cavitation instabilities.
     (6) The large-scale vortical structures observed in the cavitating region and stall caused by the flow decreasing have been systematically summarized and analyzed, and the results show that it is necessary to find the relationship between the cavitation instabilities and flow instabilities when centrifugal pumps operate under part flow rates. Pumps with a positive slope in the head-flow performance curve are investigated, the relationship between the head-flow characteristic instability and design parameter is discussed in detail, and the change in flow topology in the pumps are also discussed by theoretical analysis, experiments and numerical simulation. Understanding these areas will clarify the origin of the positive slope of the head-flow performance curve for a centrifugal pump. The cavitation performance under part-load flow rates which has a relationship with the attack angle of the blade and the large-scale vortex in the impeller was also analyzed in the paper. The proposed conclusions can provide basis for pumps operating under cavitation instabilities and flow instabilities.
引文
[1]陆燕荪.中国水电设备制造业的现状与展望[C].第一届水力发电技术国际会议论文集,北京:中国电力出版社,2006
    [2]Yuan S Q, Liu W, Pan Z Y, et al. Review on rotating stall in pumps[J]. International Journal of Comprehensive Engineering, Part C:Engineering in Agriculture,2(1):196-207,2013
    [3]Brennen C E(著),潘中永(译).泵流体力学[M].镇江:江苏大学出版社,2012
    [4]付燕霞.小流量下离心泵低频汽蚀压力脉动数值模拟与试验研究[D].硕士学位论文,江苏大学,2011
    [5]Hrivnak S J. Centrifugal pump vabrations:the causes[C]. Tennessee Eastman, Eastman Chemical Company,2003
    [6]Hydraulic Institute Standards[S]. Hydraulic Institute,9 Sylvan Way, Suite 360, Parsippany, NJ 07 054-3 802
    [7]李军,刘立军,李国君等.离心泵叶轮内空化流动的数值预测[J].工程热物理学报,28(6):948-950,2007
    [8]Gonzalo-Flores N, Goncalves E, Fortes-Patella R, et al. Head drop of spatial turbopump inducer[J]. ASME Journal of Fluids Engineering,130:p.111301,2008
    [9]Pouffary B, Fortes-Patella R, Roboud J, et al. Numerical simulation of 3D cavitating flows: analysis of cavitation head drop in turbomachinery[J]. ASME Journal of Fluids Engineering,130, p.061301,2008
    [10]李向宾.绕水翼超空化流动机理研究[D].博士学位论文,北京理工大学,2008
    [11]季斌.非均匀来流下螺旋桨空化流动及其诱导的压力脉动研究[D].博士学位论文,清华大学,2011
    [12]Franc J P, Avellan F, Belahadji B, et al. La Cavitation:Mecanismes Physiques et Aspects Industriels[M]. Grenoble:Presses Universitaires de Grenoble, pp.28,141,142,144,449, 1995
    [13]Le Q, Franc J P, Michel J M. Partial cavities:pressure pulse distribution around cavity closure[J]. ASME Journal of Fluids Engineering,115(2):249-254,1993
    [14]Gopalan S, Katz J. Flow structure and modeling issues in the closure region of attached cavitation[J]. Physics of Fluids,12(4):895-911,2000
    [15]Pham T M, Larrarte F, Fruman D H. Investigation of unsteady sheet cavitation and cloud cavitation mechanisms[J]. ASME Journal of Fluids Engineering,121(2):289-195,1999
    [16]Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. Philosophical Magazine,34(199):94-98,1917
    [17]Plesset M S, Devine R E. Effect of exposure time on cavitation damage[J]. Journal of Basic Engineering,88(4):691-699,1966
    [18]Plesset M S, Prosperetti A. Bubble dynamics and cavitation[J]. Annual Review of Fluid Mechanics,9:145-185,1977
    [19]Singhal A K, Vaidya N, Lenoard A D. Multi-dimensional simulation of cavitation flow using a PDF model for phase change[C]. ASME Fluids Engineering Division Summer Meeting. Vancouver, USA,1997
    [20]Merkle C L, Feng J, Buelow P E O. Computational modeling of dynamics of sheet cavitation[C]. Proc.3rd International Symposium on Cavitation. Grenoble, France,1998
    [21]Kunz R F, Boger D A, Stinebring D R, et al. A preconditioned Navier-Stokes method for two-phase flows with application to cavitation[J]. Computers & Fluids,29:849-875,2000
    [22]Singhal A K, Athavale M M, Li H, et al. Mathematical basis and validation of the full cavitation model[J]. ASME Journal of Fluids Engineering,124:617-624,2002
    [23]Senocak I, Shyy W. A pressure-based method for turbulent cavitating flow computations [J]. Journal of Computational Physics,176:363-383,2002
    [24]Senocak I, Shyy W. Interfacial dynamics-based modeling of turbulent cavitating flows, part-1:model development and steady-state computations[J]. International Journal for Numerical Methods in Fluids,44:975-995,2004
    [25]Brennen C E. Fluid Dynamic of Cavitation and Cavitating Turbopumps-Hydrodynamics and Cavitation of Pumps[M]. Springer Wien New York,2007
    [26]Tsujimoto Y. Fluid Dynamic of Cavitation and Cavitating Turbopumps-Tip Leakage and Backflow Vortex Cavitation[M]. Springer Wien New York,2007
    [27]Bouziad Y A. Physical modeling of leading edge caviation:computational methodologies and application to hydraulic mechinery[D]. PhD Thesis, EPFL,2005
    [28]潘中永,袁寿其.泵空化基础[M].镇江:江苏大学出版社,2013
    [29]Friedrichs J, Kosyna G. Unsteady PIV flow field analysis of a centrifugal pump impeller under rotating cavitation[C]. Fifth International Symposium on Cavitation, Osaka, Japan, 2003
    [30]Lohrberg H, Stoffel B. Measurement of cavitation erosive aggressiveness by means of structure born noise[C]. Fourth International Symposium on Cavitation. Pasadena, USA, 2001
    [31]Hofmann M, Stoffel B, Friedrichs J. Similarities and geometrical effects on rotating cavitation in two scaled centrifugal pumps[C]. Fourth International Symposium on Cavitation. Pasadena, USA,2001
    [32]Friedrichs J, Kosyna G. Rotating cavitating in a centrifugal pump impeller of low specific speed[J]. ASME Journal of Fluids Engineering,124(2):356-362,2002
    [33]潘中永.泵诱导轮实验研究与CFD分析[D].博士学位论文,江苏理工大学,2001
    [34]Bachert B, Ludwig G, Stoffel B, et al. Experimental investigations concerning erosive aggressiveness of cavitation in a radial test pump with the aid of adhesive copper films[C]. Fifth International Symposium on Cavitation. Osaka, Japan,2003
    [35]Tsujimoto Y. Simple rules for cavitation instabilities in turbomachinery[C]. Proc. Fourth International Symposium on Cavitation. Pasadena, USA,2001
    [36]Kang D, Arimoto Y, Yonezawa K, et al. Suppression of cavitation instabilities in an inducer by circumferential groove and explanation of higher frequency components [J]. International Journal of Fluid Machinery and Systems,3(2):137-149,2010
    [37]Ni Y Y, Yuan S Q, Pan Z Y, et al. Detection of cavitation in centrifugal pump by vibration methods[J]. Chinese Journal of Mechanical Engineering,21(5):46-49,2008
    [38]Cudina M. Detection of cavitation phenomenon in a centrifugal pump using audible sound[J]. Mechanical Systems and Signal Processing,17(6),1335-1347,2003
    [39]胡静涛,黄昊,高雷等.基于工业无线技术的非侵入式电机故障诊断系统[J].中国设备工程,4:8-10,2009
    [40]Hosien M A, Selim S M. Experimental study of cavitation criterion in centrifugal pumps [J]. Journal of Visualization,16:99-110,2013
    [41]王勇.离心泵空化及其诱导振动噪声研究[D].博士学位论文,江苏大学,2011
    [42]Bakir F, Kouidri S, Noguera R, et al. Experimental analysis of an axial inducer influence of the shape of the blade leading edge on the performances in cavitating regime [J]. ASME Journal of Fluids Engineering,125(3):293-301,2003
    [43]Boyce B P. Tip vortex back flow cavitation and suppression in high speed pump inducers[D]. PhD Thesis, University of California,2010
    [44]Cudina M, Prezelj J. Detection of cavitation in the operation of kinetic pumps:use of discrete frequency tone in audible pump spectra using audible sound[J]. Applied Acoustics, 70(4):540-564,2009
    [45]Yoshida Y, Tsujimoto Y, Kataoka D, et al. Effects of alternate leading edge cutback on unsteady cavitation in 4-bladed inducers[J]. ASME Journal of Fluids Engineering,123(4): 762-770,2001
    [46]Versteeg H K, Malalasekera W. An Introduction to Computational Fluid Dynamics [M]. British:Longman Group Ltd,1995
    [47]Saric S, Jakirlic S, Tropea C. A periodically perturbed backward-facing step flow by means of LES, DES and T-RANS:an example of flow separation control[C]. ASME Heat Transfer/Fluids Engineering Summer Conference, Charlotte, USA,2004
    [48]潘中永,李晓俊,孔繁余等.CFD技术在泵上的应用进展,水泵技术[J].1:1-6,2009
    [49]Rollet-Miet P, Laurence D, Ferziger J. LES and RANS of turbulent flow in tube bundles[J]. International Journal of Head and Fluid Flow,20(3):241-254,1999
    [50]李向宾.绕水翼超空化流动机理研究[D].博士学位论文,北京理工大学,2008
    [51]Launder B E, Spalding D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering,3(2):269-289,1974
    [52]Yakhot V, Orszag S A, TanghamS, et al. Development of turbulent models for shear flows by a double expansion technique[J]. Physics of Fluids,4(7):1510-1520,1992
    [53]Wu J Y. Filter-based modeling of unsteady turbulent cavitating flow computations [D]. PhD Thesis, University of Florida,2005
    [54]Wilcox D C. Re-assessment of the scale-determining equation for advanced turbulence models[J]. AIAA Journal,36(11):1299-1310,1988
    [55]吴玉林,刘树红,钱忠东.水力机械计算流体动力学[M].北京:水利水电出版社,2007
    [56]Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. AIAA Journal,32(8):1598-1605,1994
    [57]Wu J Y, Wang G Y, Shyy W. Time-dependent turbulent cavitating flow computations with interfacial transport and filter based models[J]. Journal for Numerical Methods for Fluids, 49(4):739-761,2005
    [58]Lucius A, Brenner G. Numerical simulation and evaluation of velocity fluctuations during rotating stall of a centrifugal pump[J]. ASME Journal of Fluids Engineering,133:081102, 2011
    [59]刘儒勋,王志锋.数值模拟方法和运动界面追踪[M].合肥:中国科技大学出版社,2001
    [60]Senocak I, Shyy W. Interfacial dynamic-based modeling of turbulent cavitating flows Part 1:model development and steady-state computations[J]. International Journal for Numerical Methods in Fluid,44(9):975-995,2004
    [61]黄彪.非定常空化流动机理及数值计算模型研究[D].博士学位论文,北京理工大学,2012
    [62]Kunz R F, Boger D A, Stinbring D R. A preconditioned navier-stokes method for two-phase flows with application to cavitation prediction[J]. AIAA papers,676-688,1999
    [63]Zwart P, Gerber A, Belamri T. A two-phase flow model for predicting cavitation dynamics[C]. Fifth International Conference on Multiphase Flow, Yokohama, Japan,2004
    [64]Ji B, Luo X W, Wu Y L, et al. Partially-averaged Navier-Stokes method with modified k-ε model for cavitating flow around a marine propeller in a non-uniform wake [J]. International Journal of Heat and Mass Transfer,55:6582-6588,2012
    [65]Leroux J B, Coutier-Delgosha O, Astolfi J A. A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil[J]. Physics of Fluids,17:052101,2005
    [66]谢龙汉,赵新宇,张炯明.ANASYS CFX流体分析及仿真[M].北京:电子工业出版社,2012.
    [67]李晓俊,袁寿其,潘中永等.离心泵边界层网格的实现及应用评价[J].农业工程学报,28(16):67-72,2012
    [68]裴吉.离心泵瞬态水力激振流固耦合机理及流动非定常性研究[D].博士学位论文, 江苏大学,2013
    [69]周水清,孔繁余,王志强等.基于结构化网格的低比转数离心泵性能数值模拟[J].农业机械学报,42(7):66-69,2011
    [70]Lucius A, Brenner G. Unsteady CFD simulation of a pump in part load conditions using scale-adaptive simulation[J]. International Journal of Heat and Fluid Flow,31:1113-1118, 2010
    [71]Journal of fluids engineering editorial policy statement on the control of numerical accuracy[J]. ASME Journal of Fluids Engineering,130(7),2008
    [72]Benigni H, Jaberg H, Yeung H, et al. Numerical simulation of low specific speed American petroleum institute pumps in part-load operation and comparison with test rig results[J]. ASME Journal of Fluids Engineering,134,024501,2012
    [73]王洋,蒋其松.两段变曲率叶型离心泵设计研究[J].排灌机械工程学报,28(1):25-30,2010
    [74]施卫东,张华,陈斌等.不同叶顶间隙下的轴流泵内部流场数值计算[J].排灌机械工程学报,28(5):374-377,2010
    [75]李晓俊,袁寿其,潘中永等.基于结构化网格的离心泵全流场数值模拟[J].农业机械学报,44(7):50-54,2013
    [76]Yamade Y, Kato C, Shimizu H, et al. Large eddy simulation of internal flow of a mixed-flow pump[C]. ASME Fluids Engineering Division Summer Meeting, Colorado, USA,2009
    [77]纪兵兵,陈金瓶.ANSYS ICEM CFD网格划分技术实例详解[M].北京:中国水利水电出版社,2012
    [78]Li X J, Pan Z Y, Zhang D Q, et al. Centrifugal pump performance drop due to leading edge cavitation[C]. IOP Conf. Series:Earth and Environmental Science,15:032058,2012
    [79]倪永燕.离心泵非定常湍流场计算及流体诱导振动研究[D1.博十学位论文,江苏大学,2008
    [80]Berten S. Hydrodynamics of high specific power pumps for off-design operation conditions [D]. PhD Thesis, EPFL,2010
    [81]Wang H, Chen P. Sequential condition diagnosis for centrifugal pump system using fuzzy neural network[J]. Neural Information Processing,11(3):41-50,2007
    [82]Zin T C, Leong M S, Lee Y C. Field investigation of cavitation and flow induced vibrations in submerged vertical pump in a power plant[C]. Proceedings of the 1st World Congress on Engineering Asset Management, Queensland, Australia,2006
    [83]Patrice Simard, Emmanuel Le Tavernier. Fractal approach for signal processing and application to the diagnosis of cavitation[J]. Mechanical Systems and Signal Processing, 14(3):459-469,20000
    [84]阳君.离心泵流动诱导噪声的数值模拟研究及声优化[D].硕士学位论文,江苏大学,2011
    [85]Cernetic J. The use of noise and vibration signals for detecting cavitation in kinetic pumps[J]. Journal of Mechanical Engineering and Science,223:1645-1655,2009
    [86]Faisal A T. The non-intrusive detection of incipient cavitation in centrifugal pumps[D]. PhD Thesis, University of Huddersfield,2011
    [87]Alhashmi S. Detection and diagnosis of cavitation in centrifugal pumps[D]. PhD Thesis, University of Manchester,2005
    [88]李晓俊,袁寿其,刘威等.带诱导轮的离心泵空化条件下的效率下降规律,排灌机械工程学报,29(3):1-5,2011
    [89]郑梦海.泵测试实用技术[M].北京:机械工业出版社,2006
    [90]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2010
    [91]苏永生,王永生,段向阳.离心泵空化试验研究,农业机械学报,41(3):77-80,2010
    [92]王勇,刘厚林,王健等.离心泵叶轮进口空化形态的试验测量,农业机械学报,44(7):45-49,2013
    [93]倪永燕,潘中永,李红等.出口压力波动特性在离心泵汽蚀监测中的应用,排灌机械工程,24(5):40-43,2006
    [94]魏云冰,李留杰.基于定子电流的异步电动机转子故障诊断方法综述,水利电力机械,29(12):179-180,2007
    [95]杨江天,赵明元,张志强等.基于定子电流小波包分析的牵引电机轴承故障诊断,铁道学报,35(2):32-36,2013
    [96]李晓俊.诱导轮对离心泵空化性能影响的研究[D].硕士学位论文,江苏大学,2010
    [97]Bachert R, Stoffel B, Dular M. Unsteady cavitation at the tongue of the volute of a centrifugal pump[J]. ASME Journal of Fluids Engineering,132(6):061301,2010
    [98]Ji B, Luo X W, Wang X, et al. Numerical analysis for three dimensional unsteady cavitation shedding structure over a twisted hydrofoil[J]. Chinese Journal of Hydro-dynamics,25(2):217-223,2010
    [99]张博,王国玉,张淑丽等.修正的RNG k-ε模型在云状空化流动计算中的应用评价 [J].北京理工大学学报,28(12):1065-1069,2008
    [100]Li X J, Yuan S Q, Pan Z Y, et al. Numerical simulation of leading edge cavitation within the whole flow passage of a centrifugal pump[J]. Science China Technoligical Science, 56(9):2156-2162,2013
    [101]李晓俊,袁寿其,刘威等.诱导轮离心泵空化条件下扬程下降分析[J].农业机械学报,42(9):89-93,2011
    [102]ANSYS Inc. ANSYS CFD-Post User's Guide[M].2009
    [103]Ji B, Luo X W, Peng X X, et al. Numerical analysis of cavitation evolution and excited pressure fluctuation around a propeller in non-uniform wake[J]. International Journal of Multiphase Flow,43:13-21,2012
    [104]王经国.提高离心泵抗汽蚀性能的有效途径——有关前置诱导轮设计中的一些问题[J].水泵技术,1976(1):1-17
    [105]Christopher S, Kumaraswamy S. Identification of critical net positive suction head from noise and vibration in a radial flow pump for different leading edge profiles of the vane[J]. ASME Journal of Fluids Engineering,135, p.121301,2013
    [106]Brennen C E. Multifrequency instability of cavitating inducers[J]. ASME Journal of Fluids Engineering,129(6):731-736,2007
    [107]Luo X W, Wei W, Ji B, et al. Comparison of cavitation prediction for a centrifugal pump with or without volute casing[J]. Journal of Mechanical Science and Technology,27(6): 1643-1648,2013
    [108]Liu H L, Liu D X, Wang Y, et al. Experimental investigation and numerical analysis of unsteady attached sheet-cavitating flows in a centrifugal pump[J]. Journal of Hydrodynamics,25(3):370-378,2013
    [109]潘中永,倪永燕,袁寿其.基于动静干涉的离心泵转速测量机理与实验,农业机械学报,41(3):82-85,2010
    [110]Yuan S Q, Ni Y Y, Pan Z Y, et al. Unsteady turbulent simulation and pressure fluctuation analysis for centrifugal pumps[J]. Chinese Journal of Mechanical Engineering,22(1): 64-69,2009
    [111]Wuibaut G, Dupont P, Caignaert G, et al. Rotor stator interactions in a vanned diffuser radial flow pump[C]. Proceeding of 22nd IAHR Symposium on Hydraulic Machinery and Systems, Stockholm, Sweden,2004
    [112]万永革.数字信号处理的MATLAB实现[M].北京:科学出版社,2012
    [113]王秀礼,袁寿其,朱荣生等.离心泵汽蚀非稳定流动特性数值模拟[J].农业机械学报,43(3):67-72,2012
    [114]Tsujimoto Y. Fluid Dynamic of Cavitation and Cavitating Turbopumps-Cavitation Instabilities in Turbopump Inducers[M]. Springer Wien New York,2007
    [115]关醒凡.现代泵技术手册[M].北京:宇航出版社,1995
    [116]Braun O. Part load flow in radial centrifugal pumps[D]. PhD Thesis, EPFL,2009
    [117]Gulich J F. Centrifugal Pump[M]. Springer Berlin Heidelberg,2008
    [118][苏]切巴耶夫斯基.高速诱导轮离心泵的空化特性[J].水泵技术,1977(3):44-67,1977;1977(4):110-136
    [119]Krause N, Zahringer K, Pap E. Time-resolved particle imaging velocity for the investigation of rotating stall in a radial pump[J]. Experiments in Fluids,39:192-201,2005.
    [120]Tsujimoto Y. Flow Instabilities in Cavitating and Non-Cavitating Pumps, Design and Analysis of High Speed Pumps[M]. Washington Headquarters Services, pp.7-1-7-24,2006
    [121]Miyabe M, Furukawa A, Maeda H, et al. Rotating stall behavior in a diffuser of mixed flow pump and its suppresion[C]. ASME Fluids Engineering Conference, Jacksonville, USA, 2008
    [122]Miyabe M, Furukawa A, Maeda H, et al. On improvement of characteristic instability and internal flow in mixed flow pumps[J]. Journal of Fluid Science and Technology,3:732-743, 2008
    [123]Pan Z Y, Wu T T, Li J J, et al. Mechanism of characteristic instability and its suppression in mixed flow pump[J]. Journal of Comprehensive Engineering, Part C:Engineering in Agriculture,1(1):67-73,2012
    [124]Li X J, Yuan S Q, Pan Z Y, et al. Dynamic characteristics of rotating stall in mixed flow pump[J]. Journal of Applied Mathematics, Article ID 104629,2013
    [125]李俊杰.斜流泵正斜率性能曲线机理及抑制研究[D].硕士学位论文,江苏大学,2012
    [126]Muggli F, Holbein P, Dupont P. CFD calculation of a mixed flow pump characteristic from shutoff to maximum flow[J]. ASME Journal of Fluids Engineering,124(3):798-802,2002
    [127]Sinha M, Pinarbasi A, Katz J. The flow structure during onset and developed states of rotating stall within a vaned diffuser of a centrifugal pump[J]. ASME Journal of Fluids Engineering,123(3):490-499,2001
    [128]Choi Y D, Kurokawa J, Matsui J. Performance and internal flow characteristics of a very low specific speed centrifugal pump[J]. ASME Journal of Fluids Engineering,128(2): 341-349,2006
    [129]Sen M, Breugelmans F. Reverse flow, prerotation and unsteady flow in centrifugal pumps [C]. NEL Fluid Mechanics Silver Jubilee Conf, Glasgow,1979
    [130]牟介刚,王乐勤.离心泵性能曲线驼峰判据的探讨[J].农业机械学报,35(4):74-76,2004
    [131]袁寿其.低比速离心泵理论与设计[M].北京:机械工业出版社,1997
    [132]罗崇来,袁义初.低比速离心泵中的效率和驼峰问题[J].水泵技术,1983(3):20-27
    [1331 Krause N, Pap E, Thevenin D. Influence of the blade geometry on flow instabilities in a radial pump elucidated by time-resolved particle-image velocimetry [C]. ASME Turbo Expo 2007 Power for Land, Sea and Air,2007
    [134]Shojaeefard M H, Tahani M, Ehghaghi M B, et al. Numerical study of the effects of some geometric characteristics of a centrifugal pump impeller that pumps a viscous fluid [J]. Computers & Fluids,60(5):61-70,2012
    [135]Li W G. Effect of exit blade angle, viscosity and roughness in centrifugal pumps investigated by CFD computation [J]. TASK Quarterly,15:21-41,2011
    [136]吴晓晶,吴玉林,张乐福等.混流式水轮机转轮的涡量场分析[J].水力发电学报,27(3):132-136,2008
    [137]吴介之,马晖扬,周明德.涡动力学引论[M1.北京:高等教育出版社,1993
    [138]刘威,袁寿其,李晓俊等.叶片开槽对低比转数离心泵内部流动的影响[J].排灌机械工程学报,31(1):11-14,2013
    [139]叶道星.采用开缝叶片对离心泵性能影响的研究[D].硕士学位论文,江苏大学,2013
    [140]Brennen C E. A review of the dynamics of cavitating pumps[J]. ASME Journal of Fluids Engineering,135, p.061301,2013
    [141]Tsujimoto Y, Kamijo K, Yoshida Y. A theoretical analysis of rotating cavitation in inducers[J]. ASME Journal of Fluids Engineering,115(3):135-141,1993
    [142]Yonezawa K, Aono J, Kang D, et al. Numerical evaluation of dynamic transfer maxtrix and unsteady cavitation characteristic of an inducer[C].5th International Symposium on Fluid Machinery and Fluids Engineering, Jeju, Korea,2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700