用户名: 密码: 验证码:
MR扩散加权成像在鼻咽癌放疗后放射性脑损伤中的临床应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】
     1.定量地分析不同年龄段正常脑白质磁共振扩散加权成像ADC值,建立正常脑白质及灰质ADC值标准,为评价放射性脑损伤提供参考值。
     2.探讨MR DWI在放射性脑损伤诊断中的表现及意义,进一步评价MR DWI定量分析脑微观病理改变的价值。
     【材料与方法】
     1.年龄因素所致ADC值变化的相关研究:选取50例具有正常MRI表现的患者作为研究对象,按其年龄段分为四组:第一组(16~30岁,n=13),第二组(31~45岁,n=12),第三组(46~60,n=14)及第四组(>60岁,n=11);定量测量白质区及丘脑ADCav值,比较分析不同年龄段ADCav值特性。
     2.颞叶正常参考值的研究:选取30例年龄结构与放疗后正常表现组相匹配具有正常MRI表现的患者作为正常对照组,定量地测量颞叶正常脑组织ADC值及CV值,为放射治疗后扩散成像研究提供正常的对比参考指标。
     3.鼻咽癌放射治疗后正常表现脑灰质及脑白质的定量研究:选取30例放疗后具有正常MRI表现的患者作为放疗后正常表现组,定量地计算颞叶正常脑组织ADC值及CV值。
     4.放射性脑损伤DWI临床应用研究:对51例鼻咽癌放射治疗后颞叶放射性脑损伤患者的临床表现及MRI资料进行回顾性分析,按照分型和分期标准分为灰质型和白质型,其中白质型分为白质型Ⅰ期、白质型Ⅱ期。定量分析比较病变区和对照区ADC值及CV值。
     5.上述资料采用单因素方差分析、t检验、最小显著性方法及相关回归分析进行统计学检验。
     【结果】
     1.年龄因素所致ADC值变化的相关研究:脑白质ADCav值为(0.71±
    
    0.08)x10一3rnmZzs:不同年龄段四组ADcav值分别为:(0 .69士o.06)x
    10-3tlun勺s,(0.71士0.的)x一0-3训rnZzs,(0.71士0.09)x 10-3tnmZzs,(0.73士
    o.10)xlo-3rnmZzs;第一组ADc值与第四组ADc值间存在显著性差异(尸
    二0.014);年龄大于60岁与年龄小于或等于60岁两组ADCav值分别为
    (0.73士0.10)x 10一3nunZ/s、(0.70士0.价)x 10一3tnmZzs,两组比较存在显著
    性差异(尸=0.026)。丘脑ADcav值为(0 .83士0.07)x 10-3nnnZzs,与白质
    ADCav值比较,两组间存在显著性差异伊<0.001)。各年龄段ADCav值
    间没有显著性差异;年龄大于60岁与年龄小于或等于60岁两组ADCav
    值分别为(0.54士0.06)x 10一3 nunZzs、(0.53士0.05)x 10-3mrnZzs,两组比
    较没有显著性差异(尸二0.376)o
    2.颗叶正常参考值的研究:颗叶白质的ADCav=(o .82士O.OS)X
    10-3mm勺s,ADeT=(0.52士0.10)x一0-3nunZzs,两者比较无显著性差异(t=
    一0.34,尸二。.734);颖叶灰质的ADeH=(0.9一士0.22)x 10一3mmZ/s,与颖叶
    白质ADcT=(0.82士0.10) x10一3rnmZzs比较有显著性差异(t= 4.32,p二
    0.000);颖叶白质存在扩散的各向异性,各向异性变异系数CV为(17.68
    士6 .69)%。
    3.鼻咽癌放射治疗后正常表现脑灰质及脑白质的定量研究:颖叶白质
    的^n eav=(0 .76士。一2)xl汀3rnmZzs,ADeT=(0 .76士0.1一)x 10-3mmZls,
    两者比较无显著性差异(t= 0.21,尸二0.984);颖叶灰质的ADCH=(0 .89
    士0.09)x一。一3rnmZzs,与颖叶白质ADeT==(0 .76士0.11)x 10-3nnnZzs比较
    有显著性差异(t=一5.46,尸二0.000);颖叶白质在某些方向间存在扩散的
    各向异性,各向异性变异系数CV为(13.601士5.62)%。放疗后颖叶白
    质ADC及CV值均较对照组降低,表现为受限性扩散,采用t检验进行
    统计分析,两组间存在显著性差异,尸值均小于0.05;放疗后颖叶灰质
    ADC值与对照组比较,其大小也呈下降趋势,但统计学分析结果显示两
    组间没有显著性差异。
    4.放射性脑损伤DV八I陆床应用研究:51例放射性脑损伤按照分型及分
    期标准,包括4O例白质型及n例灰质型,其中40例白质型包括白质型
     I期24例、白质型H期16例。增强扫描具有一定的特征性,早期改变
    表现为灰质内的局灶性强化灶;白质内早期的水肿在FLA[R序列上表现
    为局灶性边界清晰的高信号。白质型及灰质型放射性脑损伤病灶的ADC
    
    值较对照区ADC值均升高,采用t检验进行统计分析,P值均小于或等
    于0.01,说明在扩散加权成像上,放射性脑损伤病灶的ADC值与对照区
    ADC值间在统计学上有显著性差异,以白质型ADC值升高更为明显。
    白质型放射性脑损伤病灶的CV值较对照区CV值均降低,采用t检验进
    行统计分析,尸值均小于0.05,说明白质型放射性脑损伤病灶的CV值
    与对照区CV值间在统计学上有显著性差异,以白质型n期降低更为明
    显,反映出CV值的变化与其病理改变的一致性。
    【结论】
    1.D丫Vl所提供的组织图像对比不同于Tl丫Vl、TZ节/I,其成像的基础是
    水分子随机扩散运动,ADC值主要反映组织水分子随机扩散能力的大
    小,而CV值反映出组织水分子扩散各向异性的程度。
    2.D丫Vl需要快速扫描序列,最常用的是SE EPI。本研究采用DWI图像
    和ADc图两种观察方法。采用2个b值(o、10oomrnZzs)进行ADc值
    的计算。序列1既能提供三向各向异性图像,又能提供扩散追踪成像(tr ace
    imaging),后者ADC值的计算相对简单方便,并消除了各向异性的影响,
    且成像质量相对稳定;序列2较低b值成像及ADC图在本研究定量计算
    价值不?
[Objective ]
    1. To quantitatively study the ADC values of normal white matter with advancing age on diffusion and establish reference values of ADC for further studies of radiation-induced injury.
    2. To elucidate the manifestations and significance on MR DWI in diagnosis of radiation-induced injury and further evaluate the clinical value of quantitative measurement of mild structure changes on MR DWI.
    [Materials and Methods]
    1. The correlative study of ADC changes with advancing age: The study included 50 patients with normal appearing white matter. The subjects were divided into four group by age; age groups were first group(16~30years, n=13), second group(31~45years, n=12), third group(46~60years, n=14), fourth group(>60years, n=11). The ADCav of white matter and thalamus were measured and compared in various age groups.
    2. The study of normal reference values of temporal lobe: The study included 30 age-matched control subjects compared with normal appearing group following radiotheraphy, defined as control group with normal white matter. ADC and CV values were calculated to provide normal reference values for comparison analysis between control group and normal appearing group following radiotheraphy.
    3. The quantitative study of normal appearing group following radiotherapy for nasopharyngeal carcinoma on diffusion weighted-imaging: The study included 30 patients with normal appearing MRI following radiotherapy, defined as normal appearing group following radiotherapy. ADC and CV values were measured and compared with the control group.
    
    
    4. The study of clinical application on DWI for radiation-induced temporal lobe injury: 51 patients with ratiation-induced injury in nasopharyngeal carcinoma (NPC) were review. All patients were diagnosed by clinical manifestations and MR imaging. The disease was divided into white matter type and gray matter type by described criterion, and the white matter type included white matter type I phase and white matter type II phase. The ADC and CV values were analyzed and compared between lesion and control region.
    5. All these data were analyzed with statistical methods of one-way ANOVA, t-test, least-significant difference, correlative ang regression analysis.
    [Results]
    1. The correlative study of ADC changes with advancing age: In white matter, the ADCav among all patients was (0.71± 0.08)×10-3mm2/s; the ADCav of white matter in the first to fourth group were (0.69±0.06)× 10-3mm2/s, (0.71±0.07) ×10-3mm2/s, (0.71±0.09)× 10'3mm2/s, (0.73 ± 0.10)×10-3mm2/s. ADCav in the first group was significantly different from ADCav for patients in the fourth( P=0.014); patients older than 60 years had an ADCav for white matter of (0.73 ± 0.10) × 10-3mm2/s , which is significantly higher than the ADCav among all patients 60 years or younger(0.70±0.07)× 10-3mm2/s ( P=0.026) .For the thalamus, the ADCav among the entire study population was (0.83±0.07)× 10-3mm2/s, which was significantly different from the ADCav in white matter(P<0.001). The thalamic ADCav was not significantly different each other in various age groups. Comparison of the thalamic ADCav in patients older than 60 years[(0.84±0.06) × 10-3 mm2/s] with those 60 years or younger[(0.83 ± 0.08) × 10-3mm2/s] also showed not sign
    ificantly different( P=0.376).
    2. The study of normal reference values of temporal lobe: In white matter, the ADCav among all patients was (0.71± 0.08)× 10"3mm2/s; ADCT was (0.82±0.10) × 10-3mm2/s; ADCav and ADCT was not significantly different each other (t= -0.34, P=0.734) . In gray matter, the ADCH among the entire study population was (0.91±0.12) × 10-3mm2/s, which was significantly
    
    
    different from the ADCT in white matter(P<0.001) (t= 4.32, P=0.000) . In the white matter of temporal lobe , diffusion was anisotropic, and the coefficient of variation in anisotropic diffusion was (17.68 ± 6.69)%.
    3. The quantitative study of normal appearing group following radiotherapy for nasopharyngeal carcinoma on diffusion weighted-im
引文
1. 徐燮渊,俞受程,曾逖闻,陈国雄主编.现代肿瘤放射治疗学[M].第一版,北京:人民军医出版社,2000:399-413
    2. 胡立宽,魏奉才主编.头颈部肿瘤放射治疗学[M].第一版,上海:第二军医大学出版社,2002:164-173
    3. 王容光,郭宝煌主译.鼻咽癌[M].第一版,北京:中国协和医科大学出版社,2002,111-130
    4. 申文江,王绿化主编.放射治疗损伤[M].第一版,北京:中国医药科技出版社,2001,1-42
    5. Martins AN, Johnston JS, Henry JM, et al. Delayed injury necrosis of the brain[J]. J Neurosurg, 1977, 47(3): 336-45
    6. Dooms GC, Hecht S, Brant-Zawadzki M, et al. Brain injury lesions: MR imaging[J]. Radiology, 1986, 158(1):149-55
    7. Chong VF, Fan YF, Mukherji SK. Radiation-induced temporal lobe changes: CT and MR imaging characteristics[J]. AIR, 2000, 175(2): 431-436
    8. Valk PE, Dillon WP. Injury injury of the brain[J]. AJNR, 1991, 12(1):45-62
    9. Lee AW, Ng SH, Ho JH, et al. Clinical diagnosis of late temporal lobe necrosis following injury therapy for nasopharyngeal carcinoma[J]. Cancer 1988 Apr 15;61(8):1535-1542
    10.张雪林,阎卫平,邹常敬,等.鼻咽癌放疗后放射性脑损伤的MRI诊断[J].中华放射学杂志,1995,29(10):658-661
    11.孔琳,张有望,吴永和,等.鼻咽癌放射治疗后脑脊髓损伤的临床和影像学诊断[J].肿瘤,2002,22(4):315-319
    12. Luypaert R, Boujraf S, Sourbron S, ET AL. Diffusion and perfusion MRI: basic physics[J]. Eur J Radiol, 2001, 38(1): 19-27
    13. Rowley HA, Grant PE, Roberts TP. Diffusion MR imaging. Theory and applications[J]. Neuroimaging Clin N Am, 1999, 9(2): 343-61
    14. Castillo M, Mukherji SK. Diffusion-weighted imaging in the evaluation of intracranial lesions[J]. Semin Ultrasound CT MR, 2000, 21(6): 405-416
    
    
    15. Sener RN. Diffusion MRI: apparent diffusion coefficient(ADC)values in the normal brain and a classification of brain disorders based on ADC values[J]. Computered Medical Imaging and Graphics, 2001, 25:299-326
    16. Schaefer PW, Grant E, Conzalez RG. Diffusion-weighted MR imaging of the brain[J]. Radiology, 2000, 217:331-345
    17. Provenzale JM, Sorensen AG. Diffusion-weighted MR imaging in acute stroke: theoretic considerations and clinical applications[J]. AJR, 1999, 173:1459-1467
    18.赵修义,张雪林.磁共振扩散加权成像在中枢神经系统以外肿瘤鉴别诊断中的应用(综述)[J].国外医学临床放射学分册,2002,25(6):371-373
    19.赵修义,张雪林.磁共振扩散加权成像在肿瘤鉴别诊断中的应用(综述)[J].国外医学肿瘤学分册,2002,2(4):269-272
    20. Helenius J, Soinne L, Perkio J, et al. Diffusion-weighted MR imaging in normal human brain in various age groups[J]. AJNR, 2002, 23:194-199
    21. Engelter ST, Provenzale JM, Petrella JR, et al. The effect of aging on the apparent diffusion coefficient of normal-appearing white matter[J]. AJR, 2000, 175:425-430
    22. Gideon P. Thomsen C, Henriksen O. Increased self-diffusion of brain water in normal aging[J]. J Magn Resort Imaging, 1994, 4:185-188
    23. Thomas DL, Lythgoe MF, Pell GS, et al. The measurement of diffusion and perfusion in biological systems using magnetic resonance imaging [J]. Phys Med Biol, 2000, 45(8): R97-R138
    24. Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders [J]. Radiology, 1986, 161(2): 401-407
    25. Cercignani M, Horsfield MA. The physical basis of diffusion-weighted MRI [J]. J Neurol Sci, 2001, 186 (Suppl 1): S11-14
    26. Le Bihan D, Mangin JE Poupon C, et al. Diffusion tensor imaging: concepts and applications [J]. J Magn Resort Imaging, 2001, 13(4): 534-546
    27. Yamashita Y, Tang Y, Takahashi M. Ultrafast MR imaging of the abdomen: echo planar imaging and diffusion-weighted imaging [J]. J
    
    Magn Reson Imaging, 1998, 8(2): 367-374
    28. Keogan MT, Edelman RR. Technologic advances in abdominal MR imaging [J]. Radiology, 2001, 220(2): 310-320
    29. Ichikawa T, Haradome H, Hachiya J, et al. Diffusion-weighted MR imaging with single-shot echo-planar imaging in the upper abdomen: preliminary clinical experience in 61 patients[J]. Abdom Imaging, 1999, 24(5): 456-461
    30. Kim T, Murakami T, Takahashi S, et al. Diffusion-weighted single-shot echoplanar MR imaging for liver disease[J]. AJR, 1999, 173(2): 393-398
    31. Edelman RR, Wielopolski O, Schmitt F. Echo-planar MR imaging[J]. Radiology, 1994, 192:600-612
    32. Aziz M, Peter CM, Zijl V. Single-shot diffusion-weighted tace imaging on a clinical scanner[J]. MRM, 1998, 40:622-628
    33. Chan JH, Tsui EY, Luk SH, et al. Diffusion-weighted MR imaging of the liver: distinguishing hepatic abscess from cystic or necrotic tumor[J]. Abdom Imaging, 2001, 26(2): 161-165
    34. Moseley ME, Cohen Y, Kucharczyk J, et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system[J]. Radiology, 1990, 176(2):439-445
    35.肖学宏,孔祥泉,刘定西,等.人脑弥散加权平面回波磁共振成像[J].临床放射学杂志,1999,18(3):133-135
    36.王建利,谢敬霞.成人脑组织水分子扩散的各向异性.中华放射学杂志,1999,33(10):675-679
    37. Meier-Ruge W, Ulrich J, Bruhlmann M, et L. Age-related white matter atrophy in the human brain[J]. Ann N Y Acad Sci, 1992, 26;673:260-269
    38. Malone MJ, Szoke MC. Neurochemical studies in aging brain. I. Structural changes in myelin lipids[J]. J Gerontol, 1982, 37(3):262-267
    39. Drachman DA. Aging and the brain: a new frontier[J]. Ann Neurol, 1997,42(6): 819-828
    40. Ulug AM, Beauchamp NJ, Bryan RN, et al. Absolute quantitation of diffusion constants in human stroke[J]. Stroke, 1997, 28:483-486
    41. Molko N, Pappata S, Mangin JF, et al. Monitoring Disease Progression in CADASIL With Diffusion Magnetic Resonance Imaging: A Study
    
    With Whole Brain Histogram Analysis[J]. Stroke, 2002, 33(12): 2902-2906
    42. Davis D, Ulatowski J, Eleff S, et al. Rapid monitoring of changes in water diffusion coefficient during reversible ischemia in cat and rat brain[J]. Magn Reson Med, 1994, 31:454-458
    43. Werring DJ, Brassat D, Droogan AG. et al. The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: a serial diffusion MRI study[J]. Brain, 2000, 123 (Pt 8): 1667-1676
    44. Van Walderveen MA, Barkhof E Pouwels PJ, rt al. Neuronal damage in Tl-hypointense multiple sclerosis lesions demonstrated in vivo using proton magnetic resonance spectroscopy[J]. Ann Neurol, 1999, 46(1): 79-87
    45.初曙光,沈天真.多发性硬化MRI研究进展[J].国外医学临床放射学分册,2002,25(3):139-143
    46. Christiansen P, Gideon P, Thomsen C, et al. Increased water self-diffusion in chronic plaques and in apparently normal white matter in patients with multiple sclerosis[J]. Acta Neurol Scand, 1993, 87(3): 195-199
    47. Nusbaum AO, Lu D, Tang CY, Atlas SW. Quantitative diffusion measurements in focal multiple sclerosis lesions: correlations with appearance on TI-weighted MR images[J]. AJR, 2000, 175(3):821-825
    48. Casey S. "T2 washout": an explanation for normal diffusion-weighted images despite abnormal apparent diffusion coefficient maps[J]. AJNR, 2001, 22(8): 1450-1451
    49. Schulz UG, Briley D, Meagher T, et al. Abnormalities on diffusion weighted magnetic resonance imaging performed several weeks after a minor stroke or transient ischaemic attack[J]. J Neurol Neurosurg Psychiatry, 2003, 74(6): 734-738
    50. Eastwood JD, Engelter ST, MacFall JF, et al. Quantitative assessment of the time course of infarct signal intensity on diffusion-weighted images[J]. AJNR, 2003, 24(4): 680-687
    51. Yoneda Y, Tokui K, Hanihara T, et al. Diffusion-weighted magnetic resonance imaging: detection of ischemic injury 39 minutes after onset in a stroke patient[J]. Ann Neurol, 1999,45(6): 794-797
    52. Kuzma BB, Goodman JM. Diffusion MR imaging in acute stroke[J]. Surg Neurol, 1999, 51(5): 575-576
    
    
    53. Geijer B, Brockstedt S, Undgren A, et al. Radiological diagnosis of acute stroke. Comparison of conventional MR imaging, echo-planar diffusion-weighted imaging, and spin-echo diffusion-weighted imaging[J]. Acta Radiol, 1999,40(3) : 255-262
    54. 黄力,王秀河,刘斯润.DWI、DC图对急性脑梗塞诊断的应用及病理生理基础.中国病理生理杂志, 2002,18(6) : 687-689
    55. 唐岳枫,刘买利,叶朝辉,等.大白鼠急性癫痫模型的DWI自身对照分析.波谱学杂志[J]. 1999, 16(4) : 347-351
    56. Branco G An alternative explanation of the origin of the signal in diffusion-weighted MRI[J]. Neuroradiology, 2000,42(2) : 96-98
    57. Nakada. Diffusion tensor analysis: principles and applications[J]. No To Shinkei, 2002,54(4) : 290-297
    58. Rowley HA, Grant PE, Roberts TP. Diffusion MR imaging. Theory and applications[J]. Neuroimaging Clin N Am, 1999,9(2) : 343-361
    59. Sugahara T, Korogi Y, Kochi M, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in guomas[J], J Magn Reson Imaging, 1999,9(1) : 53-60
    60. Chen S, Ikawa F, Kurisu K, et al. Quantitative MR evaluation of intracranial epidermoid tumors by fast fluid-attenuated inversion recovery imaging and echo-planar diffusion-weighted imaging[J]. AJNR, 2001,22(6) : 1089-1096
    61. Guo AC, Cummings TJ, Dash RC, et al. Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics[J]. Radiology, 2002, 224(1) : 177-183
    62. Sinha S, Bastin ME, Whittle IR, et al. Diffusion tensor MR imaging of high-grade cerebral gliomas[J]. AJNR, 2002, 23(4) :520-527
    63. 耿道颖,陈增爱,沈天真.放射性脑损伤的临床病理与影像学.国外医学临床放射学分册, 2001, 24(3) : 161-165
    64. Plowman PN. Stereotactic radiosurgery. VIE. The classification of postinjury reactions [J]. Br J Neurosurg, 1999, 13(3) : 256-264
    65. Karger CP, Munter MW, Heiland S, et al. Dose-response curves and tolerance doses for late functional changes in the normal rat brain after Stereotactic radiosurgery evaluated by magnetic resonance imaging: influence of end points and follow-up time[J]. Radiat Res, 2002, 157(6) :
    
    617-625
    66.刘雅洁,易俊林,欧阳汉.鼻咽癌放射治疗后放射性脑损伤的MRI表现.中华放射肿瘤学杂志[J],2000,9(4):225-229
    67. Lee AW, Foo W, Chappell R, et al. Effect of time, dose, and fractionation on temporal lobe necrosis following radiotherapy for nasopharyngeal carcinoma[J]. Int J Radiat Oncol Biol Phys, 1998,40(1): 35-42
    68. Becket M, Schroth G, Zbaren P, et al. Long-term changes induced by high-dose irinjury of the head and neck region: imaging findings[J]. Radiographics, 1997, 17(1): 5-26
    69.梁碧玲,谢传淼.鼻咽癌影像诊断进展[J].实用肿瘤杂志,2001,6(1):3-5
    70.沈天真,孙兮文,陈星荣.脑肿瘤诊断中CT和MRI造影剂的应用和进展[J].中国医学计算机成像杂志.1996,2(2):134-138
    71. Norris AM, Carrington BM, Slevin NJ. Late injury change in the CNS: MR imaging following gadolinium enhancement[J]. Clin Radiol, 1997, 52(5): 356-362
    72. Chan YL, Leung SF, King AD, et al. Late injury injury to the temporal lobes: morphologic evaluation at MR imaging[J]. Radiology 1999, 213(3): 800-807
    73. Schwartz RB, Hsu L, Kacher DF, et al. Intraoperative dynamic MRI: localization of sites of brain tumor recurrence after high-dose radiotherapy[J]. J Magn Reson Imaging, 1998, 8(5): 1085-1089
    74. Wolansky LJ, Finden SG, Chang R, et al. Gadoteridol in multiple sclerosis patients. A comparison of single and triple dose with immediate vs. delayed imaging[J]. Clin Imaging, 1998, 22(6): 385-392
    75. Bruck W, Bitsch A, Kolenda H, et al. Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology[J]. Ann Neurol, 1997, 42(5): 783-793
    76. Kates R, Atkinson D, Brant-Zawadzki M. Fluid-attenuated inversion recovery (FLAIR): clinical prospectus of current and future applications[J]. Top Magn Reson Imaging, 1996, 8(6): 389-396
    77. Tomura N, Kato K, Takahashi S, et al. Comparison of multishot echo-planar fluid-attenuated inversion-recovery imaging with fast spin-echo fluid-attenuated inversion-recovery and T2-weighted imaging in depiction of white matter lesions[J]. J Comput Assist Tomogr, 2002,
    
    26(5): 810-814
    78. Okuda T, Korogi Y, Shigematsu Y, et al. Brain lesions: when should fluid-attenuated inversion-recovery sequences be used in MR evaluation[J]? Radiology, 1999, 212(3): 793-798
    79. Munter MW, Karger CP, Reith W, et al. Delayed vascular injury after single high-dose irinjury in the rat brain: histologic immunohistochemical, and angiographic studies[J]. Radiology, 1999, 212(2): 475-482
    80. Tortorella C, Viti B, Bozzali M, Sormani ME et al. A magnetization transfer histogram study of normal-appearing brain tissue in MS[J]. Neurology, 2000, 54(1): 186-193
    81.赵修义,张雪林,王劲,等.不同年龄段正常脑白质ADC值定量研究[J].第一军医大学学报[J].2003,6:
    82.赵修义,张雪林,王劲,等.年龄因素与正常脑白质ADC值的相关性研究[J].临床放射学杂志[J].2003(待发)
    83.韩鸿宾,王俭,谢敬霞,等.高扩散敏感系数扩散加权像异常高信号疾病的鉴别诊断.中华放射学杂志,2002,36(9):812-816
    84. Nusbaum AO, Lu D, Tang CY, et al. Quantitative diffusion measurements in focal multiple sclerosis lesions: correlations with appearance on TI-weighted MR images[J]. AJR, 2000, 175(3): 821-825
    85. Atlas SW, DuBois P, Singer MB, et al. Diffusion measurements in intracranial hematomas: implications for MR imaging of acute stroke. AJNR, 2000, 21(7): 1190-1194
    86.艾林,戴建平,高培毅,等.中枢神经弥散加权图像在鉴别脑脓肿与坏死、囊变脑肿瘤中的作用[J].中华放射学杂志,2001,35(9):663-665
    87. Leuthardt EC, Wippold FJ 2nd, Oswood MC, et al. Diffusion-weighted MR imaging in the preoperative assessment of brain abscesses[J]. Surg Neurol, 2002, 58(6):395-402
    88. Wong WC, Cheng PW, Chan FL, et al. Improved diagnosis of a temporal lobe abscess in a post-irradiated nasopharyngeal carcinoma patient using diffusion-weighted magnetic resonance imaging[J]. Clin Radiol, 2002, 57(11): 1040-1043

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700