用户名: 密码: 验证码:
工业纯铁表面纳米合金化改性及原子扩散行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现有的金属表面合金化手段往往要在高温下、长时间处理,以实现原子的渗入,这不仅可能会对基体的组织性能产生不利影响,也造成了资源、能源的浪费。针对这一问题,本文将金属表面自纳米化技术与表面合金化技术相结合,对工业纯铁进行纳米合金化改性。其核心思想是利用纳米晶铁中的晶界、缺陷等为原子扩散提供大量扩散通道,从而能够在较低的温度下实现原子的快速扩散,降低表面合金化温度,缩短扩渗时间。表面纳米合金化改性主要涉及四个方面的内容,即自纳米化组织的获得、纳米晶中原子的扩散、扩散过程中的相变以及纳米合金化改性层的性能。
     本文首先利用高能喷丸法对工业纯铁进行了表面自纳米化处理,运用OM、XRD、SEM、EBSD等手段对其自纳米化组织结构进行了系统表征与分析,得到了工业纯铁高能喷丸自纳米化工艺和机理。在此基础上,通过不同扩散源和应力加载方式的扩散处理,在工业纯铁表面获得了多种表面纳米合金化改性层;重点对镍原子在纳米晶铁中的扩散行为进行了研究;然后对纳米合金化改性过程中的相变进行了分析;最后对纳米合金化改性层的显微硬度、耐蚀性及耐磨性进行了表征与研究。
     研究结果表明,在喷丸压力0.6MPa,喷丸弹丸直径1.0mm,喷嘴距喷丸表面距离50mm的工艺条件下,经6min喷丸处理,工业纯铁的表层晶粒被细化到了43.9nm,微观畸变为0.0652%;获得了本文扩散处理所需的工业纯铁自纳米化样品。表面纳米化组织的退火和热分析试验结果表明,自纳米化工业纯铁在600℃时晶粒已开始长大。
     工业纯铁高能喷丸表面自纳米化过程中的晶粒细化主要有三个方面的机制:一方面是通过位错运动在大晶粒内部形成较大取向差的亚晶界,随着位错不断的湮灭、重排,亚晶界的取向差不断增大,最后演变成为晶界,大晶粒被细化成小晶粒。二是利用晶粒取向差不同而变形不同步的特点,逐渐将不同晶粒和晶粒内部不同部分分开从而实现晶粒细化。三是在喷丸过程中发生了一定程度的再结晶,不断形成新的小晶粒,从而细化晶粒。
     在650~850℃之间对扩散偶施加10MPa恒定压力扩散实验表明,镍原子在纳米晶纯铁中的扩散系数比其在常规粗晶中提高了一个数量级;在850℃对扩散偶施加8~16MPa脉冲压力扩散时,镍在纳米晶铁中的扩散系数较恒定加压进一步提高。在用Arrhenius公式计算纳米晶中原子扩散系数时,应该考虑升温会导致纳米晶晶界数量减少从而降低扩散系数因素。
     对自纳米化工业纯铁扩散处理过程中的相变研究表明,在不同纳米合金化改性层中除了α-Fe外,主要形成了FeNi_3、Fe2Ni_(0.25)、NiCr和NiCr_2等金属间化合物。经退火处理后,不同纳米合金化改性层的金属间化合物数量大大减少,物相主要是固溶体,而且都出现了一定数量的奥氏体。
     晶粒细化、应力集中以及晶格畸变共同作用导致工业纯铁自纳米化处理后的硬度增加;合金化改性后,由于合金元素的渗入,形成了固溶强化效应,导致其硬度较原始试样提高。表面自纳米化导致纯铁的耐腐蚀性有所降低,合金化改性后耐蚀性有所提高;自纳米化纯铁以化学腐蚀为主,而合金化改性层的腐蚀主要是以电化学腐蚀为主。纯铁在磨损过程中表现为粘着磨损,摩擦系数较大,磨损严重;自纳米化处理后,纯铁表面的硬度提高导致其耐磨性提高,此外,表面形成的梯度结构导致疲劳源放出的位错将受到内、外晶界的阻碍,也在在一定程度上提高了纯铁的耐磨性;对于合金化改性层,由于形成了硬而脆的金属间化合物,磨损量有所降低。
The metallic materials are often treated at high temperature for a long time todiffuse the alloying elements into them during the existing surface alloying process ofmetallic materials. Which not only has an adverse effect on the microstructure andperformance of the metallic materials, but also causes resource and energy wasting. Tosolve this problem, the surface self-nanocrystallization (SSNC) technology and surfacealloying were combined to realize the surface modification of commercial iron in thispaper. There were many grain boundaries and defects in the self-nanocrystalline iron,which will provide a large number of diffusion channels. Therefore the atoms maydiffuse more rapidly in the self-nanocrystalline iron than in the coarse iron, which leadthe surface alloying of commercial iron at lower temperature in a short time. Thecombination of the surface self-nanocrystallization (SSNC) technology and surfacealloying was called surface nanocrystallinzation and alloying (SNA) in this paper.
     Firstly self-nanocrystallinzed layers were prepared on the commercial pure ironsamples by means of high energy shot peening (HESP) method, and the microstructureof the self-nanocrystallinzed layers was characterized through optical microscopy (OM),scanning electron microscopy (SEM), X-ray diffraction (XRD) and electronbackscattered diffraction (EBSD). Then different elements were diffused into theSSNCed commercial iron and different SNAed layers were obtained. The diffusion ofatoms in nanocrystallined iron, phase transformation during SNA and the performanceof the SNAed layers were investigated detailedly.
     Results showed that under0.6MPa press,50mm distance from shotting gun to thesurface of samples, a nanocrystalline surface layer without oxidation, porosity andcontamination was obtained by means of HESP to a commercial iron cylinder with a1mm diameter cast iron ball after6min shot. The SSNCed commercial iron containedan average grain size of43.9nm and a microstrain of0.0652%, and the grain begun togrow when annealing at600℃.
     The mechanism of SSNC process of commercial iron involved three aspects. Themotion of the dislocations was the main reason, which lead the formation of bigorientation subgrain boundaries in coarse iron grain. After continued annihilation andrearrangement of the dislocations, the subgrain boundaries evolved into grainboundaries and the coarse grains were refined. Secondly big orientation lead the nonsynchronous deformation appear among different grains and the different parts ofthe coarse grains, which would separate grains and the different parts of coarse grains.Thirdly recrystallization produced fine grains on the deformed grain boundaries duringHESP.
     The diffusion test showed that the diffusion coefficient of nickel in SSNCedcommercial iron improved by one order of magnitude than that in coarse iron under a10MPa constant pressure on the diffusion couple. The diffusion coefficient of nickel inSSNCed commercial iron would be further improved if imposing a8-16MPa pulsepressure on the diffusion couple. When using Arrhenius formula to calculate thediffusion coefficient of atoms in nanocrystallines, the effect of temperature on the grainsof nanocrystallines must be considered.
     During SNA of commercial iron, intermetallic compounds such as FeNi_3, Fe_2Ni_(0.25),NiCr and NiCr_2formed in the SNAed layers. But after annealing at900℃, theintermetallic compounds reduced and transformed into solid solution, and a certainamount of austenite appeared in the SNAed layers.
     The hardness of the SSNCed commercial iron enhanced because of grainrefinement, stress concentration and lattice distortion, while solid solution strengtheningeffect was the reason of the enhancement of hardness of the SNAed layers. Thecorrosion resistance of the commercial iron decreased after SSNC treating, but SNAtreatment can enhance the corrosion resistance of the commercial iron. Chemicalcorrosion and electrochemical corrosion were the corrosion principles of the SSNCedcommercial iron and the SNAed layers respectively. The wear resistance of commercialiron got a different level of improvement after SSNC and SNA treatment. The motion ofthe dislocations emitted from the fatigue source would be subjected to block of innercoarse and outer fine grain boundaries in the gradient structure of the SSNCedcommercial iron, which lead the enhancement of the wear resistance of SSNCed layers.As for the SNAed layers, the formation of hard and brittle intermetallic compounds wasthe main reason why the wear resistance improved.
引文
[1]徐滨士.纳米表面工程[M].北京:化学工业出版社,2004.
    [2]曹晓明,温鸣,杜安.现代金属表面合金化技术[M].北京:化学工业出版社,2007.
    [3]孙希泰.材料表面强化技术[M].北京:化学工业出版社,2005.
    [4] Sergey Zherebtsov, Takashi Naeo, et al. Erosion damage of laser alloyed stainless steel inmercury[J]. Surface&coatings technology,2007(201):6035-6043.
    [5] V. P. Rotshtein, Yu F, Ivanov, et al. Surface alloying of stainless steel316with copper usingpusled electron-beam melting of film-substrat system[J]. Surface&coatings technology,2006(200):6378-6383.
    [6] D. I. Pantelis, A. Griniari, et al. Surface alloying of pre-deposited molybdenum-based powderon304L stainless steel using concentrated solar energy[J]. Solar energy materials and solarcells,2005(89):1-11.
    [7]徐重.等离子表面冶金技术的现状与发展[J].中国工程科学,2002,4(2):36-42.
    [8]徐江,谢锡善,徐重.利用双层辉光等离子技术进行镍基耐蚀合金表面合金化的研究[J].材料热处理学报,2005,23(1):28-31.
    [9] Liu Xiaoping, Gao Yuan, et al. Cr-Nni-Mmo-Co surface alloying layer formed by plasmasurface alloying in pure iron[J]. Applied surface science,2006(252):3894-3902.
    [10]杨剑.纳米材料综述[J].材料导报.1997,11(2):6-10.
    [11] Aning A O,W hangz,Courttney TH. Tungsten solution Kinetics and Amorphization of Nickelin mechanically alloyed Ni-W alloys[J]. Acta metal moder.1993,41(1):165-175.
    [12]卢柯,周飞.纳米晶体材料的研究现状[J].金属材料.1997,33(1):99-106.
    [13]曹杨,陈光,颜银标.钢铁材料表面滋生纳米化及其应用前景.钢铁研究学报,2005,17(2):1-5.
    [14] N.R. Tao, Z.B. Wang, W.P. Tong, et.al. An investigation of surface nanocrystallizationmechanism in Fe induced by surface mechanical attrition treatment[J]. Acta Materialia,2002,50:4603-4616.
    [15] Wu X, Tao N, Hong Y, et.al. Strain-induced grain refinement of cobalt during surfacemechanical attrition treatment[J]. Acta Mater.2005;53:681.
    [16] H.Q. Sun, Y.N. Shi, M.X. Zhang, et.al. Plastic strain-induced grain refinement in thenanometer scale in a Mg alloy[J].Acta Materialia,55(2007):975-982.
    [17] Nairong Tao, Hongwang Zhang, Jian Lu, etc. Devleopment of Nanostructures in MetallicMaterials with Low Stacking Fault Energies During Surface Mechanical AttritionTreatment(SMAT)[J].Mater.Trans.,2003,44(10):1919-1925.
    [18] K.Y.Zhu, A. Vassel, F. Brisset, K. Lu, J. Lu. Nanostructure formation mechanism ofa-titanium using SMAT[J]. Acta Mater.2004,52(14):4101-4110.
    [19] K. Lu, J. Lu. Nanostructured surface layer on metallic induced by surface mechanical attritiontreatment[J]. Mater. Sci. Eng.2004,A375-377(7):38-45.
    [20] Duohui BEI, Jianfeng GU and Jiansheng PAN. Gaseous Nitriding Process of SurfaceNanocrystallized (SNCed) Steel[J]. J. Mater. Sci. Technol.,2002,18(6):566-568.
    [21] Z.B. Wang,J. Lu, K. Lu. Chromizing behaviors of a low carbon steel processed by means ofsurface mechanical attrition treatment[J]. Acta Materialia,2005,53(4):2081-2089.
    [22] Z.B. Wang, N.R. Tao, W.P. Tong, J. Lu, K. Lu. Diffusion of chromium in nanocrystallineiron produced by means of surface mechanical attrition treatment[J]. Acta Materialia2003,51(14):4319-4329.
    [23] Duohui BEI, Jianfeng GU and Jiansheng PAN. Gaseous Nitriding Process of SurfaceNanocrystallized (SNCed) Steel[J]. J. Mater. Sci. Technol.,2002,18(6):566-568.
    [24] J.Horvath,R.Birringer and H. Gleiter. Diffusion in nanoctystalline material[J]. Solid StateCormmunications,1987,62(5):319-322.
    [25] Kolobov Yu R, Grabovetskaya G P, Lvanov M B, et al. Grain boundary diffusioncharacteristics of nanostructured nickel[J]. Scripta Materialia,2001,44(6):873-878.
    [26] W. P. Tong, N.R.Tao, et al. Nitriding lron at Lower Temperature[J]. Science,2003,299:686-688.
    [27] Z.B.Wang, J.Lu. Chromizing Behaviors of Low Carbon Steel Processed by means ofSMAT[J]. Acta Materialia,2005,53:2081-2089.
    [28] Z.B.Wang, N.R.Tao, et al. Diffusion of Chromium in Nanocrystalline lron Produced by meansof SMAT[J]. Acta Materialia,2003,51(3):4319-4329.
    [29]刘家浚.复合表面技术研究的新进展[J].中国表面工程,1998(1):10-15.
    [30] K G Kostov, M Ueda, M Lepiensky, et al. Surface Modification of Metal Alloys by PlasmaImmersion Ion Implantation and Subsequent Plasma Nitriding [J].Surface&CoatingsTechnology,2004,(186):204-208.
    [31] A Mitsuo, S Uchida, Aizawa. Effect of Pulse Bias Voltage and Nitrogen Pressure on NitrogenDistribution in Steel Substrate by Plasma Immersion Ion Imp lantation of Nitrogen[J]. Surface&Coatings Technology,2004,(186):196-199.
    [32] Sergey Zherebtsov, Takashi Naeo, et al. Erosion damage of laser alloyed stainless steel inmercury[J]. Surface&coatings technology,2007,201:6035-6043.
    [33] V. P. Rotshtein, Yu F, Ivanov, et al. Surface alloying of stainless steel316with copper usingpusled electron-beam melting of film-substrat system. Surface&coatings technology[J].2006,200:6378-6383.
    [34] D. I. Pantelis, A. Griniari, et al. Surface alloying of pre-deposited molybdenum-based powderon304L stainless steel using concentrated solar energy. solar energy materials and solarcells[J].2005,89:1-11.
    [35]张立德.纳米材料[M].北京:化学工业出版社.2002;
    [36]曹茂盛,关长斌著.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [37] P. Keblinski, D. Wolf, S.R. Phillpot, H. Gleiter. STRUCTURE OF GRAIN BOUNDARIESIN NANOCRYSTALLINE PALLADIUM BY MOLECULAR DYNAMICSSIMULATION[J]. Scripta Materialia,1999,41(6):631-636.
    [38] Marc Legros, Daniel Gianola, Kevin Hemker. In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films[J]. Acta Materialia,2008,56:3380-3393.
    [39] Morton E. Gurtin, Lallit Anand. Nanocrystalline grain boundaries that slip and separate: Agradient theory that accounts for grain-boundary stress and conditions at a triple-junction[J].Journal of the Mechanics and Physics of Solids,2008,56:184-199.
    [40]卫英慧.纳米材料概论[M].北京:化学工业出版社.2009.
    [41]张邦维.纳米材料物理基础[M].北京:化学工业出版社.2009.
    [42] L.H. Qian, Q.H. Lu, W.J. Kong, K. Lu. Electrical resistivity of fully-relaxed grain boundariesin nanocrystalline Cu[J] Scripta Materialia,2004,50:1407-1411.
    [43] V. Buscaglia, M.T. Buscaglia, M. Viviani. et al. Grain size and grain boundary-related effectson the properties of nanocrystalline barium titanate ceramics[J] Journal of the EuropeanCeramic Society2006,26:2889-2998.
    [44] S.V. Bobylev, M. Yu. Gutkin, I.A. Ovidko. Transformations of grain boundaries in deformednanocrystalline materials[J] Acta Materialia2004,52:3793-3805.
    [45] P. Keblinski, D. Wolf, S.R. Phillpot and H. Gleiter. STRUCTURE OF GRAINBOUNDARIES IN NANOCRYSTALLINE PALLADIUM BY MOLECULAR DYNAMICSSIMULATION[J] Scripta Materialia1999,41(6):631-636.
    [46] Ranganathan S,Divakar R,RaghunathanV. Interfaec struetures in nanocrystalline materials.Seripta materialia,2001(44):1169-1174.
    [47] Li D X, Ping D H, etc. HREM study of the microstrueture in nanocrystallinematerials.Mater.Lett.,1993,18(l-2):29-34.
    [48] Thomas G J,Siegel R W,Eastman J A. Grain boundaries in nano Phase Palladium: Highresolution electron microscopy and image simulation. Scripta Metallurgica etMaterialia,1990,24(l):201-206;
    [49] Lu K,Luck R,Predel B.The interfacial excess energies in nanocrystalline Ni-P materials withdifferent grain sizes.Scripta Metallurgica et Materialia,1993,28:1387-1392.
    [50] GanaPathi SK,Rigney DA.A HREM study of the nanocrystalline material produced Bysliding wear proeesses.Scripta Metallurgica et Materialia,1990,24(9):1675-1678.
    [51] Sui M L,Lu K. Variation in lattice parameters with grain size of a nanophase Ni3Pcompound.Mater.Sci.Eng.A,1994,179-180:541-544.
    [52] Liu X D,Lu K,Ding B Z. Investigation of the lattice structure of nanophases in Fe-Cu-Si-Balloys.Nanostructured Materials,1993,2(6):581-586.
    [53] Shefford P Baker. Plastic deformation and strength of materials in small dimensions [J]. MaterSci Eng,2001,A319-321:16-23.
    [54] Lu Yulin, Peter Kiaw. The mechanical properties of nanostructured materials[J].MineralsMetals&Materials Society,2001,53(3):31-40.
    [55] Carl J Youngdahl, P G Sanders, J Eastman, et al. Compressive yield strengths ofnanocrystalline Cu and Pd [J]. Scripta Mater,1997,37(6):809–8131.
    [56] Wu X J, Du L G, Zhang H F, et al. Synthesis and tensile property of nanocrystalline metalcopper[J]. Nanost Mater,1999,12:221–2231.
    [57] Padmanabhan K A. Mechanical properties of nanostructured materials[J]. Mater SciEng,2001,A304-306:200-205.
    [58] Koch C C, Morris D G, Lu K, et al. Ductility of nanostructured materials [J]. MRSBull,1999,24(2):54-58.
    [59] Mishra R S, McFadden S X, Valiev R Z, et al. Deformation mechanisms and tensilesuperplasticity in nanocrystalline materials[J]. Minerals, Metals&Materials Society,1999,51(1):37-45.
    [60] Lu L, Sui M L, Lu K. Superplastic extensibility of nanocrystalline copper at roomtemperature [J]. Science,2000,287:1463-1466.
    [61]项忠楠,戴品强,柯跃前,等.电刷镀镍铁合金镀层的纳米晶结构及其热稳定性[J].材料热处理学报,200829(5),146-151.
    [62]魏君,宋晓艳,韩清超,等.金属纳米晶热稳定性和晶粒长大行为的研究[J].稀有金属材料与工程,201039(4),603-608.
    [63] Raghavan S, Sahay S S. Modeling the grain growth kinetics by cellular automaton [J].Materials Sci Eng A.2007,445-446(15):203–209.
    [64] WagnerM. Structure and thermodynamic properties of nanocrystalline metals [J]. Phys Rev, B.1992,45(2):635–639.
    [65]张聪惠,何晓梅,兰新哲,等.表面纳米化Zr-4合金组织和性能热稳定性研究[J].稀有金属材料与工程,201039(12),11-16.
    [66]李凌梅,宋晓艳,张久兴,等.金属纳米晶的界面热力学及热稳定性研究[J].自然科学进展,200917(9),1316-1321.
    [67] Birringer R, Gleiter H, Klein H P, et al. Noncrystalline materials: an approach to a novelsolid structure with gas2like disorder[J]. Physical Letters,1984,102A:365-369.
    [68] Gleiter H. Nanostructured materials: basic concepts and microstructure[J]. Acta MaterMetall,2000,48(1):1-29.
    [69]王尔德,胡连喜.机械合金化纳米晶材料研究进展[J].粉末冶金技术,2002,6:1352136.
    [70] ZHOU F, W ITKIN D, NUTT S R, et al. Formation of nanostructure in Al p roduced by a lowenergy ballmilling at cryogenic temperature[J].Mater Sei Eng,2004, A375-377:917-925.
    [71] ENAYATIM H, SADEGHA IN Z, SALEH IM, et al. The effect of milling parameters on thesynthesis ofNi3Al intermetallic compound by mechanical alloying [J]. Mater Sci Eng,2004,A375-377:809-811.
    [72] Hussein m Z B, Ming C Y, Zainal Z. Microwave assisted synthesis of Zn2Al lavered doublehydroxide sodium dodecyl sulfate nanocomposites[J]. J Mater Sci Lett,2000,19(10):879-883.
    [73] Maeda Y, Mizukoshi Y, Nagaya Y. Application of ultrasound for the preparation of nanosizedmaterials [J]. Ceramic of Japanese,2000,35(7):543-546.
    [74]刘刚,周蕾.工程金属材料的表面纳米化技术[J].纳米科技,2006,:3(1):56-60;
    [75] Sun H Q, Shi Y N, Zhang M X, et al. Plastic strain-induced grain refinement in the nanometerscale in a Mg alloy[J]. Acta Materialia,2007,55(3):975-982.
    [76] Han J, Sheng G M, Hu G X. Nanostructured surface layer of Ti-4Al-2V by means of highenergy shot peening[J]. ISIJ International,2008,48(2):218-223.
    [77] Han J, Sheng G M, Zhou X L, et al. Pulse pressuring diffusion bonding of Ti alloy/austenitestainless steel processed by surface self-nanocrystallization[J]. ISIJ International,2009,49(1):86-91.
    [78] K.Lu, J.Lu. Nanostructured surface layer on metallic materials induced by surface mechanicalattrition treatment[J]. Material Science and Engineering.2004, A375-377:38-45.
    [79] H.W. Zhang, Z.K. Hei, G. Liu, J. Lu, K. Lu. Formation of nanostructured surface layer onAISI304stainless steel by means of surface mechanical attrition treatment[J]. Acta Materialia.2003,51:1871-1881.
    [80] Nairong Tao, Hongwang Zhang, Jian Lu, Ke Lu. Development of Nanostructures in MetallicMaterials with Low Stacking Fault Energies During Surface Mechanical Attrition Treatment(SMAT)[J]. Materials Transactions.2003.44(10):1919-1925.
    [81]张洪旺,刘刚,黑祖昆,吕坚,卢柯.表面机械研磨处理诱导AISI304不锈钢表层纳米化-组织与性能[J].金属学报.2003,39(4):342-346.
    [82]张洪旺,刘刚,黑祖昆,吕坚,卢柯.表面机械研磨处理诱导AISI304不锈钢表层纳米化-晶粒细化机理[J].金属学报.2003,39(4):347-350.
    [83]吕爱强,刘刚,刘春明.机械研磨诱导316L不锈钢表层组织的演变[J].金属学报.2004,40(9):943-947.
    [84] X.H.Chen, J. Lu, L.Lu, K.Lu. Tensile properties of a nanocrystalline316L austenitic stainlesssteel[J]. Scripta Materialia.2005.52:1039-1044.
    [85] Min Ya, Yongming Xing, Fulong Dai, Ke Lu, Jian Lu. Study of residual stress in surfacenanostructured AISI316L stainless steel using two mechanical methods[J]. Surface andCoatings Technology.2003.168:148-155.
    [86] L.Lu, R.Schwaiger, et al. Nano-sized Twins Induce High Rate Sensitivity of Flow Stress inPure Copper[J]. Acta Materialia.2005.53:2169-2179.
    [87]卢柯.纳米晶体Cu的室温超塑延展性[J].中国科学院院刊.2001,1:29-31.
    [88] X.Wu, Y.Hong, et al. Fabrication and Nanostructured Surface Layer of Al Alloy by SurfaceVibrational Mechanical Attrition[J]. Mat. Res. Soc. Symp. Proc..2002,697.
    [89]胡兰青,李茂林,王科,刘刚等.铝合金表面纳米化处理及显微结构特[J].中国有色金属学报.2004,14(12):2016-2020.
    [90]胡兰青,李茂林,卫英慧,许并社.铝合金高能喷丸表层纳米化的TEM观察[J].电子显微学报.2004,23(4):386~386.
    [91]林柏年.剧烈塑性变形纳米材料[M].北京:科学出版社,2006.
    [92] Xingping YONG, Gang LIU, Ke LU. Characteration and properties of nanostructured surfacelayer in a low carbon steel subjected to SMA[J]. J.Mater.Sci.Technol.2003,19(1):1-4.
    [93]曹扬,陈光,颜银标.钢铁材料表面自身纳米晶化及其应用前景[J].钢铁研究学报.2005,17(2):1-6.
    [94]雍兴平著,李建萍,译.表面机械研磨低碳钢的纳米表层的特征与性能[J].国外金属加工.2003,24(4):4-8.
    [95]冯金,石连捷等.低碳钢超声喷丸表面纳米化的研究[J].金属学报.2000,36(3):300-304.
    [96] Xingping YONG, Gang LIU, Ke LU. Characteration and properties of nanostructured surfacelayer in a low carbon steel subjected to SMAT[J]. J.Mater.Sci.Technol.2003,19(1):1-4.
    [97]张淑兰,陈怀宁,林泉洪,刘刚.工业纯钛的表面纳米化及其机制[J].有色金属.2005,55(4):5-8.
    [98] Weisong ZHAO, Wei ZHANG, et al. Microstructure Evolution and Tensile Properties of PureTi Subjected to Rapidly Heating and Quenching[J]. J.Mater.Sci.Technol.2006,22(2):190-194.
    [99]卢柯,卢磊.金属纳米材料力学性能的研究进展[J].金属学报.2000,36(8):785-789.
    [100]王镇波,雍兴平等.表面纳米化对低碳钢摩擦磨损性能的影响[J].金属学报.2001,37(12):1251-1255.
    [101] T. Roland, D. Retraint, K. Lu, J. Lu. Fatigue life improvement through surfacenanostructuring of stainless steel by means of surface mechanical attrition treatment[J].Scripta Materialia.2006.54:1949-1954.
    [102] J. Han, G.M. Sheng, X.L. Zhou. Diffusion Bonding of Surface Self-nanocrystallizedTi-4Al-2V and0Cr18Ni9Ti by Means of High Energy Shot Peening[J]. ISIJ International,2008,48(9):1238-1245.
    [103] J. Han, G.M. Sheng, X.L. Zhou, J.X. Sun. Pulse Pressuring Diffusion Bonding of Ti alloy/Austenite Stainless Steel Processed by Surface Self-nanocrystallization[J]. ISIJ International.2009,49(1):86-91.
    [104]夏立芳,张振信.金属中的扩散[M].哈尔滨:哈尔滨工业大学出版社.1988
    [105]何康生,曹雄夫.异种金属焊接[M].北京:机械工业出版社.1981.
    [106]方洪渊,冯吉才编著.材料连接过程中的界面行为[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [107]肖宝平,孙艳,吴昌聚,等.纳米沟道中离子扩散系数[J].功能材料与器件学报,200814(2),486-491.
    [108] B. Bokstein,V. Ivanov,O. Oreshina, et al. Direct experimental Observation of acceleratedZn diffusion along triple junctions in Al[J]. Materials Science and Engineering,2001,A302(l):151-153.
    [109] Marte C. Kirchheim R. Hydrogen diffusion in nanocrystalline nickel indicating a structuralchange within the grain boundaries after annealing[J]. Scripta Mater,1997,37:1171-1175.
    [110] Horvath J, Bittinger R, Gleiter H. Diffusion in nanocrystalline material[J]. Soild StateCommun,1987.62:319-322.
    [111]陈达.纳米微晶材料的扩散机制[J].材料学报,1995,31(8):340-345.
    [112] Jiang Q, Zhang S.H, Li J.C. Grain size-dependent diffusion activation energy innanomaterials[J].Solid State Colnlnunieations,2004,130:581-584.
    [113] Gu J.F, Bei D.H, Lu K et al. Improved nitrogen transport in surface nanocrystallizedLow-carbon steels during gaseous nitridation[J]. Materials Letters,2002,55:340-343.
    [114] Tong W P, Zhang H.W, Lu K. Low-temperature nitriding by means of SMAT[J]. Transactionsof Materials and Heat Treatment,2004,5(25):302-306.
    [115]卑多慧,吕坚,顾剑锋等.表面纳米化预处理对低碳钢气体渗氮行为的影响[J].材料热处理学报,2002,23(l):19-24.
    [116] Lin Yimin,Lu Jian,Wang LiPing, et al. Surface nanocrystallization By surface mechanicalattrition treatment and its effect on structure and properties of Plasma nitrided AISI321stainless steel[J].Acta Materialia,2006,54:5599-5605.
    [117] Wang Z.B,Tao N.R, Lu K. Diffusion of chromium in nanocrystalline iron Produced bymeans of surface mechanical attrition treatment[J]. Acta Materialia,2003,51:4319-4329.
    [118]刘建路,张其春,林金辉.纳米粒子的平均晶粒尺寸和晶格畸变的同时测定[J].现代技术陶瓷.2002,1:34-38.
    [119]范学运,马仕明.材料中晶粒尺寸及微观畸变对X衍射线形的影响[J].中国陶瓷工业.2002,9(1):43-47.
    [120] R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov. Structure and properties of ultrafine grainedmaterials produced by severe plastic deformation[J]. Scripta Metall Mater.,1993,168,(2):141-151.
    [121]范学运,马仕明.材料中晶粒尺寸及微观畸变对X衍射线形的影响[J].中国陶瓷工业.2002,9(1):43-47.
    [122] Amar K. De, David C. Murdock, Martin C. Mataya, et.al. Quantitative measurement ofdeformation-induced martensitein304stainless steel by X-ray diffraction[J]. ScriptaMaterialia.2004.50:1445–1449.
    [123]崔忠圻主编.金属学与热处理[M].北京:机械工业出版社,2003.
    [124]李华瑞.材料X射线衍射分析实用方法[M].北京:冶金工业出版社.1994. P78-87.
    [125]陆金生. X射线衍射技术在纳米材料中的应用[J].现代科学仪器.2003,2: P34-35.
    [126]杨平.电子背散射衍射技术及其应用[M].北京:冶金工业出版社,2007.
    [127]郝允卫,蒋益明,邓博,等.铝在纳米纯铁中的低温扩散行为[J].材料热处理学报,200829(5):1-8.
    [128]王海东,张海.晶粒生长的蒙特卡罗模拟研究进展[J].材料导报,200721(2),72-75.
    [129]周有欣,黄传真.晶粒生长过程的相场模型研究进展[J].材料导报,201024(5),223-226.
    [130] S.V. Bobylev, M. Yu. Gutkin, I.A. Ovidko. Transformations of grain boundaries in deformednanocrystalline materials[J]. Acta Materialia,2004,52:3793-3805.
    [131]方斌,黄传真,崇学文,等.用改进的MonteCarlo算法模拟晶粒生长[J].材料导报,200822(5),126-129.
    [132]胡赓详,钱苗根.金属学[M].上海:上海科学技术出版社.1980,32-39.
    [133] R.V.Patil, G.B.Kale, P.S.Gawde, Diffusion reactions in titanium/Inconel-600system[J].Journal of Nuclear Materials.2001,(297):153-160.
    [134]周波.不锈钢与钛合金脉冲加压扩散焊接工艺研究[D].硕士学位论文,重庆:重庆大学,2004.
    [135]何鹏,冯吉才.扩散连接接头金属间化合物新相的形成机理[J].焊接学报,2001,1(22):53-55.
    [136] Aleman B.Gutierrez I, Urcola J.Interface microstructures in diffusion bonding of titaniumtostainless steel and low alloy steels[J]. Mater Sci Technol.1993,9(6):33-41.
    [137] G.Q. Wu, Z.F. Li, G.X. Luo, et.al. Dynamic simulation of solid-state diffusion bonding[J].Mater. Sci.and Eng.,2007,A452-453:529-535.
    [138] B.Qin, G.M. Sheng, J.W. Huang, et.al. Phase transformation diffusion bonding of titaniumalloy with stainless steel[J]. Materials Characterization,2006,56:32-38.
    [139]肖纪美.合金相与相变[M].北京,冶金工业出版社,2003.
    [140]卢柯,刘学东,胡壮麒.纳米晶体材料的Hall-Petch关系[J].材料研究学报.1994,8(5):385-391.
    [141]卢柯,卢磊.金属纳米材料力学性能的研究进展[J].金属学报.2000,36(8):785-789.
    [142]李瑛,王福会.表面纳米化对金属材料电化学腐蚀行为的影响[J].中国腐蚀与防护学报,2003,24(1):6-8.
    [143] Wang X Y, Li D J. Mechanical and electrochemical behavior of nanocrystalline and surface of304stainless steel[J]. Elec-trochim Acta,2002,47:3939-3944.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700